//* A SHORT VERSION int main(int argc, char ** argv) { // s_InputFile = baseDir + <name of the input file> string s_InputFile; //path of the input file s_InputFile = baseDir; s_InputFile += DIR_SEPARATOR; s_InputFile += "Graphs"; s_InputFile += DIR_SEPARATOR; s_InputFile += "column-compress.mtx"; //Generate and color the bipartite graph BipartiteGraphPartialColoringInterface *g = new BipartiteGraphPartialColoringInterface(SRC_FILE, s_InputFile.c_str(), "AUTO_DETECTED"); //Do Partial-Distance-Two-Coloring the bipartite graph with the specified ordering g->PartialDistanceTwoColoring("SMALLEST_LAST", "ROW_PARTIAL_DISTANCE_TWO"); /*Done with coloring. Below are possible things that you may want to do after coloring: //*/ /* 1. Check Partial Distance Two Coloring result cout<<"Check Partial Distance Two coloring result ... "<<endl; if(g->CheckPartialDistanceTwoColoring() == _FALSE) cout<<" FAILED"<<endl; else cout<<" SUCCEEDED"<<endl; Pause(); //*/ //* 2. Print coloring results g->PrintPartialColoringMetrics(); Pause(); //*/ //* 3. Get the list of colorID of colored vertices (in this case, the left side of the bipartite graph) vector<int> vi_VertexPartialColors; g->GetVertexPartialColors(vi_VertexPartialColors); //Print Partial Colors g->PrintPartialColors(); Pause(); //*/ /* 4. Get seed matrix int i_SeedRowCount = 0; int i_SeedColumnCount = 0; double** Seed = g->GetSeedMatrix(&i_SeedRowCount, &i_SeedColumnCount); //Display Seed printf("Seed matrix %d x %d \n", i_SeedRowCount, i_SeedColumnCount); displayMatrix(Seed, i_SeedRowCount, i_SeedColumnCount, 1); Pause(); //*/ delete g; return 0; }
int main() { double*** dp3_Seed = new double**; int *ip1_SeedRowCount = new int; int *ip1_SeedColumnCount = new int; int i_RowCount, i_ColumnCount, i_MaxNonZerosInRows; //populate the Jacobian. Uncomment one of the 2 matrices below /* 1x1 matrix i_RowCount = 1; i_ColumnCount = 1; i_MaxNonZerosInRows = 1; unsigned int **uip2_JacobianSparsityPattern = new unsigned int *[i_RowCount];//[1][1] for(int i=0;i<i_RowCount;i++) uip2_JacobianSparsityPattern[i] = new unsigned int[i_MaxNonZerosInRows + 1]; uip2_JacobianSparsityPattern[0][0] = 1; uip2_JacobianSparsityPattern[0][1] = 0; //*/ //* 32x9 matrix i_RowCount = 32; i_ColumnCount = 9; i_MaxNonZerosInRows = 3; unsigned int **uip2_JacobianSparsityPattern = new unsigned int *[i_RowCount];//[32][9] for(int i=0;i<i_RowCount;i++) uip2_JacobianSparsityPattern[i] = new unsigned int[i_MaxNonZerosInRows + 1]; uip2_JacobianSparsityPattern[0][0] = 0; uip2_JacobianSparsityPattern[1][0] = 1; uip2_JacobianSparsityPattern[1][1] = 0; uip2_JacobianSparsityPattern[2][0] = 1; uip2_JacobianSparsityPattern[2][1] = 1; uip2_JacobianSparsityPattern[3][0] = 1; uip2_JacobianSparsityPattern[3][1] = 2; uip2_JacobianSparsityPattern[4][0] = 1; uip2_JacobianSparsityPattern[4][1] = 0; uip2_JacobianSparsityPattern[5][0] = 3; uip2_JacobianSparsityPattern[5][1] = 0; uip2_JacobianSparsityPattern[5][2] = 1; uip2_JacobianSparsityPattern[5][3] = 3; uip2_JacobianSparsityPattern[6][0] = 3; uip2_JacobianSparsityPattern[6][1] = 1; uip2_JacobianSparsityPattern[6][2] = 2; uip2_JacobianSparsityPattern[6][3] = 4; uip2_JacobianSparsityPattern[7][0] = 2; uip2_JacobianSparsityPattern[7][1] = 2; uip2_JacobianSparsityPattern[7][2] = 5; uip2_JacobianSparsityPattern[8][0] = 1; uip2_JacobianSparsityPattern[8][1] = 3; uip2_JacobianSparsityPattern[9][0] = 3; uip2_JacobianSparsityPattern[9][1] = 3; uip2_JacobianSparsityPattern[9][2] = 4; uip2_JacobianSparsityPattern[9][3] = 6; uip2_JacobianSparsityPattern[10][0] = 3; uip2_JacobianSparsityPattern[10][1] = 4; uip2_JacobianSparsityPattern[10][2] = 5; uip2_JacobianSparsityPattern[10][3] = 7; uip2_JacobianSparsityPattern[11][0] = 2; uip2_JacobianSparsityPattern[11][1] = 5; uip2_JacobianSparsityPattern[11][2] = 8; uip2_JacobianSparsityPattern[12][0] = 1; uip2_JacobianSparsityPattern[12][1] = 6; uip2_JacobianSparsityPattern[13][0] = 2; uip2_JacobianSparsityPattern[13][1] = 6; uip2_JacobianSparsityPattern[13][2] = 7; uip2_JacobianSparsityPattern[14][0] = 2; uip2_JacobianSparsityPattern[14][1] = 7; uip2_JacobianSparsityPattern[14][2] = 8; uip2_JacobianSparsityPattern[15][0] = 1; uip2_JacobianSparsityPattern[15][1] = 8; uip2_JacobianSparsityPattern[16][0] = 1; uip2_JacobianSparsityPattern[16][1] = 0; uip2_JacobianSparsityPattern[17][0] = 2; uip2_JacobianSparsityPattern[17][1] = 0; uip2_JacobianSparsityPattern[17][2] = 1; uip2_JacobianSparsityPattern[18][0] = 2; uip2_JacobianSparsityPattern[18][1] = 1; uip2_JacobianSparsityPattern[18][2] = 2; uip2_JacobianSparsityPattern[19][0] = 1; uip2_JacobianSparsityPattern[19][1] = 2; uip2_JacobianSparsityPattern[20][0] = 2; uip2_JacobianSparsityPattern[20][1] = 0; uip2_JacobianSparsityPattern[20][2] = 3; uip2_JacobianSparsityPattern[21][0] = 3; uip2_JacobianSparsityPattern[21][1] = 1; uip2_JacobianSparsityPattern[21][2] = 3; uip2_JacobianSparsityPattern[21][3] = 4; uip2_JacobianSparsityPattern[22][0] = 3; uip2_JacobianSparsityPattern[22][1] = 2; uip2_JacobianSparsityPattern[22][2] = 4; uip2_JacobianSparsityPattern[22][3] = 5; uip2_JacobianSparsityPattern[23][0] = 1; uip2_JacobianSparsityPattern[23][1] = 5; uip2_JacobianSparsityPattern[24][0] = 2; uip2_JacobianSparsityPattern[24][1] = 3; uip2_JacobianSparsityPattern[24][2] = 6; uip2_JacobianSparsityPattern[25][0] = 3; uip2_JacobianSparsityPattern[25][1] = 4; uip2_JacobianSparsityPattern[25][2] = 6; uip2_JacobianSparsityPattern[25][3] = 7; uip2_JacobianSparsityPattern[26][0] = 3; uip2_JacobianSparsityPattern[26][1] = 5; uip2_JacobianSparsityPattern[26][2] = 7; uip2_JacobianSparsityPattern[26][3] = 8; uip2_JacobianSparsityPattern[27][0] = 1; uip2_JacobianSparsityPattern[27][1] = 8; uip2_JacobianSparsityPattern[28][0] = 1; uip2_JacobianSparsityPattern[28][1] = 6; uip2_JacobianSparsityPattern[29][0] = 1; uip2_JacobianSparsityPattern[29][1] = 7; uip2_JacobianSparsityPattern[30][0] = 1; uip2_JacobianSparsityPattern[30][1] = 8; uip2_JacobianSparsityPattern[31][0] = 0; //*/ //Step 1: Read the sparsity pattern of the given Jacobian matrix (compressed sparse rows format) //and create the corresponding bipartite graph BipartiteGraphPartialColoringInterface * g = new BipartiteGraphPartialColoringInterface(SRC_MEM_ADOLC, uip2_JacobianSparsityPattern, i_RowCount, i_ColumnCount); //Step 2: Do Partial-Distance-Two-Coloring the bipartite graph with the specified ordering g->PartialDistanceTwoColoring( "SMALLEST_LAST", "COLUMN_PARTIAL_DISTANCE_TWO"); //Step 3: From the coloring information, create and return the seed matrix (*dp3_Seed) = g->GetSeedMatrix(ip1_SeedRowCount, ip1_SeedColumnCount); /* Notes: In stead of doing step 1-3, you can just call the bellow function: g->GenerateSeedJacobian(uip2_JacobianSparsityPattern, i_RowCount,i_ColumnCount, dp3_Seed, ip1_SeedRowCount, ip1_SeedColumnCount, "COLUMN_PARTIAL_DISTANCE_TWO", "SMALLEST_LAST"); // compress columns. This function is inside BipartiteGraphPartialColoringInterface class */ cout<<"Finish GenerateSeed()"<<endl; //this SECTION is just for displaying the result g->PrintBipartiteGraph(); g->PrintColumnPartialColors(); g->PrintColumnPartialColoringMetrics(); double **RSeed = *dp3_Seed; int rows = g->GetColumnVertexCount(); int cols = g->GetRightVertexColorCount(); cout<<"Right Seed matrix: ("<<rows<<","<<cols<<")"<<endl; for(int i=0; i<rows; i++) { for(int j=0; j<cols; j++) { cout<<setw(6)<<RSeed[i][j]; } cout<<endl; } //END SECTION Pause(); //GraphColoringInterface * g = new GraphColoringInterface(); delete g; g = NULL; //double*** dp3_Seed = new double**; delete dp3_Seed; dp3_Seed = NULL; RSeed = NULL; //int *ip1_SeedRowCount = new int; delete ip1_SeedRowCount; ip1_SeedRowCount = NULL; //int *ip1_SeedColumnCount = new int; delete ip1_SeedColumnCount; ip1_SeedColumnCount = NULL; //unsigned int **uip2_HessianSparsityPattern = new unsigned int *[i_RowCount];//[5][5] free_2DMatrix(uip2_JacobianSparsityPattern, i_RowCount); uip2_JacobianSparsityPattern = NULL; return 0; }
int main() { // s_InputFile = baseDir + <name of the input file> string s_InputFile; //path of the input file s_InputFile = baseDir; s_InputFile += DIR_SEPARATOR; s_InputFile += "Graphs"; s_InputFile += DIR_SEPARATOR; s_InputFile += "column-compress.mtx"; // Step 1: Determine sparsity structure of the Jacobian. // This step is done by an AD tool. For the purpose of illustration here, we read the structure from a file, // and store the structure in a Compressed Row Format. unsigned int *** uip3_SparsityPattern = new unsigned int **; //uip3_ means triple pointers of type unsigned int double*** dp3_Value = new double**; //dp3_ means triple pointers of type double. Other prefixes follow the same notation int rowCount, columnCount; ConvertMatrixMarketFormat2RowCompressedFormat(s_InputFile, uip3_SparsityPattern, dp3_Value,rowCount, columnCount); cout<<"just for debugging purpose, display the 2 matrices: the matrix with SparsityPattern only and the matrix with Value"<<endl; cout<<fixed<<showpoint<<setprecision(2); //formatting output cout<<"(*uip3_SparsityPattern)"<<endl; displayCompressedRowMatrix((*uip3_SparsityPattern),rowCount); cout<<"(*dp3_Value)"<<endl; displayCompressedRowMatrix((*dp3_Value),rowCount); cout<<"Finish ConvertMatrixMarketFormat2RowCompressedFormat()"<<endl; Pause(); //Step 2: Obtain the seed matrix via coloring. double*** dp3_Seed = new double**; int *ip1_SeedRowCount = new int; int *ip1_SeedColumnCount = new int; int *ip1_ColorCount = new int; //The number of distinct colors used to color the graph //Step 2.1: Read the sparsity pattern of the given Jacobian matrix (compressed sparse rows format) //and create the corresponding bipartite graph BipartiteGraphPartialColoringInterface *g = new BipartiteGraphPartialColoringInterface(SRC_MEM_ADOLC, *uip3_SparsityPattern, rowCount, columnCount); //Step 2.2: Do Partial-Distance-Two-Coloring the bipartite graph with the specified ordering g->PartialDistanceTwoColoring("SMALLEST_LAST", "COLUMN_PARTIAL_DISTANCE_TWO"); //Step 2.3 (Option 1): From the coloring information, create and return the seed matrix (*dp3_Seed) = g->GetSeedMatrix(ip1_SeedRowCount, ip1_SeedColumnCount); /* Notes: Step 2.3 (Option 2): From the coloring information, you can also get the vector of colorIDs of left or right vertices (depend on the s_ColoringVariant that you choose) vector<int> vi_VertexPartialColors; g->GetVertexPartialColors(vi_VertexPartialColors); */ cout<<"Finish GenerateSeed()"<<endl; *ip1_ColorCount = *ip1_SeedColumnCount; //Display results of step 2 printf(" dp3_Seed %d x %d \n", *ip1_SeedRowCount, *ip1_SeedColumnCount); displayMatrix(*dp3_Seed, *ip1_SeedRowCount, *ip1_SeedColumnCount); Pause(); // Step 3: Obtain the Jacobian-seed matrix product. // This step will also be done by an AD tool. For the purpose of illustration here, the orginial matrix V // (for Values) is multiplied with the seed matrix S. The resulting matrix is stored in dp3_CompressedMatrix. double*** dp3_CompressedMatrix = new double**; cout<<"Start MatrixMultiplication()"<<endl; MatrixMultiplication_VxS(*uip3_SparsityPattern, *dp3_Value, rowCount, columnCount, *dp3_Seed, *ip1_ColorCount, dp3_CompressedMatrix); cout<<"Finish MatrixMultiplication()"<<endl; displayMatrix(*dp3_CompressedMatrix,rowCount,*ip1_ColorCount); Pause(); //Step 4: Recover the numerical values of the original matrix from the compressed representation. // The new values are store in "dp3_NewValue" double*** dp3_NewValue = new double**; JacobianRecovery1D* jr1d = new JacobianRecovery1D; int rowCount_for_dp3_NewValue = jr1d->RecoverD2Cln_RowCompressedFormat_unmanaged(g, *dp3_CompressedMatrix, *uip3_SparsityPattern, dp3_NewValue); /* RecoverD2Cln_RowCompressedFormat_unmanaged is called instead of RecoverD2Cln_RowCompressedFormat so that we could manage the memory deallocation for dp3_NewValue by ourselves. This way, we can reuse (*dp3_NewValue) to store new values if RecoverD2Cln_RowCompressedFormat...() need to be called again. //*/ cout<<"Finish Recover()"<<endl; displayCompressedRowMatrix(*dp3_NewValue,rowCount); Pause(); //Check for consistency, make sure the values in the 2 matrices are the same. if (CompressedRowMatricesAreEqual(*dp3_Value, *dp3_NewValue, rowCount,0)) cout<< "*dp3_Value == dp3_NewValue"<<endl; else cout<< "*dp3_Value != dp3_NewValue"<<endl; Pause(); /* Let say that we have new matrices with the same sparsity structure (only the values changed), We can take advantage of the memory already allocated to (*dp3_NewValue) and use (*dp3_NewValue) to stored the new values by calling RecoverD2Cln_RowCompressedFormat_usermem recovery function. This function works in the same way as RecoverD2Cln_RowCompressedFormat_unmanaged except that the memory for (*dp3_NewValue) is reused and therefore, takes less time than the _unmanaged counterpart. //*/ for(int i=0; i<3;i++) { jr1d->RecoverD2Cln_RowCompressedFormat_usermem(g, *dp3_CompressedMatrix, *uip3_SparsityPattern, dp3_NewValue); } //Deallocate memory for 2-dimensional array (*dp3_NewValue) for(int i=0; i<rowCount_for_dp3_NewValue;i++) { free((*dp3_NewValue)[i]); } free(*dp3_NewValue); //Deallocate memory using functions in Utilities/MatrixDeallocation.h free_2DMatrix(uip3_SparsityPattern, rowCount); uip3_SparsityPattern=NULL; free_2DMatrix(dp3_Value, rowCount); dp3_Value=NULL; delete dp3_Seed; dp3_Seed = NULL; delete ip1_SeedRowCount; ip1_SeedRowCount=NULL; delete ip1_SeedColumnCount; ip1_SeedColumnCount = NULL; free_2DMatrix(dp3_CompressedMatrix, rowCount); dp3_CompressedMatrix = NULL; delete ip1_ColorCount; ip1_ColorCount = NULL; delete jr1d; jr1d = NULL; delete dp3_NewValue; dp3_NewValue=NULL; delete g; g=NULL; return 0; }
int main() { int i, j, k, l, sum, n, m, nnz, direct = 1, found; double f; double *x, *c; adouble fad, *xad, *cad; //double** Zpp; //double** Zppf; double** J; //double* s; //int p_H_dir, p_H_indir; size_t tape_stats[11]; int num; FILE *fp_JP; double **Seed_J; double **Jc; int p_J; int recover = 1; int jac_vec = 1; int compute_full = 1; int output_sparsity_pattern_J = 0; //int output_sparsity_pattern_H = 1; //int use_direct_method = 1; //int output_direct = 0; //int use_indirect_method = 1; //int output_indirect = 0; double t_f_1, t_f_2, div_f=0, div_c=0, div_JP=0, div_JP2=0, div_Seed=0, div_Seed_C=0, div_Jc=0, div_Jc_C=0, div_rec=0, div_rec_C=0, div_J=0; //double test; unsigned int *rind; unsigned int *cind; double *values; //tring s_InputFile = "test_mat.mtx"; //string s_InputFile = "jac_pat.mtx"; //------------------------------------------------------------------------------------ // problem definition + evaluation init_dim(&n,&m); // initialize n and m printf(" n = %d m = %d\n",n,m); x = (double*) malloc(n*sizeof(double)); // x: vector input for function evaluation c = (double*) malloc(m*sizeof(double)); // c: constraint vector cad = new adouble[m]; init_startpoint(x,n); t_f_1 = k_getTime(); for(i=0;i<repnum;i++) f = feval(x,n); t_f_2 = k_getTime(); div_f = (t_f_2 - t_f_1)*1.0/repnum; printf("XXX The time needed for function evaluation: %10.6f \n \n", div_f); t_f_1 = k_getTime(); for(i=0;i<repnum;i++) ceval(x,c,n); t_f_2 = k_getTime(); div_c = (t_f_2 - t_f_1)*1.0/repnum; printf("XXX The time needed for constraint evaluation: %10.6f \n \n", div_c); trace_on(tag_f); fad = feval_ad(x, n); // feval_ad: derivative of feval fad >>= f; trace_off(); trace_on(tag_c); ceval_ad(x, cad, n); //ceval_ad: derivative of ceval for(i=0;i<m;i++) cad[i] >>= f; trace_off(); //return 1; tapestats(tag_c,tape_stats); // reading of tape statistics printf("\n independents %ld\n",(long)tape_stats[0]); printf(" dependents %ld\n",(long)tape_stats[1]); printf(" operations %ld\n",(long)tape_stats[5]); printf(" buffer size %ld\n",(long)tape_stats[4]); printf(" maxlive %ld\n",(long)tape_stats[2]); printf(" valstack size %ld\n\n",(long)tape_stats[3]); //------------------------------------------------------------------------------------ // full Jacobian: div_J = -1; if(compute_full == 1) { J = myalloc2(m,n); t_f_1 = k_getTime(); jacobian(tag_c,m,n,x,J); t_f_2 = k_getTime(); div_J = (t_f_2 - t_f_1); printf("XXX The time needed for full Jacobian: %10.6f \n \n", div_J); printf("XXX runtime ratio: %10.6f \n \n", div_J/div_c); //save the matrix into a file (non-zero entries only) fp_JP = fopen("jac_full.mtx","w"); fprintf(fp_JP,"%d %d\n",m,n); for (i=0;i<m;i++) { for (j=0;j<n;j++) if(J[i][j]!=0.0) fprintf(fp_JP,"%d %d %10.6f\n",i,j,J[i][j] ); } fclose(fp_JP); } //------------------------------------------------------------------------------------ printf("XXX THE 4 STEP TO COMPUTE SPARSE MATRICES USING ColPack \n \n"); // STEP 1: Determination of sparsity pattern of Jacobian JP: unsigned int *rb=NULL; /* dependent variables */ unsigned int *cb=NULL; /* independent variables */ unsigned int **JP=NULL; /* compressed block row storage */ int ctrl[2]; JP = (unsigned int **) malloc(m*sizeof(unsigned int*)); ctrl[0] = 0; ctrl[1] = 0; t_f_1 = k_getTime(); jac_pat(tag_c, m, n, x, JP, ctrl); //ADOL-C calculate the sparsity pattern t_f_2 = k_getTime(); div_JP = (t_f_2 - t_f_1); printf("XXX STEP 1: The time needed for Jacobian pattern: %10.6f \n \n", div_JP); printf("XXX STEP 1: runtime ratio: %10.6f \n \n", div_JP/div_c); nnz = 0; for (i=0;i<m;i++) nnz += JP[i][0]; printf(" nnz %d \n",nnz); printf(" hier 1a\n"); //------------------------------------------------------------------------------------ // STEP 2: Determination of Seed matrix: double tg_C; int dummy; t_f_1 = k_getTime(); BipartiteGraphPartialColoringInterface * gGraph = new BipartiteGraphPartialColoringInterface(SRC_MEM_ADOLC, JP, m, n); //gGraph->PrintBipartiteGraph(); t_f_2 = k_getTime(); printf("XXX STEP 2: The time needed for Graph construction: %10.6f \n \n", (t_f_2-t_f_1) ); printf("XXX STEP 2: runtime ratio: %10.6f \n \n", (t_f_2-t_f_1)/div_c); t_f_1 = k_getTime(); //gGraph->GenerateSeedJacobian(&Seed_J, &dummy, &p_J, // "NATURAL", "COLUMN_PARTIAL_DISTANCE_TWO"); gGraph->PartialDistanceTwoColoring("NATURAL", "COLUMN_PARTIAL_DISTANCE_TWO"); t_f_2 = k_getTime(); printf("XXX STEP 2: The time needed for Coloring: %10.6f \n \n", (t_f_2-t_f_1)); printf("XXX STEP 2: runtime ratio: %10.6f \n \n", (t_f_2-t_f_1)/div_c); t_f_1 = k_getTime(); Seed_J = gGraph->GetSeedMatrix(&dummy, &p_J); t_f_2 = k_getTime(); tg_C = t_f_2 - t_f_1; printf("XXX STEP 2: The time needed for Seed generation: %10.6f \n \n", tg_C); printf("XXX STEP 2: runtime ratio: %10.6f \n \n", tg_C/div_c); //*/ //------------------------------------------------------------------------------------ // STEP 3: Jacobian-matrix product: // ADOL-C: //* if (jac_vec == 1) { Jc = myalloc2(m,p_J); t_f_1 = k_getTime(); printf(" hier 1\n"); fov_forward(tag_c,m,n,p_J,x,Seed_J,c,Jc); printf(" hier 2\n"); t_f_2 = k_getTime(); div_Jc = (t_f_2 - t_f_1); printf("XXX STEP 3: The time needed for Jacobian-matrix product: %10.6f \n \n", div_Jc); printf("XXX STEP 3: runtime ratio: %10.6f \n \n", div_Jc/div_c); } //------------------------------------------------------------------------------------ // STEP 4: computed Jacobians/ recovery if (recover == 1) { JacobianRecovery1D jr1d; printf("m = %d, n = %d, p_J = %d \n",m,n,p_J); //printmatint_c("JP Jacobian Pattern",m,JP); //printmat("Jc Jacobian compressed",m,p_J,Jc); t_f_1 = k_getTime(); jr1d.RecoverD2Cln_CoordinateFormat (gGraph, Jc, JP, &rind, &cind, &values); t_f_2 = k_getTime(); div_rec_C = (t_f_2 - t_f_1); printf("XXX STEP 4: The time needed for Recovery: %10.6f \n \n", div_rec_C); printf("XXX STEP 4: runtime ratio: %10.6f \n \n", div_rec_C/div_c); //save recovered matrix into file fp_JP = fopen("jac_recovered.mtx","w"); fprintf(fp_JP,"%d %d %d\n",m,n,nnz); for (i=0;i<nnz;i++) { fprintf(fp_JP,"%d %d %10.6f\n",rind[i],cind[i],values[i] ); } fclose(fp_JP); } /*By this time, if you compare the 2 output files: jac_full.mtx and jac_recovered.mtx You should be able to see that the non-zero entries are identical */ free(JP); delete[] cad; free(c); free(x); delete gGraph; if(jac_vec == 1) { myfree2(Jc); } if(compute_full == 1) { myfree2(J); } return 0; }
int main() { // s_InputFile = baseDir + <name of the input file> string s_InputFile; //path of the input file s_InputFile = baseDir; s_InputFile += DIR_SEPARATOR; s_InputFile += "Graphs"; s_InputFile += DIR_SEPARATOR; s_InputFile += "column-compress.mtx"; //s_InputFile += DIR_SEPARATOR; s_InputFile += "Graphs"; s_InputFile += DIR_SEPARATOR; s_InputFile += "hess_pat.mtx"; // Step 1: Determine sparsity structure of the Jacobian. // This step is done by an AD tool. For the purpose of illustration here, we read the structure from a file, // and store the structure in a Compressed Row Format and then ADIC format. unsigned int *** uip3_SparsityPattern = new unsigned int **; //uip3_ means triple pointers of type unsigned int double*** dp3_Value = new double**; //dp3_ means triple pointers of type double. Other prefixes follow the same notation int rowCount, columnCount; ConvertMatrixMarketFormat2RowCompressedFormat(s_InputFile, uip3_SparsityPattern, dp3_Value,rowCount, columnCount); cout<<"just for debugging purpose, display the 2 matrices: the matrix with SparsityPattern only and the matrix with Value"<<endl; cout<<"Matrix rowCount = "<<rowCount<<"; columnCount = "<<columnCount<<endl; cout<<fixed<<showpoint<<setprecision(2); //formatting output cout<<"(*uip3_SparsityPattern)"<<endl; displayCompressedRowMatrix((*uip3_SparsityPattern),rowCount, true); cout<<"(*dp3_Value)"<<endl; displayCompressedRowMatrix((*dp3_Value),rowCount); cout<<"Finish ConvertMatrixMarketFormat2RowCompressedFormat()"<<endl; Pause(); std::list<std::set<int> > lsi_SparsityPattern; std::list<std::vector<double> > lvd_Value; ConvertRowCompressedFormat2ADIC( (*uip3_SparsityPattern) , rowCount, (*dp3_Value), lsi_SparsityPattern, lvd_Value); cout<<"just for debugging purpose, display the matrix in ADIC format rowCount = "<<rowCount<<endl; cout<<"Display lsi_SparsityPattern"<<endl; DisplayADICFormat_Sparsity(lsi_SparsityPattern); cout<<"Display lvd_Value"<<endl; DisplayADICFormat_Value(lvd_Value); cout<<"Finish ConvertRowCompressedFormat2CSR()"<<endl; Pause(); //Step 2: Coloring. int *ip1_ColorCount = new int; //The number of distinct colors used to color the graph //Step 2.1: Read the sparsity pattern of the given Jacobian matrix (ADIC format) //and create the corresponding bipartite graph BipartiteGraphPartialColoringInterface *g = new BipartiteGraphPartialColoringInterface(SRC_MEM_ADIC, &lsi_SparsityPattern, columnCount); //Step 2.2: Do Partial-Distance-Two-Coloring the bipartite graph with the specified ordering g->PartialDistanceTwoColoring("SMALLEST_LAST", "COLUMN_PARTIAL_DISTANCE_TWO"); //Step 2.3: From the coloring information, you can get the vector of colorIDs of left or right vertices (depend on the s_ColoringVariant that you choose) vector<int> vi_VertexPartialColors; g->GetVertexPartialColors(vi_VertexPartialColors); *ip1_ColorCount = g->GetRightVertexColorCount(); cout<<"Finish GetVertexPartialColors()"<<endl; //Display results of step 2 printf(" Display vi_VertexPartialColors *ip1_ColorCount=%d \n",*ip1_ColorCount); displayVector(vi_VertexPartialColors); Pause(); // Step 3: Obtain the Jacobian-seed matrix product. // This step will also be done by an AD tool. For the purpose of illustration here, the orginial matrix V // (for Values) is multiplied with the seed matrix S (represented as a vector of colors vi_VertexPartialColors). // The resulting matrix is stored in dp3_CompressedMatrix. double*** dp3_CompressedMatrix = new double**; cout<<"Start MatrixMultiplication()"<<endl; MatrixMultiplication_VxS__usingVertexPartialColors(lsi_SparsityPattern, lvd_Value, columnCount, vi_VertexPartialColors, *ip1_ColorCount, dp3_CompressedMatrix); cout<<"Finish MatrixMultiplication()"<<endl; displayMatrix(*dp3_CompressedMatrix,rowCount,*ip1_ColorCount); Pause(); //Step 4: Recover the numerical values of the original matrix from the compressed representation. // The new values are store in "lvd_NewValue" std::list<std::vector<double> > lvd_NewValue; JacobianRecovery1D* jr1d = new JacobianRecovery1D; jr1d->RecoverD2Cln_ADICFormat(g, *dp3_CompressedMatrix, lsi_SparsityPattern, lvd_NewValue); cout<<"Finish Recover()"<<endl; DisplayADICFormat_Value(lvd_NewValue); Pause(); //Check for consistency, make sure the values in the 2 matrices are the same. if (ADICMatricesAreEqual(lvd_Value, lvd_NewValue,0)) cout<< "lvd_Value == lvd_NewValue"<<endl; else cout<< "lvd_Value != lvd_NewValue"<<endl; Pause(); //Deallocate memory using functions in Utilities/MatrixDeallocation.h free_2DMatrix(uip3_SparsityPattern, rowCount); uip3_SparsityPattern=NULL; free_2DMatrix(dp3_Value, rowCount); dp3_Value=NULL; free_2DMatrix(dp3_CompressedMatrix, rowCount); dp3_CompressedMatrix = NULL; delete ip1_ColorCount; ip1_ColorCount = NULL; delete jr1d; jr1d = NULL; delete g; g=NULL; return 0; }
int main() { // s_InputFile = baseDir + <name of the input file> string s_InputFile; //path of the input file s_InputFile = baseDir; s_InputFile += DIR_SEPARATOR; s_InputFile += "Graphs"; s_InputFile += DIR_SEPARATOR; s_InputFile += "column-compress.mtx"; // Step 1: Determine sparsity structure of the Jacobian. // This step is done by an AD tool. For the purpose of illustration here, we read the structure from a file, // and store the structure in a Compressed Row Format. unsigned int *** uip3_SparsityPattern = new unsigned int **; //uip3_ means triple pointers of type unsigned int double*** dp3_Value = new double**; //dp3_ means triple pointers of type double. Other prefixes follow the same notation int rowCount, columnCount; ConvertMatrixMarketFormat2RowCompressedFormat(s_InputFile, uip3_SparsityPattern, dp3_Value,rowCount, columnCount); cout<<"just for debugging purpose, display the 2 matrices: the matrix with SparsityPattern only and the matrix with Value"<<endl; cout<<fixed<<showpoint<<setprecision(2); //formatting output cout<<"(*uip3_SparsityPattern)"<<endl; displayCompressedRowMatrix((*uip3_SparsityPattern),rowCount); cout<<"(*dp3_Value)"<<endl; displayCompressedRowMatrix((*dp3_Value),rowCount); cout<<"Finish ConvertMatrixMarketFormat2RowCompressedFormat()"<<endl; Pause(); //Step 2: Obtain the seed matrix via coloring. double*** dp3_Seed = new double**; int *ip1_SeedRowCount = new int; int *ip1_SeedColumnCount = new int; int *ip1_ColorCount = new int; //The number of distinct colors used to color the graph //Step 2.1: Read the sparsity pattern of the given Jacobian matrix (compressed sparse rows format) //and create the corresponding bipartite graph BipartiteGraphPartialColoringInterface *g = new BipartiteGraphPartialColoringInterface(SRC_MEM_ADOLC, *uip3_SparsityPattern, rowCount, columnCount); //Step 2.2: Do Partial-Distance-Two-Coloring the bipartite graph with the specified ordering g->PartialDistanceTwoColoring( "SMALLEST_LAST", "COLUMN_PARTIAL_DISTANCE_TWO"); //Step 2.3 (Option 1): From the coloring information, create and return the seed matrix (*dp3_Seed) = g->GetSeedMatrix(ip1_SeedRowCount, ip1_SeedColumnCount); /* Notes: Step 2.3 (Option 2): From the coloring information, you can also get the vector of colorIDs of left or right vertices (depend on the s_ColoringVariant that you choose) vector<int> vi_VertexPartialColors; g->GetVertexPartialColors(vi_VertexPartialColors); */ cout<<"Finish GenerateSeed()"<<endl; *ip1_ColorCount = *ip1_SeedColumnCount; //Display results of step 2 printf(" dp3_Seed %d x %d \n", *ip1_SeedRowCount, *ip1_SeedColumnCount); displayMatrix(*dp3_Seed, *ip1_SeedRowCount, *ip1_SeedColumnCount); Pause(); // Step 3: Obtain the Jacobian-seed matrix product. // This step will also be done by an AD tool. For the purpose of illustration here, the orginial matrix V // (for Values) is multiplied with the seed matrix S. The resulting matrix is stored in dp3_CompressedMatrix. double*** dp3_CompressedMatrix = new double**; cout<<"Start MatrixMultiplication()"<<endl; MatrixMultiplication_VxS(*uip3_SparsityPattern, *dp3_Value, rowCount, columnCount, *dp3_Seed, *ip1_ColorCount, dp3_CompressedMatrix); cout<<"Finish MatrixMultiplication()"<<endl; displayMatrix(*dp3_CompressedMatrix,rowCount,*ip1_ColorCount); Pause(); //Step 4: Recover the numerical values of the original matrix from the compressed representation. // The new values are store in "dp2_JacobianValue" unsigned int** ip2_RowIndex = new unsigned int*; unsigned int** ip2_ColumnIndex = new unsigned int*; double** dp2_JacobianValue = new double*; JacobianRecovery1D* jr1d = new JacobianRecovery1D; jr1d->RecoverD2Cln_SparseSolversFormat(g, *dp3_CompressedMatrix, *uip3_SparsityPattern, ip2_RowIndex, ip2_ColumnIndex, dp2_JacobianValue); cout<<"Finish Recover()"<<endl; cout<<endl<<"Display result, the structure and values should be similar to the original one"<<endl; cout<<"Display *ip2_RowIndex"<<endl; displayVector(*ip2_RowIndex,g->GetRowVertexCount()+1); cout<<"Display *ip2_ColumnIndex"<<endl; displayVector(*ip2_ColumnIndex, (*ip2_RowIndex)[g->GetRowVertexCount()]-1); cout<<"Display *dp2_JacobianValue"<<endl; displayVector(*dp2_JacobianValue, (*ip2_RowIndex)[g->GetRowVertexCount()]-1); Pause(); //Deallocate memory using functions in Utilities/MatrixDeallocation.h free_2DMatrix(uip3_SparsityPattern, rowCount); uip3_SparsityPattern=NULL; free_2DMatrix(dp3_Value, rowCount); dp3_Value=NULL; delete dp3_Seed; dp3_Seed = NULL; delete ip1_SeedRowCount; ip1_SeedRowCount=NULL; delete ip1_SeedColumnCount; ip1_SeedColumnCount = NULL; free_2DMatrix(dp3_CompressedMatrix, rowCount); dp3_CompressedMatrix = NULL; delete ip1_ColorCount; ip1_ColorCount = NULL; delete jr1d; jr1d = NULL; delete ip2_RowIndex; delete ip2_ColumnIndex; delete dp2_JacobianValue; ip2_RowIndex=NULL; ip2_ColumnIndex=NULL; dp2_JacobianValue=NULL; delete g; g=NULL; return 0; }