void DistributedOverlapMatrix<Rank>::SolveOverlapRank(Wavefunction<Rank> &srcPsi, Wavefunction<Rank> &destPsi, int opRank, bool fastAlgo) //void DistributedOverlapMatrix<Rank>::SolveOverlapRank(Wavefunction<Rank> &psi, int opRank, bool fastAlgo) { SetupRank(srcPsi, opRank); if (fastAlgo) { //Setup source multivector WavefunctionToMultiVector(srcPsi, InputVector(opRank), opRank); //Solve AMESOS_CHK_ERRV(Solvers(opRank)->Solve()); //Put solution multivector into destination wavefunction MultiVectorToWavefunction(destPsi, OutputVector(opRank), opRank); } else { //Setup source multivector Epetra_MultiVector_Ptr srcVec = SetupMultivector(srcPsi, opRank); //Output multivector (copy of input) Epetra_MultiVector_Ptr destVec = Epetra_MultiVector_Ptr(new Epetra_MultiVector(*srcVec)); //Set up Epetra LinearProblem with overlap for this rank and input/output multivectors Epetra_LinearProblem Problem(OverlapMatrices(opRank).get(), destVec.get(), srcVec.get()); //Initialize Amesos solver and factory Amesos_BaseSolver* Solver; Amesos Factory; std::string SolverType = "Amesos_Superludist"; Solver = Factory.Create(SolverType, Problem); //Check that requested solver exists in Amesos if (Solver == 0) { throw std::runtime_error("Specified Amesos solver not available"); } //Setup the parameter list for the solver Teuchos::ParameterList List; //List.set("PrintTiming", true); //List.set("PrintStatus", true); Solver->SetParameters(List); //Factorization and solve Solver->SymbolicFactorization(); Solver->NumericFactorization(); AMESOS_CHK_ERRV(Solver->Solve()); //Put solution multivector into destination wavefunction MultiVectorToWavefunction(destPsi, destVec, opRank); //Solver->PrintTiming(); } }
int main(int argc, char *argv[]) { #ifdef HAVE_MPI MPI_Init(&argc, &argv); Epetra_MpiComm Comm(MPI_COMM_WORLD); #else Epetra_SerialComm Comm; #endif // initialize an Gallery object CrsMatrixGallery Gallery("laplace_2d", Comm, false); // CJ TODO FIXME: change for Epetra64 Gallery.Set("problem_size", 100); //must be a square number // get pointers to the linear problem, containing matrix, LHS and RHS. // if you need to access them, you can for example uncomment the following // code: // Epetra_CrsMatrix* Matrix = Gallery.GetMatrix(); // Epetra_MultiVector* LHS = Gallery.GetStartingSolution(); // Epetra_MultiVector* RHS = Gallery.GetRHS(); // // NOTE: StartingSolution and RHS are pointers to Gallery's internally stored // vectors. Using StartingSolution and RHS, we can verify the residual // after the solution of the linear system. However, users may define as well // their own vectors for solution and RHS. Epetra_LinearProblem* Problem = Gallery.GetLinearProblem(); // initialize Amesos solver: // `Solver' is the pointer to the Amesos solver // (note the use of the base class Amesos_BaseSolver) Amesos_BaseSolver* Solver; // Amesos_Factory is the function class used to create the solver. // This class contains no data. Amesos Amesos_Factory; // empty parameter list Teuchos::ParameterList List; // may also try: "Amesos_Umfpack", "Amesos_Lapack", ... string SolverType = "Amesos_Klu"; Solver = Amesos_Factory.Create(SolverType, *Problem); // Amesos_Factory returns 0 is the selected solver is not // available assert (Solver); // start solving Solver->SymbolicFactorization(); Solver->NumericFactorization(); Solver->Solve(); // verify that residual is really small double residual, diff; Gallery.ComputeResidual(&residual); Gallery.ComputeDiffBetweenStartingAndExactSolutions(&diff); if( Comm.MyPID() == 0 ) { cout << "||b-Ax||_2 = " << residual << endl; cout << "||x_exact - x||_2 = " << diff << endl; } // delete Solver delete Solver; if (residual > 1e-5) exit(EXIT_FAILURE); #ifdef HAVE_MPI MPI_Finalize(); #endif exit(EXIT_SUCCESS); }
int PartialFactorizationOneStep( const char* AmesosClass, const Epetra_Comm &Comm, bool transpose, bool verbose, Teuchos::ParameterList ParamList, Epetra_CrsMatrix *& Amat, double Rcond, int Steps ) { assert( Steps >= 0 && Steps < MaxNumSteps ) ; int iam = Comm.MyPID() ; int errors = 0 ; const Epetra_Map *RangeMap = transpose?&Amat->OperatorDomainMap():&Amat->OperatorRangeMap() ; const Epetra_Map *DomainMap = transpose?&Amat->OperatorRangeMap():&Amat->OperatorDomainMap() ; Epetra_Vector xexact(*DomainMap); Epetra_Vector x(*DomainMap); Epetra_Vector b(*RangeMap); Epetra_Vector bcheck(*RangeMap); Epetra_Vector difference(*DomainMap); Epetra_LinearProblem Problem; Amesos_BaseSolver* Abase ; Amesos Afactory; Abase = Afactory.Create( AmesosClass, Problem ) ; std::string AC = AmesosClass ; if ( AC == "Amesos_Mumps" ) { ParamList.set( "NoDestroy", true ); Abase->SetParameters( ParamList ) ; } double relresidual = 0 ; if ( Steps > 0 ) { // // Phase 1: Compute b = A' A' A xexact // Problem.SetOperator( Amat ); // // We only set transpose if we have to - this allows valgrind to check // that transpose is set to a default value before it is used. // if ( transpose ) OUR_CHK_ERR( Abase->SetUseTranspose( transpose ) ); // if (verbose) ParamList.set( "DebugLevel", 1 ); // if (verbose) ParamList.set( "OutputLevel", 1 ); if ( Steps > 1 ) { OUR_CHK_ERR( Abase->SetParameters( ParamList ) ); if ( Steps > 2 ) { xexact.Random(); xexact.PutScalar(1.0); // // Compute cAx = A' xexact // Amat->Multiply( transpose, xexact, b ) ; // b = A x2 = A A' A'' xexact #if 0 std::cout << __FILE__ << "::" << __LINE__ << "b = " << std::endl ; b.Print( std::cout ) ; std::cout << __FILE__ << "::" << __LINE__ << "xexact = " << std::endl ; xexact.Print( std::cout ) ; std::cout << __FILE__ << "::" << __LINE__ << "x = " << std::endl ; x.Print( std::cout ) ; #endif // // Phase 2: Solve A' A' A x = b // // // Solve A sAAx = b // Problem.SetLHS( &x ); Problem.SetRHS( &b ); OUR_CHK_ERR( Abase->SymbolicFactorization( ) ); if ( Steps > 2 ) { OUR_CHK_ERR( Abase->SymbolicFactorization( ) ); if ( Steps > 3 ) { OUR_CHK_ERR( Abase->NumericFactorization( ) ); if ( Steps > 4 ) { OUR_CHK_ERR( Abase->NumericFactorization( ) ); if ( Steps > 5 ) { OUR_CHK_ERR( Abase->Solve( ) ); if ( Steps > 6 ) { OUR_CHK_ERR( Abase->Solve( ) ); Amat->Multiply( transpose, x, bcheck ) ; // temp = A" x2 double norm_diff ; double norm_one ; difference.Update( 1.0, x, -1.0, xexact, 0.0 ) ; difference.Norm2( &norm_diff ) ; x.Norm2( &norm_one ) ; relresidual = norm_diff / norm_one ; if (iam == 0 ) { if ( relresidual * Rcond > 1e-16 ) { if (verbose) std::cout << __FILE__ << "::"<< __LINE__ << " norm( x - xexact ) / norm(x) = " << norm_diff /norm_one << std::endl ; errors += 1 ; } } } } } } } } } } delete Abase; return errors; }
int main(int argc, char *argv[]) { #ifdef HAVE_MPI MPI_Init(&argc, &argv); Epetra_MpiComm Comm(MPI_COMM_WORLD); #else Epetra_SerialComm Comm; #endif bool verbose = (Comm.MyPID() == 0); double TotalResidual = 0.0; // Create the Map, defined as a grid, of size nx x ny x nz, // subdivided into mx x my x mz cubes, each assigned to a // different processor. #if 0 ParameterList GaleriList; GaleriList.set("nx", 4); GaleriList.set("ny", 4); GaleriList.set("nz", 4 * Comm.NumProc()); GaleriList.set("mx", 1); GaleriList.set("my", 1); GaleriList.set("mz", Comm.NumProc()); Epetra_Map* Map = CreateMap("Cartesian3D", Comm, GaleriList); // Create a matrix, in this case corresponding to a 3D Laplacian // discretized using a classical 7-point stencil. Please refer to // the Galeri documentation for an overview of available matrices. // // NOTE: matrix must be symmetric if DSCPACK is used. Epetra_CrsMatrix* Matrix = CreateCrsMatrix("Laplace3D", Map, GaleriList); #else bool transpose = false ; bool distribute = false ; bool symmetric ; Epetra_CrsMatrix *Matrix = 0 ; Epetra_Map *Map = 0 ; CreateCrsMatrix( "ibm.triU", Comm, Map, transpose, distribute, &symmetric, Matrix ) ; #endif // build vectors, in this case with 1 vector Epetra_MultiVector LHS(*Map, 1); Epetra_MultiVector RHS(*Map, 1); // create a linear problem object Epetra_LinearProblem Problem(Matrix, &LHS, &RHS); // use this list to set up parameters, now it is required // to use all the available processes (if supported by the // underlying solver). Uncomment the following two lines // to let Amesos print out some timing and status information. ParameterList List; List.set("PrintTiming",true); List.set("PrintStatus",true); List.set("MaxProcs",Comm.NumProc()); std::vector<std::string> SolverType; SolverType.push_back("Amesos_Paraklete"); Epetra_Time Time(Comm); // this is the Amesos factory object that will create // a specific Amesos solver. Amesos Factory; // Cycle over all solvers. // Only installed solvers will be tested. for (unsigned int i = 0 ; i < SolverType.size() ; ++i) { // Check whether the solver is available or not if (Factory.Query(SolverType[i])) { // 1.- set exact solution (constant vector) LHS.PutScalar(1.0); // 2.- create corresponding rhs Matrix->Multiply(false, LHS, RHS); // 3.- randomize solution vector LHS.Random(); // 4.- create the amesos solver object Amesos_BaseSolver* Solver = Factory.Create(SolverType[i], Problem); assert (Solver != 0); Solver->SetParameters(List); // 5.- factorize and solve Time.ResetStartTime(); AMESOS_CHK_ERR(Solver->SymbolicFactorization()); // 7.- delete the object delete Solver; } } delete Matrix; delete Map; if (TotalResidual > 1e-9) exit(EXIT_FAILURE); #ifdef HAVE_MPI MPI_Finalize(); #endif return(EXIT_SUCCESS); } // end of main()
int main(int argc, char *argv[]) { #ifdef HAVE_MPI MPI_Init(&argc, &argv); Epetra_MpiComm Comm(MPI_COMM_WORLD); #else Epetra_SerialComm Comm; #endif bool verbose = (Comm.MyPID() == 0); double TotalResidual = 0.0; // Create the Map, defined as a grid, of size nx x ny x nz, // subdivided into mx x my x mz cubes, each assigned to a // different processor. #ifndef FILENAME_SPECIFIED_ON_COMMAND_LINE ParameterList GaleriList; GaleriList.set("nx", 4); GaleriList.set("ny", 4); GaleriList.set("nz", 4 * Comm.NumProc()); GaleriList.set("mx", 1); GaleriList.set("my", 1); GaleriList.set("mz", Comm.NumProc()); Epetra_Map* Map = CreateMap("Cartesian3D", Comm, GaleriList); // Create a matrix, in this case corresponding to a 3D Laplacian // discretized using a classical 7-point stencil. Please refer to // the Galeri documentation for an overview of available matrices. // // NOTE: matrix must be symmetric if DSCPACK is used. Epetra_CrsMatrix* Matrix = CreateCrsMatrix("Laplace3D", Map, GaleriList); #else bool transpose = false ; bool distribute = false ; bool symmetric ; Epetra_CrsMatrix *Matrix = 0 ; Epetra_Map *Map = 0 ; MyCreateCrsMatrix( argv[1], Comm, Map, transpose, distribute, symmetric, Matrix ) ; #endif // build vectors, in this case with 1 vector Epetra_MultiVector LHS(*Map, 1); Epetra_MultiVector RHS(*Map, 1); // create a linear problem object Epetra_LinearProblem Problem(Matrix, &LHS, &RHS); // use this list to set up parameters, now it is required // to use all the available processes (if supported by the // underlying solver). Uncomment the following two lines // to let Amesos print out some timing and status information. ParameterList List; List.set("PrintTiming",true); List.set("PrintStatus",true); List.set("MaxProcs",Comm.NumProc()); std::vector<std::string> SolverType; SolverType.push_back("Amesos_Paraklete"); SolverType.push_back("Amesos_Klu"); Comm.Barrier() ; #if 1 SolverType.push_back("Amesos_Lapack"); SolverType.push_back("Amesos_Umfpack"); SolverType.push_back("Amesos_Pardiso"); SolverType.push_back("Amesos_Taucs"); SolverType.push_back("Amesos_Superlu"); SolverType.push_back("Amesos_Superludist"); SolverType.push_back("Amesos_Mumps"); SolverType.push_back("Amesos_Dscpack"); SolverType.push_back("Amesos_Scalapack"); #endif Epetra_Time Time(Comm); // this is the Amesos factory object that will create // a specific Amesos solver. Amesos Factory; // Cycle over all solvers. // Only installed solvers will be tested. for (unsigned int i = 0 ; i < SolverType.size() ; ++i) { // Check whether the solver is available or not if (Factory.Query(SolverType[i])) { // 1.- set exact solution (constant vector) LHS.PutScalar(1.0); // 2.- create corresponding rhs Matrix->Multiply(false, LHS, RHS); // 3.- randomize solution vector LHS.Random(); // 4.- create the amesos solver object Amesos_BaseSolver* Solver = Factory.Create(SolverType[i], Problem); assert (Solver != 0); Solver->SetParameters(List); Solver->SetUseTranspose( true) ; // 5.- factorize and solve Comm.Barrier() ; if (verbose) std::cout << std::endl << "Solver " << SolverType[i] << ", verbose = " << verbose << std::endl ; Comm.Barrier() ; Time.ResetStartTime(); AMESOS_CHK_ERR(Solver->SymbolicFactorization()); if (verbose) std::cout << std::endl << "Solver " << SolverType[i] << ", symbolic factorization time = " << Time.ElapsedTime() << std::endl; Comm.Barrier() ; AMESOS_CHK_ERR(Solver->NumericFactorization()); if (verbose) std::cout << "Solver " << SolverType[i] << ", numeric factorization time = " << Time.ElapsedTime() << std::endl; Comm.Barrier() ; AMESOS_CHK_ERR(Solver->Solve()); if (verbose) std::cout << "Solver " << SolverType[i] << ", solve time = " << Time.ElapsedTime() << std::endl; Comm.Barrier() ; // 6.- compute difference between exact solution and Amesos one // (there are other ways of doing this in Epetra, but let's // keep it simple) double d = 0.0, d_tot = 0.0; for (int j = 0 ; j< LHS.Map().NumMyElements() ; ++j) d += (LHS[0][j] - 1.0) * (LHS[0][j] - 1.0); Comm.SumAll(&d,&d_tot,1); if (verbose) std::cout << "Solver " << SolverType[i] << ", ||x - x_exact||_2 = " << sqrt(d_tot) << std::endl; // 7.- delete the object delete Solver; TotalResidual += d_tot; } } delete Matrix; delete Map; if (TotalResidual > 1e-9) exit(EXIT_FAILURE); #ifdef HAVE_MPI MPI_Finalize(); #endif return(EXIT_SUCCESS); } // end of main()
int main(int argc, char *argv[]) { #ifdef HAVE_MPI Teuchos::GlobalMPISession mpiSession(&argc, &argv, 0); Epetra_MpiComm Comm(MPI_COMM_WORLD); #else Epetra_SerialComm Comm; #endif int nProcs, myPID ; Teuchos::ParameterList pLUList ; // ParaLU parameters Teuchos::ParameterList isoList ; // Isorropia parameters string ipFileName = "ShyLU.xml"; // TODO : Accept as i/p nProcs = mpiSession.getNProc(); myPID = Comm.MyPID(); if (myPID == 0) { cout <<"Parallel execution: nProcs="<< nProcs << endl; } // =================== Read input xml file ============================= Teuchos::updateParametersFromXmlFile(ipFileName, &pLUList); isoList = pLUList.sublist("Isorropia Input"); // Get matrix market file name string MMFileName = Teuchos::getParameter<string>(pLUList, "mm_file"); string prec_type = Teuchos::getParameter<string>(pLUList, "preconditioner"); if (myPID == 0) { cout << "Input :" << endl; cout << "ParaLU params " << endl; pLUList.print(std::cout, 2, true, true); cout << "Matrix market file name: " << MMFileName << endl; } // ==================== Read input Matrix ============================== Epetra_CrsMatrix *A; int err = EpetraExt::MatrixMarketFileToCrsMatrix(MMFileName.c_str(), Comm, A); //EpetraExt::MatlabFileToCrsMatrix(MMFileName.c_str(), Comm, A); //assert(err != 0); cout <<"Done reading the matrix"<< endl; int n = A->NumGlobalRows(); cout <<"n="<< n << endl; // Create input vectors Epetra_Map vecMap(n, 0, Comm); Epetra_MultiVector x(vecMap, 1); Epetra_MultiVector b(vecMap, 1, false); b.PutScalar(1.0); // TODO : Accept it as input // Partition the matrix with hypergraph partitioning and redisstribute Isorropia::Epetra::Partitioner *partitioner = new Isorropia::Epetra::Partitioner(A, isoList, false); partitioner->partition(); Isorropia::Epetra::Redistributor rd(partitioner); Epetra_CrsMatrix *newA; Epetra_MultiVector *newX, *newB; rd.redistribute(*A, newA); delete A; A = newA; rd.redistribute(x, newX); rd.redistribute(b, newB); Epetra_LinearProblem problem(A, newX, newB); Amesos Factory; char* SolverType = "Amesos_Klu"; bool IsAvailable = Factory.Query(SolverType); Epetra_LinearProblem *LP = new Epetra_LinearProblem(); LP->SetOperator(A); LP->SetLHS(newX); LP->SetRHS(newB); Amesos_BaseSolver *Solver = Factory.Create(SolverType, *LP); Solver->SymbolicFactorization(); Teuchos::Time ftime("setup time"); ftime.start(); Solver->NumericFactorization(); cout << "Numeric Factorization" << endl; Solver->Solve(); cout << "Solve done" << endl; ftime.stop(); cout << "Time to setup" << ftime.totalElapsedTime() << endl; // compute ||Ax - b|| double Norm; Epetra_MultiVector Ax(vecMap, 1); Epetra_MultiVector *newAx; rd.redistribute(Ax, newAx); A->Multiply(false, *newX, *newAx); newAx->Update(1.0, *newB, -1.0); newAx->Norm2(&Norm); double ANorm = A->NormOne(); cout << "|Ax-b |/|A| = " << Norm/ANorm << endl; delete newAx; delete newX; delete newB; delete A; delete partitioner; }
int main(int argc, char *argv[]) { #ifdef HAVE_MPI MPI_Init(&argc, &argv); Epetra_MpiComm Comm(MPI_COMM_WORLD); #else Epetra_SerialComm Comm; #endif int NumGlobalRows = 10000; // must be a square for the // matrix generator. int NumVectors = 1; // number of rhs's. Amesos // supports single or // multiple RHS. // Initializes an Gallery object. // NOTE: this example uses the Trilinos package Galeri // to define in an easy way the linear system matrix. // The user can easily change the matrix type; consult the // Galeri documentation for mode details. // // Here the problem has size nx x ny, and the 2D Cartesian // grid is divided into mx x my subdomains. ParameterList GaleriList; GaleriList.set("nx", 100); GaleriList.set("ny", 100 * Comm.NumProc()); GaleriList.set("mx", 1); GaleriList.set("my", Comm.NumProc()); Epetra_Map* Map = CreateMap("Cartesian2D", Comm, GaleriList); Epetra_CrsMatrix* Matrix = CreateCrsMatrix("Laplace2D", Map, GaleriList); // Creates vectors for right-hand side and solution, and the // linear problem container. Epetra_Vector LHS(*Map); LHS.PutScalar(0.0); // zero solution Epetra_Vector RHS(*Map); RHS.Random(); // random rhs Epetra_LinearProblem Problem(Matrix, &LHS, &RHS); // ===================================================== // // B E G I N N I N G O F T H E AM E S O S P A R T // // ===================================================== // // Initializes the Amesos solver. This is the base class for // Amesos. It is a pure virtual class (hence objects of this // class cannot be allocated, and can exist only as pointers // or references). // Amesos_BaseSolver* Solver; // Initializes the Factory. Factory is a function class (a // class that contains methods only, no data). Factory // will be used to create Amesos_BaseSolver derived objects. // Amesos Factory; Solver = Factory.Create("Klu", Problem); // Parameters for all Amesos solvers are set through // a call to SetParameters(List). List is a Teuchos // parameter list (Amesos requires Teuchos to compile). // In most cases, users can proceed without calling // SetParameters(). Please refer to the Amesos guide // for more details. // NOTE: you can skip this call; then the solver will // use default parameters. // // Parameters in the list are set using // List.set("parameter-name", ParameterValue); // In this example, we specify that we want more output. // Teuchos::ParameterList List; List.set("PrintTiming", true); List.set("PrintStatus", true); Solver->SetParameters(List); // Now we are ready to solve. Generally, users will // call SymbolicFactorization(), then NumericFactorization(), // and finally Solve(). Note that: // - the numerical values of the linear system matrix // are *not* required before NumericFactorization(); // - solution and rhs are *not* required before calling // Solve(). if (Comm.MyPID() == 0) cout << "Starting symbolic factorization..." << endl; Solver->SymbolicFactorization(); // you can change the matrix values here if (Comm.MyPID() == 0) cout << "Starting numeric factorization..." << endl; Solver->NumericFactorization(); // you can change LHS and RHS here if (Comm.MyPID() == 0) cout << "Starting solution phase..." << endl; Solver->Solve(); // =========================================== // // E N D O F T H E A M E S O S P A R T // // =========================================== // // delete Solver. MPI calls can occur. delete Solver; // delete the objects created by Galeri delete Matrix; delete Map; #ifdef HAVE_MPI MPI_Finalize(); #endif return(EXIT_SUCCESS); } // end of main()