virtual void output() override { if(ready){ u.length(ioBody->numJoints()); for(int i=0; i < ioBody->numJoints(); ++i){ u[i] = ioBody->joint(i)->u(); } dynamicsSimulator->setCharacterAllLinkData( characterName.c_str(), DynamicsSimulator::JOINT_TORQUE, u); } }
void BodyState::set(BodyPtr i_body) { Link *root = i_body->rootLink(); p = root->p; R = root->R; q.resize(i_body->numJoints()); for (int i=0; i<i_body->numJoints(); i++){ Link *joint = i_body->joint(i); if (joint){ q[i] = joint->q; } } }
virtual bool initialize() { if(!qseq){ string filename = getNativePathString( boost::filesystem::path(shareDirectory()) / "motion" / "SR1" / "SR1WalkPattern3.yaml"); BodyMotion motion; if(!motion.loadStandardYAMLformat(filename)){ os() << motion.seqMessage() << endl; return false; } qseq = motion.jointPosSeq(); if(qseq->numFrames() == 0){ os() << "Empty motion data." << endl; return false; } timeStep_ = qseq->getTimeStep(); } if(fabs(timeStep() - timeStep_) > 1.0e-6){ os() << "Time step must be " << timeStep_ << "." << endl;; return false; } body = ioBody(); numJoints = body->numJoints(); if(numJoints != qseq->numParts()){ os() << "The number of joints must be " << qseq->numParts() << endl; return false; } qold.resize(numJoints); VectorXd q0(numJoints); VectorXd q1(numJoints); for(int i=0; i < numJoints; ++i){ qold[i] = q0[i] = body->joint(i)->q(); } MultiValueSeq::Frame frame = qseq->frame(0); for(int i=0; i < numJoints; ++i){ q1[i] = frame[i]; } interpolator.clear(); interpolator.appendSample(0.0, q0); interpolator.appendSample(2.0, q1); interpolator.update(); qref_old = interpolator.interpolate(0.0); currentFrame = 0; phase = 0; time = 0.0; return true; }
virtual void input() override { if(ready){ dynamicsSimulator->getCharacterAllLinkData( characterName.c_str(), DynamicsSimulator::JOINT_VALUE, q); int n = std::min((int)q->length(), ioBody->numJoints()); for(int i=0; i < n; ++i){ ioBody->joint(i)->q() = q[i]; } } }
virtual bool control() { switch(phase){ case 0 : qref = interpolator.interpolate(time); if(time > interpolator.domainUpper()){ phase = 1; } break; case 1: if(currentFrame < qseq->numFrames()){ MultiValueSeq::Frame frame = qseq->frame(currentFrame++); for(int i=0; i < numJoints; ++i){ qref[i] = frame[i]; } }else{ phase = 2; } break; case 2 : qref = interpolator.interpolate(time); } for(int i=0; i < body->numJoints(); ++i){ Link* joint = body->joint(i); double q = joint->q(); double dq_ref = (qref[i] - qref_old[i]) / timeStep_; double dq = (q - qold[i]) / timeStep_; joint->u() = (qref[i] - q) * pgain[i] + (dq_ref - dq) * dgain[i]; qold[i] = q; } qref_old = qref; time += timeStep_; return true; }
int KinematicFaultCheckerImpl::checkFaults (BodyItem* bodyItem, BodyMotionItem* motionItem, std::ostream& os, bool checkPosition, bool checkVelocity, bool checkCollision, dynamic_bitset<> linkSelection, double beginningTime, double endingTime) { numFaults = 0; BodyPtr body = bodyItem->body(); BodyMotionPtr motion = motionItem->motion(); MultiValueSeqPtr qseq = motion->jointPosSeq();; MultiSE3SeqPtr pseq = motion->linkPosSeq(); if((!checkPosition && !checkVelocity && !checkCollision) || body->isStaticModel() || !qseq->getNumFrames()){ return numFaults; } BodyState orgKinematicState; if(USE_DUPLICATED_BODY){ body = body->clone(); } else { bodyItem->storeKinematicState(orgKinematicState); } CollisionDetectorPtr collisionDetector; WorldItem* worldItem = bodyItem->findOwnerItem<WorldItem>(); if(worldItem){ collisionDetector = worldItem->collisionDetector()->clone(); } else { int index = CollisionDetector::factoryIndex("AISTCollisionDetector"); if(index >= 0){ collisionDetector = CollisionDetector::create(index); } else { collisionDetector = CollisionDetector::create(0); os << _("A collision detector is not found. Collisions cannot be detected this time.") << endl; } } addBodyToCollisionDetector(*body, *collisionDetector); collisionDetector->makeReady(); const int numJoints = std::min(body->numJoints(), qseq->numParts()); const int numLinks = std::min(body->numLinks(), pseq->numParts()); frameRate = motion->frameRate(); double stepRatio2 = 2.0 / frameRate; angleMargin = radian(angleMarginSpin.value()); translationMargin = translationMarginSpin.value(); velocityLimitRatio = velocityLimitRatioSpin.value() / 100.0; int beginningFrame = std::max(0, (int)(beginningTime * frameRate)); int endingFrame = std::min((motion->numFrames() - 1), (int)lround(endingTime * frameRate)); lastPosFaultFrames.clear(); lastPosFaultFrames.resize(numJoints, std::numeric_limits<int>::min()); lastVelFaultFrames.clear(); lastVelFaultFrames.resize(numJoints, std::numeric_limits<int>::min()); lastCollisionFrames.clear(); if(checkCollision){ Link* root = body->rootLink(); root->p().setZero(); root->R().setIdentity(); } for(int frame = beginningFrame; frame <= endingFrame; ++frame){ int prevFrame = (frame == beginningFrame) ? beginningFrame : frame - 1; int nextFrame = (frame == endingFrame) ? endingFrame : frame + 1; for(int i=0; i < numJoints; ++i){ Link* joint = body->joint(i); double q = qseq->at(frame, i); joint->q() = q; if(joint->index() >= 0 && linkSelection[joint->index()]){ if(checkPosition){ bool fault = false; if(joint->isRotationalJoint()){ fault = (q > (joint->q_upper() - angleMargin) || q < (joint->q_lower() + angleMargin)); } else if(joint->isSlideJoint()){ fault = (q > (joint->q_upper() - translationMargin) || q < (joint->q_lower() + translationMargin)); } if(fault){ putJointPositionFault(frame, joint, os); } } if(checkVelocity){ double dq = (qseq->at(nextFrame, i) - qseq->at(prevFrame, i)) / stepRatio2; joint->dq() = dq; if(dq > (joint->dq_upper() * velocityLimitRatio) || dq < (joint->dq_lower() * velocityLimitRatio)){ putJointVelocityFault(frame, joint, os); } } } } if(checkCollision){ Link* link = body->link(0); if(!pseq->empty()) { const SE3& p = pseq->at(frame, 0); link->p() = p.translation(); link->R() = p.rotation().toRotationMatrix(); } else { link->p() = Vector3d(0., 0., 0.); link->R() = Matrix3d::Identity(); } body->calcForwardKinematics(); for(int i=1; i < numLinks; ++i){ link = body->link(i); if(!pseq->empty()) { const SE3& p = pseq->at(frame, i); link->p() = p.translation(); link->R() = p.rotation().toRotationMatrix(); } } for(int i=0; i < numLinks; ++i){ link = body->link(i); collisionDetector->updatePosition(i, link->position()); } collisionDetector->detectCollisions( boost::bind(&KinematicFaultCheckerImpl::putSelfCollision, this, body.get(), frame, _1, boost::ref(os))); } } if(!USE_DUPLICATED_BODY){ bodyItem->restoreKinematicState(orgKinematicState); } return numFaults; }
virtual bool control() { switch(phase){ case 0 : qref = interpolator.interpolate(time); if(time > interpolator.domainUpper()){ phase = 1; } break; case 1: if(currentFrame < qseq->numFrames()){ MultiValueSeq::Frame frame = qseq->frame(currentFrame++); for(int i=0; i < numJoints; ++i){ qref[i] = frame[i]; } }else{ interpolator.clear(); interpolator.appendSample(time, qref); VectorXd q1(numJoints); q1 = qref; q1[rarm_shoulder_r] = -0.4; q1[rarm_shoulder_p] = 0.75; q1[rarm_elbow] = -2.0; interpolator.appendSample(time + 3.0, q1); q1[rarm_elbow] = -1.57; q1[rarm_shoulder_p] = -0.2; q1[rarm_wrist_r] = 1.5; interpolator.appendSample(time + 5.0, q1); q1[rarm_elbow] = -1.3; q1[rarm_wrist_y] = -0.24; interpolator.appendSample(time + 6.0, q1); interpolator.update(); qref = interpolator.interpolate(time); phase = 2; } break; case 2 : qref = interpolator.interpolate(time); if(time > interpolator.domainUpper()){ interpolator.clear(); interpolator.appendSample(time, qref); VectorXd q1(numJoints); q1 = qref; q1[rarm_wrist_y] = 0.0; q1[rarm_shoulder_r] = 0.1; interpolator.appendSample(time + 5.0, q1); interpolator.update(); qref = interpolator.interpolate(time); phase = 3; } break; case 3: qref = interpolator.interpolate(time); if( rhsensor->F()[1] < -2 ) { interpolator.clear(); interpolator.appendSample(time, qref); VectorXd q1(numJoints); q1 = qref; q1[rarm_wrist_r] = -0.3;; interpolator.appendSample(time + 2.0, q1); interpolator.appendSample(time + 2.5, q1); q1[rarm_shoulder_p] = -0.13; q1[rarm_elbow] = -1.8; interpolator.appendSample(time + 3.5, q1); interpolator.update(); qref = interpolator.interpolate(time); phase = 4; } break; case 4 : qref = interpolator.interpolate(time); } for(int i=0; i < body->numJoints(); ++i){ Link* joint = body->joint(i); double q = joint->q(); double dq_ref = (qref[i] - qref_old[i]) / timeStep_; double dq = (q - qold[i]) / timeStep_; joint->u() = (qref[i] - q) * pgain[i] + (dq_ref - dq) * dgain[i]; qold[i] = q; } qref_old = qref; time += timeStep_; return true; }
int main(int argc, char *argv[]) { srand((unsigned)time(NULL)); const char *robotURL = NULL; std::vector<std::string> obstacleURL; std::vector<Vector3> obstacleP; std::vector<Vector3> obstacleRpy; for(int i = 1 ; i < argc; i++) { if (strcmp(argv[i], "-robot") == 0) { robotURL = argv[++i]; } else if (strcmp(argv[i], "-obstacle") == 0) { obstacleURL.push_back(argv[++i]); Vector3 p, rpy; for (int j=0; j<3; j++) p[j] = atof(argv[++i]); obstacleP.push_back(p); for (int j=0; j<3; j++) rpy[j] = atof(argv[++i]); obstacleRpy.push_back(rpy); } } if (robotURL == NULL) { std::cerr << "please specify URL of VRML model by -robot option" << std::endl; return 1; } BodyPtr robot = new Body(); loadBodyFromModelLoader(robot, robotURL, argc, argv, true); problem prob; prob.addRobot("robot", robotURL, robot); std::vector<BodyPtr> obstacles; for (unsigned int i=0; i<obstacleURL.size(); i++) { char buf[20]; sprintf(buf, "obstacle%02d", i); obstacles.push_back(prob.addObstacle(buf, obstacleURL[i])); } // This must be called after all bodies are added prob.initOLV(argc, argv); PathEngine::Configuration::size(4+6+6); PathEngine::Configuration::bounds(0, 0.2, 0.8); // body z PathEngine::Configuration::bounds(1, -0.5, 0.5); // body roll PathEngine::Configuration::bounds(2, -0.0, 0.5); // body pitch PathEngine::Configuration::bounds(3, -0.5, 0.5); // body yaw int arm; PathEngine::Configuration goalCfg; std::ifstream ifs("goal.txt"); ifs >> arm; for (unsigned int i=0; i<PathEngine::Configuration::size(); i++) { ifs >> goalCfg[i]; } #if 1 PathEngine::Configuration::weight(0) = 0.1; // z PathEngine::Configuration::weight(1) = 1; // roll PathEngine::Configuration::weight(2) = 1; // pitch PathEngine::Configuration::weight(3) = 1; // yaw PathEngine::Configuration::weight(4) = 0.8; PathEngine::Configuration::weight(5) = 0.6; PathEngine::Configuration::weight(6) = 0.4; PathEngine::Configuration::weight(7) = 0.3; PathEngine::Configuration::weight(8) = 0.2; PathEngine::Configuration::weight(9) = 0.1; PathEngine::Configuration::weight(10) = 0.8; PathEngine::Configuration::weight(11) = 0.6; PathEngine::Configuration::weight(12) = 0.4; PathEngine::Configuration::weight(13) = 0.3; PathEngine::Configuration::weight(14) = 0.2; PathEngine::Configuration::weight(15) = 0.1; #endif JointPathPtr armPath[2]; Link *chest = robot->link("CHEST_JOINT1"); Link *wrist[2] = {robot->link("RARM_JOINT5"), robot->link("LARM_JOINT5") }; for (int k=0; k<2; k++) { armPath[k] = robot->getJointPath(chest, wrist[k]); for (int i=0; i<armPath[k]->numJoints(); i++) { Link *j = armPath[k]->joint(i); PathEngine::Configuration::bounds(4+k*6+i, j->llimit, j->ulimit); } } PathEngine::PathPlanner *planner = prob.planner(); planner->setMobilityName("OmniWheel"); planner->setAlgorithmName("RRT"); PathEngine::RRT *rrt = (PathEngine::RRT *)planner->getAlgorithm(); rrt->extendFromGoal(true); planner->getAlgorithm()->setProperty("eps", "0.1"); planner->getAlgorithm()->setProperty("max-trials", "50000"); planner->getAlgorithm()->setProperty("interpolation-distance", "0.05"); prob.initCollisionCheckPairs(); prob.initPlanner(); for (unsigned int i=0; i<obstacles.size(); i++) { Link *root = obstacles[i]->rootLink(); root->p = obstacleP[i]; root->R = rotFromRpy(obstacleRpy[i]); root->coldetModel->setPosition(root->R, root->p); obstacles[i]->calcForwardKinematics(); } // set halfconf dvector halfconf; halfconf.setZero(robot->numJoints()); #define ToRad(x) ((x)*M_PI/180) halfconf[2] = halfconf[ 8] = ToRad(-40); halfconf[3] = halfconf[ 9] = ToRad( 78); halfconf[4] = halfconf[10] = ToRad(-38); double leg_link_len1=0, leg_link_len2=0; halfconf[16] = halfconf[23] = ToRad(20); halfconf[17] = ToRad(-10); halfconf[24] = -halfconf[17]; halfconf[19] = halfconf[26] = ToRad(-30); if (robot->modelName() == "HRP2") { halfconf[20] = ToRad(80); halfconf[27] = -halfconf[20]; halfconf[22] = halfconf[29] = -1.0; } leg_link_len1 = leg_link_len2 = 0.3; double waistHeight = leg_link_len1*cos(halfconf[2]) + leg_link_len2*cos(halfconf[4]) + 0.105; robot->rootLink()->p(2) = waistHeight; for (int i=0; i<robot->numJoints(); i++) { robot->joint(i)->q = halfconf[i]; } robot->calcForwardKinematics(); myCfgSetter setter(robot); PathEngine::Configuration startCfg; startCfg[0] = robot->rootLink()->p[2]; startCfg[1] = startCfg[2] = startCfg[3] = 0; for (int j=0; j<2; j++) { for (int i=0; i<armPath[j]->numJoints(); i++) { startCfg[4+j*6+i] = armPath[j]->joint(i)->q; } } planner->setStartConfiguration(startCfg); planner->setGoalConfiguration(goalCfg); planner->setApplyConfigFunc(boost::bind(&myCfgSetter::set, &setter, _1, _2)); planner->setConfiguration(startCfg); prob.updateOLV(); planner->setConfiguration(goalCfg); prob.updateOLV(); #if 0 int earm; ifs >> earm; while (!ifs.eof()) { PathEngine::Configuration cfg; for (unsigned int i=0; i<PathEngine::Configuration::size(); i++) { ifs >> cfg[i]; } if (arm == earm) { rrt->addExtraGoal(cfg); std::cout << "added an extra goal" << std::endl; planner->setConfiguration(cfg); prob.updateOLV(); } ifs >> earm; } #endif CustomCD cd(robot, "hrp2.shape", "hrp2.pairs", obstacles[0], "plant.pc"); prob.planner()->setCollisionDetector(&cd); struct timeval tv1, tv2; gettimeofday(&tv1, NULL); // plan bool ret = planner->calcPath(); if (ret) { for (int i=0; i<5; i++) { planner->optimize("Shortcut"); planner->optimize("RandomShortcut"); } } gettimeofday(&tv2, NULL); if (ret) { const std::vector<PathEngine::Configuration>& postures = planner->getWayPoints(); std::ofstream ofs("path.txt"); ofs << arm << std::endl; for (unsigned int i=0; i<postures.size(); i++) { planner->setConfiguration(postures[i]); for (int j=0; j<3; j++) { ofs << robot->rootLink()->p[j] << " "; } for (int j=0; j<3; j++) { for (int k=0; k<3; k++) { ofs << robot->rootLink()->R(j,k) << " "; } } for (int j=0; j<robot->numJoints(); j++) { ofs << robot->joint(j)->q << " "; } ofs << std::endl; prob.updateOLV(); } } else { PathEngine::Roadmap *roadmap = planner->getRoadmap(); for (unsigned int i=0; i<roadmap->nNodes(); i++) { PathEngine::RoadmapNode *node = roadmap->node(i); planner->setConfiguration(node->position()); prob.updateOLV(); } } double time = (tv2.tv_sec - tv1.tv_sec) + ((double)(tv2.tv_usec - tv1.tv_usec))/1e6; std::cout << "total time = " << time << "[s]" << std::endl; double cdtime = prob.planner()->timeCollisionCheck(); std::cout << "time spent in collision detection:" << cdtime << "[s](" << cdtime/time*100 << "[%]), " << cdtime*1e3/prob.planner()->countCollisionCheck() << "[ms/call]" << std::endl; std::cout << "profile:"; setter.profile(); return 0; }
int main(int argc, char *argv[]) { OnlineViewer_var olv; olv = hrp::getOnlineViewer(argc, argv); olv->load("robot", url); olv->clearLog(); BodyPtr body = BodyPtr(new Body()); loadBodyFromModelLoader(body, url, argc, argv, true); body->setName("robot"); convertToConvexHull(body); WorldState wstate; wstate.time = 0.0; wstate.characterPositions.length(1); setupCharacterPosition(wstate.characterPositions[0], body); wstate.collisions.length(3); // ワイヤの固定部 std::vector<Anchor> anchors; anchors.push_back(Anchor(body->link("CHEST_Y"), Vector3(-0.03, 0.1,0.35))); anchors.push_back(Anchor(body->link("R_HIP_P"), Vector3(-0.08,0,-0.2))); anchors.push_back(Anchor(body->link("CHEST_Y"), Vector3(-0.03,-0.1,0.35))); anchors.push_back(Anchor(body->link("L_HIP_P"), Vector3(-0.08,0,-0.2))); wstate.collisions.length(anchors.size()+1); for (size_t i=1; i<wstate.collisions.length(); i++){ setupFrame(wstate.collisions[i], 0.05); } // ワイヤと接触するリンクセットその1 std::vector<Link *> linkset1; linkset1.push_back(body->link("CHEST_Y")); linkset1.push_back(body->link("WAIST")); linkset1.push_back(body->link("R_HIP_P")); // ワイヤと接触するリンクセットその2 std::vector<Link *> linkset2; linkset2.push_back(body->link("CHEST_Y")); linkset2.push_back(body->link("WAIST")); linkset2.push_back(body->link("L_HIP_P")); // ワイヤ(両端点及びリンクセット)の定義 std::vector<String> strings; strings.push_back(String(&anchors[0], &anchors[1], linkset1)); strings.push_back(String(&anchors[2], &anchors[3], linkset2)); std::ifstream ifs(logfile); if (!ifs.is_open()){ std::cerr << "failed to open the log file:" << logfile << std::endl; return 1; } char buf[1024]; ifs.getline(buf, 1024); // skip header double q; while(1){ for (int i=0; i<body->numJoints(); i++){ ifs >> q; if (ifs.eof()) return 0; Link *j = body->joint(i); if (j) j->q = q; } ifs.getline(buf, 1024); // skip rest of the line body->calcForwardKinematics(); for (size_t i=0; i<strings.size(); i++){ if (!strings[i].update()){ std::cerr << "failed to update string state" << std::endl; } } // update body updateCharacterPosition(wstate.characterPositions[0], body); // update anchors for (size_t i=0; i<anchors.size(); i++){ updateFrame(wstate.collisions[i+1], anchors[i].position(), Matrix33::Identity()); } // update strings size_t n=0, index=0; for (size_t i=0; i<strings.size(); i++){ n += strings[i].polyLine.lines.size(); } wstate.collisions[0].points.length(n); for (size_t i=0; i<strings.size(); i++){ const std::vector<LineSegment>& lines = strings[i].polyLine.lines; for (size_t i=0; i<lines.size(); i++){ updateLineSegment(wstate.collisions[0].points[index++], lines[i].first, lines[i].second); } } olv->update(wstate); wstate.time += 0.005; std::cout << wstate.time << " "; for (size_t i=0; i<strings.size(); i++){ std::cout << strings[i].length() << " "; } std::cout << std::endl; } return 0; }
bool PoseProviderToBodyMotionConverter::convert(BodyPtr body, PoseProvider* provider, BodyMotion& motion) { const double frameRate = motion.frameRate(); const int beginningFrame = static_cast<int>(frameRate * std::max(provider->beginningTime(), lowerTime)); const int endingFrame = static_cast<int>(frameRate * std::min(provider->endingTime(), upperTime)); const int numJoints = body->numJoints(); const int numLinksToPut = (allLinkPositionOutputMode ? body->numLinks() : 1); motion.setDimension(endingFrame + 1, numJoints, numLinksToPut, true); MultiValueSeq& qseq = *motion.jointPosSeq(); MultiAffine3Seq& pseq = *motion.linkPosSeq(); Vector3Seq& relZmpSeq = *motion.relativeZmpSeq(); bool isZmpValid = false; Link* rootLink = body->rootLink(); Link* baseLink = rootLink; shared_ptr<LinkTraverse> fkTraverse; if(allLinkPositionOutputMode){ fkTraverse.reset(new LinkTraverse(baseLink, true, true)); } else { fkTraverse.reset(new LinkPath(baseLink, rootLink)); } // store the original state vector<double> orgq(numJoints); for(int i=0; i < numJoints; ++i){ orgq[i] = body->joint(i)->q; } Affine3 orgp; orgp.translation() = rootLink->p; orgp.linear() = rootLink->R; std::vector< boost::optional<double> > jointPositions(numJoints); for(int frame = beginningFrame; frame <= endingFrame; ++frame){ provider->seek(frame / frameRate); const int baseLinkIndex = provider->baseLinkIndex(); if(baseLinkIndex >= 0){ if(baseLinkIndex != baseLink->index){ baseLink = body->link(baseLinkIndex); if(allLinkPositionOutputMode){ fkTraverse->find(baseLink, true, true); } else { static_pointer_cast<LinkPath>(fkTraverse)->find(baseLink, rootLink); } } provider->getBaseLinkPosition(baseLink->p, baseLink->R); } MultiValueSeq::View qs = qseq.frame(frame); provider->getJointPositions(jointPositions); for(int i=0; i < numJoints; ++i){ const optional<double>& q = jointPositions[i]; qs[i] = q ? *q : 0.0; body->joint(i)->q = qs[i]; } if(allLinkPositionOutputMode || baseLink != rootLink){ fkTraverse->calcForwardKinematics(); } for(int i=0; i < numLinksToPut; ++i){ Affine3& p = pseq.at(frame, i); Link* link = body->link(i); p.translation() = link->p; p.linear() = link->R; } optional<Vector3> zmp = provider->zmp(); if(zmp){ relZmpSeq[frame].noalias() = rootLink->R.transpose() * (*zmp - rootLink->p); isZmpValid = true; } } if(!isZmpValid){ //bodyMotionItem->clearRelativeZmpSeq(); } // restore the original state for(int i=0; i < numJoints; ++i){ body->joint(i)->q = orgq[i]; } rootLink->p = orgp.translation(); rootLink->R = orgp.linear(); body->calcForwardKinematics(); return true; }
/** @brief compute CoM Jacobian @param base link fixed to the environment @param J CoM Jacobian @note Link::wc must be computed by calcCM() before calling */ void calcCMJacobian(const BodyPtr& body, Link* base, Eigen::MatrixXd& J) { // prepare subm, submwc const int nj = body->numJoints(); vector<SubMass> subMasses(body->numLinks()); Link* rootLink = body->rootLink(); JointPath path; if(!base) { calcSubMass(rootLink, subMasses); J.resize(3, nj + 6); } else { path.setPath(rootLink, base); Link* skip = path.joint(0); SubMass& sub = subMasses[skip->index()]; sub.m = rootLink->m(); sub.mwc = rootLink->m() * rootLink->wc(); for(Link* child = rootLink->child(); child; child = child->sibling()) { if(child != skip) { calcSubMass(child, subMasses); subMasses[skip->index()] += subMasses[child->index()]; } } // assuming there is no branch between base and root for(int i=1; i < path.numJoints(); i++) { Link* joint = path.joint(i); const Link* parent = joint->parent(); SubMass& sub = subMasses[joint->index()]; sub.m = parent->m(); sub.mwc = parent->m() * parent->wc(); sub += subMasses[parent->index()]; } J.resize(3, nj); } // compute Jacobian std::vector<int> sgn(nj, 1); for(int i=0; i < path.numJoints(); i++) { sgn[path.joint(i)->jointId()] = -1; } for(int i=0; i < nj; i++) { Link* joint = body->joint(i); if(joint->isRotationalJoint()) { const Vector3 omega = sgn[joint->jointId()] * joint->R() * joint->a(); const SubMass& sub = subMasses[joint->index()]; const Vector3 arm = (sub.mwc - sub.m * joint->p()) / body->mass(); const Vector3 dp = omega.cross(arm); J.col(joint->jointId()) = dp; } else { std::cerr << "calcCMJacobian() : unsupported jointType(" << joint->jointType() << std::endl; } } if(!base) { const int c = nj; J.block(0, c, 3, 3).setIdentity(); const Vector3 dp = subMasses[0].mwc / body->mass() - rootLink->p(); J.block(0, c + 3, 3, 3) << 0.0, dp(2), -dp(1), -dp(2), 0.0, dp(0), dp(1), -dp(0), 0.0; } }
void JointSliderViewImpl::updateSliderGrid() { if(!currentBodyItem){ initializeSliders(0); } else { BodyPtr body = currentBodyItem->body(); int numJoints = body->numJoints(); if(!showAllToggle.isChecked()){ const boost::dynamic_bitset<>& linkSelection = LinkSelectionView::mainInstance()->linkSelection(currentBodyItem); activeJointIds.clear(); for(int i=0; i < numJoints; ++i){ Link* joint = body->joint(i); if(joint->isValid() && linkSelection[joint->index()]){ activeJointIds.push_back(i); } } } else { activeJointIds.resize(numJoints); for(int i=0; i < numJoints; ++i){ activeJointIds[i] = i; } } int n = activeJointIds.size(); initializeSliders(n); int nColumns = numColumnsSpin.value(); bool isLabelAtLeft = labelOnLeftToggle.isChecked(); int nUnitColumns, nGridColumns; if(isLabelAtLeft){ nUnitColumns = 7; nGridColumns = nColumns * nUnitColumns; } else { nUnitColumns = 6; nGridColumns = nColumns * nUnitColumns; } int row = 0; int col = 0; for(int i=0; i < n; ++i){ SliderUnit* unit = jointSliders[i]; unit->initialize(body->joint(activeJointIds[i])); if(!isLabelAtLeft){ sliderGrid.addWidget(&unit->nameLabel, row, col, 1, nUnitColumns); sliderGrid.addWidget(&unit->idLabel, row + 1, col); attachSliderUnits(unit, row + 1, col + 1); col += nUnitColumns; if(col == nGridColumns){ col = 0; row += 2; } } else { sliderGrid.addWidget(&unit->idLabel,row, col); sliderGrid.addWidget(&unit->nameLabel,row, col + 1); attachSliderUnits(unit, row, col + 2); col += nUnitColumns; if(col == nGridColumns){ col = 0; row += 1; } } } } }