void blockSizeTimingTest(Blackbox & A, size_t size) { typedef typename Blackbox::MatrixDomain Dom; typedef typename Dom::Block Block; Dom MD = A.domain(); size_t m = A.rowdim(); LinBox::UserTimer timer; Block B(m,m), C(m,m), D(m,m); MD.random(B); MD.random(D); cout << size << " " << m << " "; timer.clear(); timer.start(); A.unpackingApply(C,B,size); timer.stop(); cout << timer << " "; timer.clear(); timer.start(); A.unpackingApplyTranspose(C,B,size); timer.stop(); cout << timer << " "; timer.clear(); timer.start(); MD.mul(C,D,B); timer.stop(); cout << timer << " "; cout << endl; } //blockSizeTimingTest()
void testTiming(Blackbox & A) { typedef typename Blackbox::MatrixDomain Dom; typedef typename Dom::Block Block; Dom MD = A.domain(); size_t m = A.rowdim(), n = A.coldim(); size_t k = (m + n)/2; LinBox::UserTimer timer; Block B(n,k), C(m,k), D(k,m), E(k,n), F(k,k); MD.random(B); MD.random(D); vector<typename Dom::Element> v1, v2(m); typename Dom::RandIter r(MD); typename Dom::Element x; for(size_t i = 0; i != n; ++i){ r.random(x); v1.push_back(x); } //Tests: cout << "Timing tests:" << endl << endl; timer.clear(); timer.start(); for(size_t j = 0; j != m; ++j) A.apply(v2,v1); timer.stop(); cout << "apply using vectors time: " << timer << endl; timer.clear(); timer.start(); A.applyTranspose(C,B); timer.stop(); cout << "apply using row addin time: " << timer << endl; timer.clear(); timer.start(); A.unpackingApplyTranspose(C,B); timer.stop(); cout << "apply using block axpy time: " << timer << endl; timer.clear(); timer.start(); MD.mul(F, D, C); timer.stop(); cout << "Matrix Domain mul time: " << timer << endl; cout << "End of timing tests" << endl << endl; } // testTiming
void largeTest (Blackbox & A) { //Use for large blackboxes typedef typename Blackbox::MatrixDomain Dom; typedef typename Dom::Block Block; Dom MD = A.domain(); size_t m = A.coldim(); size_t n = 2000; LinBox::UserTimer timer; Block B(m,n), C(m,n); MD.random(B); cout << "Test: " << A.rowdim() << "x" << m << "blackbox multiplied by " << m << "x" << n << "block\nblock size: 2048\n\n"; timer.clear(); timer.start(); A.unpackingApply(C,B,2048); timer.stop(); cout << "unpacking apply time: " << timer << endl; } //end largeTest
bool testAssociativity(Blackbox& A) { typedef typename Blackbox::MatrixDomain Dom; Dom MD = A.domain(); size_t m = A.rowdim(), n = A.coldim() - 100; size_t k = (m + n)/2; typename Dom::Block B(A.field(),k,m), C(A.field(),m,n); MD.random(B); MD.random(C); typename Dom::Block D(A.field(),m,n), E(A.field(),k,n); A.apply(D, C); // D = AC MD.mul(E,B,D); // E = B(AC) typename Dom::Block F(A.field(),k,m), G(A.field(),k,n); A.unpackingApplyTranspose(F,B); // F = BA MD.mul(G,F,C); // G = (BA)C return MD.areEqual(E,G); } // testAssociativity
static bool testTransposeBlackbox(Blackbox & A) { typedef typename Blackbox::Field Field; commentator().start ("Testing Transpose", "testTranspose", 1); Transpose<Blackbox> B(A); bool ret = true, ret1; size_t m = A.rowdim(), n = A.coldim(); const Field & F = A.field(); VectorDomain<Field> VD (F); BlasVector<Field> x(F,n), y(F,m), z(F,n), w(F,m); VD.random(x); A.apply(y, x); B.applyTranspose(w, x); ret1 = VD.areEqual(y, w); if (not ret1) commentator().report() << "A and B^T disagree, FAIL" << std::endl; ret = ret and ret1; VD.random(y); A.applyTranspose(x, y); B.apply(z, y); ret1 = VD.areEqual(x, z); if (not ret1) commentator().report() << "A^T and B disagree, FAIL" << std::endl; ret = ret and ret1; ret1 = testBlackboxNoRW(B); if (not ret1) commentator().report() << "testBlackbox A^T FAIL" << std::endl; ret = ret and ret1; commentator().stop (MSG_STATUS (ret), (const char *) 0, "testTranspose"); return ret; }
int main (int argc, char **argv) { // commentator().setMaxDetailLevel (-1); // commentator().setMaxDepth (-1); // commentator().setReportStream (std::cerr); if (argc < 2 || argc > 4) { std::cerr << "Usage: omp_smithvalence <matrix-file-in-supported-format> [-ata|-aat|valence] [coprime]" << std::endl; std::cerr << " Optional parameters valence and coprime are integers." << std::endl; std::cerr << " Prime factors of valence will be used for local computation." << std::endl; std::cerr << " coprime will be used for overall rank computation." << std::endl; return -1; } std::ifstream input (argv[1]); if (!input) { std::cerr << "Error opening matrix file " << argv[1] << std::endl; return -1; } Givaro::ZRing<Integer> ZZ; MatrixStream< Givaro::ZRing<Integer> > ms( ZZ, input ); typedef SparseMatrix<Givaro::ZRing<Integer>> Blackbox; Blackbox A (ms); input.close(); std::cout << "A is " << A.rowdim() << " by " << A.coldim() << std::endl; Givaro::ZRing<Integer>::Element val_A; LinBox::Timer chrono; chrono.start(); if (argc >= 3) { Transpose<Blackbox> T(&A); if (strcmp(argv[2],"-ata") == 0) { Compose< Transpose<Blackbox>, Blackbox > C (&T, &A); std::cout << "A^T A is " << C.rowdim() << " by " << C.coldim() << std::endl; valence(val_A, C); } else if (strcmp(argv[2],"-aat") == 0) { Compose< Blackbox, Transpose<Blackbox> > C (&A, &T); std::cout << "A A^T is " << C.rowdim() << " by " << C.coldim() << std::endl; valence(val_A, C); } else { std::cout << "Suppose primes are contained in " << argv[2] << std::endl; val_A = LinBox::Integer(argv[2]); } } else { if (A.rowdim() != A.coldim()) { std::cerr << "Valence works only on square matrices, try either to change the dimension in the matrix file, or to compute the valence of A A^T or A^T A, via the -aat or -ata options." << std::endl; exit(0); } else valence (val_A, A); } std::cout << "Valence is " << val_A << std::endl; std::vector<Givaro::Integer> Moduli; std::vector<size_t> exponents; Givaro::IntFactorDom<> FTD; typedef std::pair<Givaro::Integer,unsigned long> PairIntRk; std::vector< PairIntRk > smith; Givaro::Integer coprimeV=2; if (argc >= 4) { coprimeV =Givaro::Integer(argv[3]); } while ( gcd(val_A,coprimeV) > 1 ) { FTD.nextprimein(coprimeV); } if (argc >= 4) { std::cout << "Suppose " << argv[3] << " is coprime with Smith form" << std::endl; } std::cout << "Integer rank: " << std::endl; unsigned long coprimeR; LRank(coprimeR, argv[1], coprimeV); smith.push_back(PairIntRk(coprimeV, coprimeR)); // std::cerr << "Rank mod " << coprimeV << " is " << coprimeR << std::endl; std::cout << "Some factors (50000 factoring loop bound): "; FTD.set(Moduli, exponents, val_A, 50000); std::vector<size_t>::const_iterator eit=exponents.begin(); for(std::vector<Givaro::Integer>::const_iterator mit=Moduli.begin(); mit != Moduli.end(); ++mit,++eit) std::cout << *mit << '^' << *eit << ' '; std::cout << std::endl; std::vector<Givaro::Integer> SmithDiagonal(coprimeR,Givaro::Integer(1)); std::cout << "num procs: " << omp_get_num_procs() << std::endl; std::cout << "max threads: " << omp_get_max_threads() << std::endl; #pragma omp parallel for shared(SmithDiagonal, Moduli, coprimeR) for(size_t j=0; j<Moduli.size(); ++j) { unsigned long r; LRank(r, argv[1], Moduli[j]); std::cerr << "Rank mod " << Moduli[j] << " is " << r << " on thread: " << omp_get_thread_num() << std::endl; smith.push_back(PairIntRk( Moduli[j], r)); for(size_t i=r; i < coprimeR; ++i) SmithDiagonal[i] *= Moduli[j]; } /* for(std::vector<Givaro::Integer>::const_iterator mit=Moduli.begin(); mit != Moduli.end(); ++mit) { unsigned long r; LRank(r, argv[1], *mit); std::cerr << "Rank mod " << *mit << " is " << r << std::endl; smith.push_back(PairIntRk(*mit, r)); for(size_t i=r; i < coprimeR; ++i) SmithDiagonal[i] *= *mit; } */ eit=exponents.begin(); std::vector<PairIntRk>::const_iterator sit=smith.begin(); for( ++sit; sit != smith.end(); ++sit, ++eit) { if (sit->second != coprimeR) { std::vector<size_t> ranks; ranks.push_back(sit->second); size_t effexp; if (*eit > 1) { if (sit->first == 2) PRankPowerOfTwo(ranks, effexp, argv[1], *eit, coprimeR); else PRank(ranks, effexp, argv[1], sit->first, *eit, coprimeR); } else { // if (sit->first == 2) PRank(ranks, effexp, argv[1], sit->first, 2, coprimeR); // else // PRank(ranks, effexp, argv[1], sit->first, 2, coprimeR); } if (ranks.size() == 1) ranks.push_back(coprimeR); if (effexp < *eit) { for(size_t expo = effexp<<1; ranks.back() < coprimeR; expo<<=1) { if (sit->first == 2) PRankIntegerPowerOfTwo(ranks, argv[1], expo, coprimeR); else PRankInteger(ranks, argv[1], sit->first, expo, coprimeR); } } else { for(size_t expo = (*eit)<<1; ranks.back() < coprimeR; expo<<=1) { if (sit->first == 2) PRankPowerOfTwo(ranks, effexp, argv[1], expo, coprimeR); else PRank(ranks, effexp, argv[1], sit->first, expo, coprimeR); if (ranks.size() < expo) { std::cerr << "It seems we need a larger prime power, it will take longer ..." << std::endl; // break; if (sit->first == 2) PRankIntegerPowerOfTwo(ranks, argv[1], expo, coprimeR); else PRankInteger(ranks, argv[1], sit->first, expo, coprimeR); } } } std::vector<size_t>::const_iterator rit=ranks.begin(); // unsigned long modrank = *rit; for(++rit; rit!= ranks.end(); ++rit) { if ((*rit)>= coprimeR) break; for(size_t i=(*rit); i < coprimeR; ++i) SmithDiagonal[i] *= sit->first; // modrank = *rit; } } } Givaro::Integer si=1; size_t num=0; for( std::vector<Givaro::Integer>::const_iterator dit=SmithDiagonal.begin(); dit != SmithDiagonal.end(); ++dit) { if (*dit == si) ++num; else { std::cerr << '[' << si << ',' << num << "] "; num=1; si = *dit; } } std::cerr << '[' << si << ',' << num << "] " << std::endl; chrono.stop(); std::cerr << chrono << std::endl; return 0; }
bool testQLUP(const Field &F, size_t n, unsigned int iterations, int rseed, double sparsity = 0.05) { bool res = true; commentator().start ("Testing Sparse elimination qlup", "testQLUP", iterations); size_t Ni = n; size_t Nj = n; integer card; F.cardinality(card); typename Field::RandIter generator (F,card,rseed); RandStream stream (F, generator, sparsity, n, n); for (size_t i = 0; i < iterations; ++i) { commentator().startIteration ((unsigned)i); stream.reset(); Blackbox A (F, stream); std::ostream & report = commentator().report (Commentator::LEVEL_UNIMPORTANT, INTERNAL_DESCRIPTION); F.write( report ) << endl; A.write( report,Tag::FileFormat::Maple ) << endl; DenseVector<Field> u(F,Nj), v(F,Ni), w1(F,Nj), w2(F,Ni), w3(F,Ni), w(F,Ni); for(auto it=u.begin();it!=u.end();++it) generator.random (*it); A.apply(v,u); unsigned long rank; Method::SparseElimination SE; SE.strategy(Specifier::PIVOT_LINEAR); GaussDomain<Field> GD ( F ); typename Field::Element determinant; Blackbox L(F, A.rowdim(), A.coldim()); Permutation<Field> Q((int)A.rowdim(),F); Permutation<Field> P((int)A.coldim(),F); GD.QLUPin(rank, determinant, Q, L, A, P, A.rowdim(), A.coldim() ); Q.apply(w, L.apply(w3, A.apply(w2, P.apply(w1,u) ) ) ); bool error = false; auto itv=v.begin(); auto itw=w.begin(); for( ; itw!=w.end();++itw,++itv) { if (! F.areEqual(*itw,*itv) ) { error = true; } } if (error) { res = false; report << "ERROR : matrix(" << u.size() << ",1,["; for(auto itu=u.begin(); itu!=u.end();++itu) report << *itu << ','; report << "]);\n["; for(auto itv2=v.begin(); itv2!=v.end();++itv2) report << *itv2 << ' '; report << "] != ["; for(auto itw2=w.begin(); itw2!=w.end();++itw2) report << *itw2 << ' '; report << "]" << std::endl; report << "w1: ["; for(auto itw2=w1.begin(); itw2!=w1.end();++itw2) report << *itw2 << ' '; report << "]" << std::endl; report << "w2: ["; for(auto itw2=w2.begin(); itw2!=w2.end();++itw2) report << *itw2 << ' '; report << "]" << std::endl; report << "w3: ["; for(auto itw2=w3.begin(); itw2!=w3.end();++itw2) report << *itw2 << ' '; report << "]" << std::endl; } commentator().stop ("done"); commentator().progress (); } commentator().stop (MSG_STATUS (res), (const char *) 0, "testQLUP"); return res; }