ReturnMatrix LU2(const BandMatrix& A) { Tracer et1("LU2 - BandLU"); BandLUMatrix X = A; X.release(); return X.for_return(); }
void trymatd() { Tracer et("Thirteenth test of Matrix package"); Tracer::PrintTrace(); Matrix X(5,20); int i,j; for (j=1;j<=20;j++) X(1,j) = j+1; for (i=2;i<=5;i++) for (j=1;j<=20; j++) X(i,j) = (long)X(i-1,j) * j % 1001; SymmetricMatrix S; S << X * X.t(); Matrix SM = X * X.t() - S; Print(SM); LowerTriangularMatrix L = Cholesky(S); Matrix Diff = L*L.t()-S; Clean(Diff, 0.000000001); Print(Diff); { Tracer et1("Stage 1"); LowerTriangularMatrix L1(5); Matrix Xt = X.t(); Matrix Xt2 = Xt; QRZT(X,L1); Diff = L - L1; Clean(Diff,0.000000001); Print(Diff); UpperTriangularMatrix Ut(5); QRZ(Xt,Ut); Diff = L - Ut.t(); Clean(Diff,0.000000001); Print(Diff); Matrix Y(3,20); for (j=1;j<=20;j++) Y(1,j) = 22-j; for (i=2;i<=3;i++) for (j=1;j<=20; j++) Y(i,j) = (long)Y(i-1,j) * j % 101; Matrix Yt = Y.t(); Matrix M,Mt; Matrix Y2=Y; QRZT(X,Y,M); QRZ(Xt,Yt,Mt); Diff = Xt - X.t(); Clean(Diff,0.000000001); Print(Diff); Diff = Yt - Y.t(); Clean(Diff,0.000000001); Print(Diff); Diff = Mt - M.t(); Clean(Diff,0.000000001); Print(Diff); Diff = Y2 * Xt2 * S.i() - M * L.i(); Clean(Diff,0.000000001); Print(Diff); } ColumnVector C1(5); { Tracer et1("Stage 2"); X.ReSize(5,5); for (j=1;j<=5;j++) X(1,j) = j+1; for (i=2;i<=5;i++) for (j=1;j<=5; j++) X(i,j) = (long)X(i-1,j) * j % 1001; for (i=1;i<=5;i++) C1(i) = i*i; CroutMatrix A = X; ColumnVector C2 = A.i() * C1; C1 = X.i() * C1; X = C1 - C2; Clean(X,0.000000001); Print(X); } { Tracer et1("Stage 3"); X.ReSize(7,7); for (j=1;j<=7;j++) X(1,j) = j+1; for (i=2;i<=7;i++) for (j=1;j<=7; j++) X(i,j) = (long)X(i-1,j) * j % 1001; C1.ReSize(7); for (i=1;i<=7;i++) C1(i) = i*i; RowVector R1 = C1.t(); Diff = R1 * X.i() - ( X.t().i() * R1.t() ).t(); Clean(Diff,0.000000001); Print(Diff); } { Tracer et1("Stage 4"); X.ReSize(5,5); for (j=1;j<=5;j++) X(1,j) = j+1; for (i=2;i<=5;i++) for (j=1;j<=5; j++) X(i,j) = (long)X(i-1,j) * j % 1001; C1.ReSize(5); for (i=1;i<=5;i++) C1(i) = i*i; CroutMatrix A1 = X*X; ColumnVector C2 = A1.i() * C1; C1 = X.i() * C1; C1 = X.i() * C1; X = C1 - C2; Clean(X,0.000000001); Print(X); } { Tracer et1("Stage 5"); int n = 40; SymmetricBandMatrix B(n,2); B = 0.0; for (i=1; i<=n; i++) { B(i,i) = 6; if (i<=n-1) B(i,i+1) = -4; if (i<=n-2) B(i,i+2) = 1; } B(1,1) = 5; B(n,n) = 5; SymmetricMatrix A = B; ColumnVector X(n); X(1) = 429; for (i=2;i<=n;i++) X(i) = (long)X(i-1) * 31 % 1001; X = X / 100000L; // the matrix B is rather ill-conditioned so the difficulty is getting // good agreement (we have chosen X very small) may not be surprising; // maximum element size in B.i() is around 1400 ColumnVector Y1 = A.i() * X; LowerTriangularMatrix C1 = Cholesky(A); ColumnVector Y2 = C1.t().i() * (C1.i() * X) - Y1; Clean(Y2, 0.000000001); Print(Y2); UpperTriangularMatrix CU = C1.t().i(); LowerTriangularMatrix CL = C1.i(); Y2 = CU * (CL * X) - Y1; Clean(Y2, 0.000000001); Print(Y2); Y2 = B.i() * X - Y1; Clean(Y2, 0.000000001); Print(Y2); LowerBandMatrix C2 = Cholesky(B); Matrix M = C2 - C1; Clean(M, 0.000000001); Print(M); ColumnVector Y3 = C2.t().i() * (C2.i() * X) - Y1; Clean(Y3, 0.000000001); Print(Y3); CU = C1.t().i(); CL = C1.i(); Y3 = CU * (CL * X) - Y1; Clean(Y3, 0.000000001); Print(Y3); Y3 = B.i() * X - Y1; Clean(Y3, 0.000000001); Print(Y3); SymmetricMatrix AI = A.i(); Y2 = AI*X - Y1; Clean(Y2, 0.000000001); Print(Y2); SymmetricMatrix BI = B.i(); BandMatrix C = B; Matrix CI = C.i(); M = A.i() - CI; Clean(M, 0.000000001); Print(M); M = B.i() - CI; Clean(M, 0.000000001); Print(M); M = AI-BI; Clean(M, 0.000000001); Print(M); M = AI-CI; Clean(M, 0.000000001); Print(M); M = A; AI << M; M = AI-A; Clean(M, 0.000000001); Print(M); C = B; BI << C; M = BI-B; Clean(M, 0.000000001); Print(M); } { Tracer et1("Stage 5"); SymmetricMatrix A(4), B(4); A << 5 << 1 << 4 << 2 << 1 << 6 << 1 << 0 << 1 << 7; B << 8 << 1 << 5 << 1 << 0 << 9 << 2 << 1 << 0 << 6; LowerTriangularMatrix AB = Cholesky(A) * Cholesky(B); Matrix M = Cholesky(A) * B * Cholesky(A).t() - AB*AB.t(); Clean(M, 0.000000001); Print(M); M = A * Cholesky(B); M = M * M.t() - A * B * A; Clean(M, 0.000000001); Print(M); } { Tracer et1("Stage 6"); int N=49; int i; SymmetricBandMatrix S(N,1); Matrix B(N,N+1); B=0; for (i=1;i<=N;i++) { S(i,i)=1; B(i,i)=1; B(i,i+1)=-1; } for (i=1;i<N; i++) S(i,i+1)=-.5; DiagonalMatrix D(N+1); D = 1; B = B.t()*S.i()*B - (D-1.0/(N+1))*2.0; Clean(B, 0.000000001); Print(B); } { Tracer et1("Stage 7"); // Copying and moving CroutMatrix Matrix A(7,7); A.Row(1) << 3 << 2 << -1 << 4 << -3 << 5 << 9; A.Row(2) << -8 << 7 << 2 << 0 << 7 << 0 << -1; A.Row(3) << 2 << -2 << 3 << 1 << 9 << 0 << 3; A.Row(4) << -1 << 5 << 2 << 2 << 5 << -1 << 2; A.Row(5) << 4 << -4 << 1 << 9 << -8 << 7 << 5; A.Row(6) << 1 << -2 << 5 << -1 << -2 << 5 << 1; A.Row(7) << -6 << 3 << -1 << 8 << -1 << 2 << 2; RowVector D(30); D = 0; Real x = determinant(A); CroutMatrix B = A; D(1) = determinant(B) / x - 1; Matrix C = A * Inverter1(B) - IdentityMatrix(7); Clean(C, 0.000000001); Print(C); // Test copy constructor (in Inverter2 and ordinary copy) CroutMatrix B1; B1 = B; D(2) = determinant(B1) / x - 1; C = A * Inverter2(B1) - IdentityMatrix(7); Clean(C, 0.000000001); Print(C); // Do it again with release B.release(); B1 = B; D(2) = B.nrows(); D(3) = B.ncols(); D(4) = B.size(); D(5) = determinant(B1) / x - 1; B1.release(); C = A * Inverter2(B1) - IdentityMatrix(7); D(6) = B1.nrows(); D(7) = B1.ncols(); D(8) = B1.size(); Clean(C, 0.000000001); Print(C); // see if we get an implicit invert B1 = -A; D(9) = determinant(B1) / x + 1; // odd number of rows - sign will change C = -A * Inverter2(B1) - IdentityMatrix(7); Clean(C, 0.000000001); Print(C); // check for_return B = LU1(A); B1 = LU2(A); CroutMatrix B2 = LU3(A); C = A * B.i() - IdentityMatrix(7); Clean(C, 0.000000001); Print(C); D(10) = (B == B1 ? 0 : 1) + (B == B2 ? 0 : 1); // check lengths D(13) = B.size()-49; // check release(2) B1.release(2); B2 = B1; D(15) = B == B2 ? 0 : 1; CroutMatrix B3 = B1; D(16) = B == B3 ? 0 : 1; D(17) = B1.size(); // some oddments B1 = B; B1 = B1.i(); C = A - B1.i(); Clean(C, 0.000000001); Print(C); B1 = B; B1.release(); B1 = B1; B2 = B1; D(19) = B == B1 ? 0 : 1; D(20) = B == B2 ? 0 : 1; B1.cleanup(); B2 = B1; D(21) = B1.size(); D(22) = B2.size(); GenericMatrix GM = B; C = A.i() - GM.i(); Clean(C, 0.000000001); Print(C); B1 = GM; D(23) = B == B1 ? 0 : 1; B1 = A * 0; B2 = B1; D(24) = B2.is_singular() ? 0 : 1; // check release again - see if memory moves const Real* d = B.const_data(); const int* i = B.const_data_indx(); B1 = B; const Real* d1 = B1.const_data(); const int* i1 = B1.const_data_indx(); B1.release(); B2 = B1; const Real* d2 = B2.const_data(); const int* i2 = B2.const_data_indx(); D(25) = (d != d1 ? 0 : 1) + (d1 == d2 ? 0 : 1) + (i != i1 ? 0 : 1) + (i1 == i2 ? 0 : 1); Clean(D, 0.000000001); Print(D); } { Tracer et1("Stage 8"); // Same for BandLUMatrix BandMatrix A(7,3,2); A.Row(1) << 3 << 2 << -1; A.Row(2) << -8 << 7 << 2 << 0; A.Row(3) << 2 << -2 << 3 << 1 << 9; A.Row(4) << -1 << 5 << 2 << 2 << 5 << -1; A.Row(5) << -4 << 1 << 9 << -8 << 7 << 5; A.Row(6) << 5 << -1 << -2 << 5 << 1; A.Row(7) << 8 << -1 << 2 << 2; RowVector D(30); D = 0; Real x = determinant(A); BandLUMatrix B = A; D(1) = determinant(B) / x - 1; Matrix C = A * Inverter1(B) - IdentityMatrix(7); Clean(C, 0.000000001); Print(C); // Test copy constructor (in Inverter2 and ordinary copy) BandLUMatrix B1; B1 = B; D(2) = determinant(B1) / x - 1; C = A * Inverter2(B1) - IdentityMatrix(7); Clean(C, 0.000000001); Print(C); // Do it again with release B.release(); B1 = B; D(2) = B.nrows(); D(3) = B.ncols(); D(4) = B.size(); D(5) = determinant(B1) / x - 1; B1.release(); C = A * Inverter2(B1) - IdentityMatrix(7); D(6) = B1.nrows(); D(7) = B1.ncols(); D(8) = B1.size(); Clean(C, 0.000000001); Print(C); // see if we get an implicit invert B1 = -A; D(9) = determinant(B1) / x + 1; // odd number of rows - sign will change C = -A * Inverter2(B1) - IdentityMatrix(7); Clean(C, 0.000000001); Print(C); // check for_return B = LU1(A); B1 = LU2(A); BandLUMatrix B2 = LU3(A); C = A * B.i() - IdentityMatrix(7); Clean(C, 0.000000001); Print(C); D(10) = (B == B1 ? 0 : 1) + (B == B2 ? 0 : 1); // check lengths D(11) = B.bandwidth().lower()-3; D(12) = B.bandwidth().upper()-2; D(13) = B.size()-42; D(14) = B.size2()-21; // check release(2) B1.release(2); B2 = B1; D(15) = B == B2 ? 0 : 1; BandLUMatrix B3 = B1; D(16) = B == B3 ? 0 : 1; D(17) = B1.size(); // Compare with CroutMatrix CroutMatrix CM = A; C = CM.i() - B.i(); Clean(C, 0.000000001); Print(C); D(18) = determinant(CM) / x - 1; // some oddments B1 = B; CM = B1.i(); C = A - CM.i(); Clean(C, 0.000000001); Print(C); B1 = B; B1.release(); B1 = B1; B2 = B1; D(19) = B == B1 ? 0 : 1; D(20) = B == B2 ? 0 : 1; B1.cleanup(); B2 = B1; D(21) = B1.size(); D(22) = B2.size(); GenericMatrix GM = B; C = A.i() - GM.i(); Clean(C, 0.000000001); Print(C); B1 = GM; D(23) = B == B1 ? 0 : 1; B1 = A * 0; B2 = B1; D(24) = B2.is_singular() ? 0 : 1; // check release again - see if memory moves const Real* d = B.const_data(); const Real* dd = B.const_data(); const int* i = B.const_data_indx(); B1 = B; const Real* d1 = B1.const_data(); const Real* dd1 = B1.const_data(); const int* i1 = B1.const_data_indx(); B1.release(); B2 = B1; const Real* d2 = B2.const_data(); const Real* dd2 = B2.const_data(); const int* i2 = B2.const_data_indx(); D(25) = (d != d1 ? 0 : 1) + (d1 == d2 ? 0 : 1) + (dd != dd1 ? 0 : 1) + (dd1 == dd2 ? 0 : 1) + (i != i1 ? 0 : 1) + (i1 == i2 ? 0 : 1); Clean(D, 0.000000001); Print(D); } { Tracer et1("Stage 9"); // Modification of Cholesky decomposition int i, j; // Build test matrix Matrix X(100, 10); MultWithCarry mwc; // Uniform random number generator for (i = 1; i <= 100; ++i) for (j = 1; j <= 10; ++j) X(i, j) = 2.0 * (mwc.Next() - 0.5); Matrix X1 = X; // save copy // Form sums of squares and products matrix and Cholesky decompose SymmetricMatrix A; A << X.t() * X; UpperTriangularMatrix U1 = Cholesky(A).t(); // Do QR decomposition of X and check we get same triangular matrix UpperTriangularMatrix U2; QRZ(X, U2); Matrix Diff = U1 - U2; Clean(Diff, 0.000000001); Print(Diff); // Try adding new row to X and updating triangular matrix RowVector NewRow(10); for (j = 1; j <= 10; ++j) NewRow(j) = 2.0 * (mwc.Next() - 0.5); UpdateCholesky(U2, NewRow); X = X1 & NewRow; QRZ(X, U1); Diff = U1 - U2; Clean(Diff, 0.000000001); Print(Diff); // Try removing two rows and updating triangular matrix DowndateCholesky(U2, X1.Row(20)); DowndateCholesky(U2, X1.Row(35)); X = X1.Rows(1,19) & X1.Rows(21,34) & X1.Rows(36,100) & NewRow; QRZ(X, U1); Diff = U1 - U2; Clean(Diff, 0.000000001); Print(Diff); // Circular shifts CircularShift(X, 3,6); CircularShift(X, 5,5); CircularShift(X, 4,5); CircularShift(X, 1,6); CircularShift(X, 6,10); } { Tracer et1("Stage 10"); // Try updating QRZ, QRZT decomposition TestUpdateQRZ tuqrz1(10, 100, 50, 25); tuqrz1.DoTest(); tuqrz1.Reset(); tuqrz1.ClearRow(1); tuqrz1.DoTest(); tuqrz1.Reset(); tuqrz1.ClearRow(1); tuqrz1.ClearRow(2); tuqrz1.DoTest(); tuqrz1.Reset(); tuqrz1.ClearRow(5); tuqrz1.ClearRow(6); tuqrz1.DoTest(); tuqrz1.Reset(); tuqrz1.ClearRow(10); tuqrz1.DoTest(); TestUpdateQRZ tuqrz2(15, 100, 0, 0); tuqrz2.DoTest(); tuqrz2.Reset(); tuqrz2.ClearRow(1); tuqrz2.DoTest(); tuqrz2.Reset(); tuqrz2.ClearRow(1); tuqrz2.ClearRow(2); tuqrz2.DoTest(); tuqrz2.Reset(); tuqrz2.ClearRow(5); tuqrz2.ClearRow(6); tuqrz2.DoTest(); tuqrz2.Reset(); tuqrz2.ClearRow(15); tuqrz2.DoTest(); TestUpdateQRZ tuqrz3(5, 0, 10, 0); tuqrz3.DoTest(); } // cout << "\nEnd of Thirteenth test\n"; }