void	computeSurfaceQuadTree(CInteriorSurface &surface, CSurfaceQuadTree &quad)
{
	uint	i, j;

	CAABBox	box;
	bool	first = true;
	for (i=0; i<surface.Faces.size(); ++i)
	{
		for (j=0; j<3; ++j)
		{
			const CVector	&v = surface.CollisionMeshBuild->Vertices[surface.CollisionMeshBuild->Faces[surface.Faces[i]].V[j]];
			if (first)
				box.setCenter(v), first=false;
			else
				box.extend(v);
		}
	}

	quad.clear();
	quad.init(4.0f, 6, box.getCenter(), std::max(box.getHalfSize().x, box.getHalfSize().y));

	for (i=0; i<surface.Faces.size(); ++i)
	{
		for (j=0; j<3; ++j)
		{
			const CVector	&v = surface.CollisionMeshBuild->Vertices[surface.CollisionMeshBuild->Faces[surface.Faces[i]].V[j]];
			quad.addVertex(v);
		}
	}

	quad.compile();
}
	// If the bbox has a null size, then mark it void
	void removeVoid() 
	{ 
		if (!IsVoid && Box.getHalfSize() == CVector::Null)
		{
			IsVoid = true;
		}
	}
コード例 #3
0
ファイル: pacs_client.cpp プロジェクト: CCChaos/RyzomCore
///////////////
// FUNCTIONS //
///////////////
//-----------------------------------------------
// initPACS :
// Initialize PACS.
//-----------------------------------------------
void initPACS(const char* rbank, const char* gr, NLMISC::IProgressCallback &/* progress */)
{
	// Check old PACS is well released.
	nlassertex(RB==0,   ("RB should be Null before the init."));
	nlassertex(GR==0,   ("GR should be Null before the init."));
	nlassertex(PACS==0, ("PACS should be Null before the init."));

	if(rbank != 0 && gr != 0)
	{
		RB = NLPACS::URetrieverBank::createRetrieverBank(rbank, false);
		GR = NLPACS::UGlobalRetriever::createGlobalRetriever(gr, RB);
		if (GR)
		{
			CAABBox		cbox = GR->getBBox();

			uint gw = (uint)(cbox.getHalfSize().x*2.0 / RYZOM_ENTITY_SIZE_MAX) + 1;
			uint gh = (uint)(cbox.getHalfSize().y*2.0 / RYZOM_ENTITY_SIZE_MAX) + 1;


			PACS = UMoveContainer::createMoveContainer(GR, gw, gh, RYZOM_ENTITY_SIZE_MAX, 2);
		}
		else
			nlwarning("Could not create global retriever for %s, %s", rbank, gr);
	}

	// Try to create a PACS with another method.
	if(PACS == 0)
		PACS = UMoveContainer::createMoveContainer(15000.0, -25000.0, 20000.0, -20000.0, 16, 16, RYZOM_ENTITY_SIZE_MAX, 2);

	// Set the static world image.
	if(PACS)
		PACS->setAsStatic(staticWI);
	else
		nlwarning("initPACS: cannot create PACS at all.");
}// initPACS //
コード例 #4
0
ファイル: mouline.cpp プロジェクト: CCChaos/RyzomCore
void	computeRetriever(CCollisionMeshBuild &cmb, CLocalRetriever &lr, CVector &translation, bool useCmbTrivialTranslation)
{
	// set the retriever
	lr.setType(CLocalRetriever::Interior);

	// if should use the own cmb bbox, then compute it
	if (useCmbTrivialTranslation)
	{
		translation = cmb.computeTrivialTranslation();
		// snap the translation vector to a meter wide grid
		translation.x = (float)ceil(translation.x);
		translation.y = (float)ceil(translation.y);
		translation.z = 0.0f;
	}

	uint	i, j;

	for (i=0; i<cmb.Faces.size(); ++i)
	{
		CVector		normal = ((cmb.Vertices[cmb.Faces[i].V[1]]-cmb.Vertices[cmb.Faces[i].V[0]])^(cmb.Vertices[cmb.Faces[i].V[2]]-cmb.Vertices[cmb.Faces[i].V[0]])).normed();

		if (normal.z < 0.0f)
		{
			nlwarning("Face %d in cmb (%s) has negative normal! -- face is flipped", i, cmb.Faces[i].Surface == CCollisionFace::InteriorSurfaceFirst ? "interior" : "exterior");
/*
			std::swap(cmb.Faces[i].V[1], cmb.Faces[i].V[2]);
			std::swap(cmb.Faces[i].Visibility[1], cmb.Faces[i].Visibility[2]);
*/
		}
	}

	// first link faces
/*
	linkMesh(cmb, false);
	linkMesh(cmb, true);
*/
	vector<string>	errors;
	
	cmb.link(false, errors);
	cmb.link(true, errors);

	if (!errors.empty())
	{
		nlwarning("Edge issues reported !!");
		uint	i;
		for (i=0; i<errors.size(); ++i)
			nlwarning("%s", errors[i].c_str());
		nlerror("Can't continue.");
	}
	
	// translate the meshbuild to the local axis
	cmb.translate(translation);

	// find the exterior mesh border
	CExteriorMesh	extMesh;
	buildExteriorMesh(cmb, extMesh);
	lr.setExteriorMesh(extMesh);

	// build the surfaces in the local retriever
	buildSurfaces(cmb, lr);

	// create the snapping faces and vertices
	// after the build surfaces because the InternalSurfaceId is filled within buildSurfaces()...
	buildSnapping(cmb, lr);

	//
	lr.computeLoopsAndTips();

	lr.findBorderChains();
	lr.updateChainIds();
	lr.computeTopologies();

	lr.unify();

	lr.computeCollisionChainQuad();
/*
	//
	for (i=0; i<lr.getSurfaces().size(); ++i)
		lr.dumpSurface(i);
*/
	//
	linkExteriorToInterior(lr);

	// compute the bbox of the retriever
	CAABBox	bbox;
	bool	first = true;

	for (i=0; i<extMesh.getEdges().size(); ++i)
		if (!first)
			bbox.extend(extMesh.getEdge(i).Start);
		else
			bbox.setCenter(extMesh.getEdge(i).Start), first=false;

	for (i=0; i<lr.getOrderedChains().size(); ++i)
		for (j=0; j<lr.getOrderedChain(i).getVertices().size(); ++j)
			if (!first)
				bbox.extend(lr.getOrderedChain(i)[j].unpack3f());
			else
				bbox.setCenter(lr.getOrderedChain(i)[j].unpack3f()), first=false;

	CVector	bboxhs = bbox.getHalfSize();
	bboxhs.z = 10000.0f;
	bbox.setHalfSize(bboxhs);

	lr.setBBox(bbox);
}
コード例 #5
0
// ***************************************************************************
void	NLPACS::CZoneTessellation::build()
{
	sint	el;
	uint	i, j;

	NL3D::CLandscape	landscape;
	landscape.init();

	vector<CVector>				normals;

	vector<CVector>				vectorCheck;
	bool						useNoHmZones = true;

	{
		NL3D::CLandscape	landscapeNoHm;
		landscapeNoHm.init();

		//
		// load the 9 landscape zones
		//
		for (i=0; i<_ZoneIds.size(); ++i)
		{
			string	filename = getZoneNameById(_ZoneIds[i])+ZoneExt;
			CIFile	file(CPath::lookup(filename));
			CZone	zone;
			zone.serial(file);
			file.close();

			if (Verbose)
				nlinfo("use zone %s %d", filename.c_str(), zone.getZoneId());

			if (zone.getZoneId() != _ZoneIds[i])
			{
				nlwarning ("Zone %s ID is wrong. Abort.", filename.c_str());
				return;
			}
			landscape.addZone(zone);

			if (useNoHmZones)
			{
				string	filenameNH = getZoneNameById(_ZoneIds[i])+ZoneNHExt;
				string	loadZ = CPath::lookup(filenameNH, false, false);
				if (!loadZ.empty())
				{
					CIFile	fileNH(loadZ);
					CZone	zoneNH;
					zoneNH.serial(fileNH);
					fileNH.close();
					if (zoneNH.getZoneId() != _ZoneIds[i])
					{
						nlwarning ("Zone %s ID is wrong. Abort.", filenameNH.c_str());
						return;
					}
					landscapeNoHm.addZone(zoneNH);
				}
				else
				{
					useNoHmZones = false;
				}
			}

			_ZonePtrs.push_back(landscape.getZone(_ZoneIds[i]));
		}

		landscape.setNoiseMode(false);
		landscape.checkBinds();

		if (useNoHmZones)
		{
			landscapeNoHm.setNoiseMode(false);
			landscapeNoHm.checkBinds();
		}

		BestFittingBBox.setCenter(CVector::Null);
		BestFittingBBox.setHalfSize(CVector::Null);
		BestFittingBBoxSetuped= false;

		// Compute best fitting bbox
		for (i=0; i<_ZoneIds.size(); ++i)
		{
			if (_ZoneIds[i] == CentralZoneId)
			{
				if(_ZonePtrs[i]->getNumPatchs()>0)
				{
					BestFittingBBox = _ZonePtrs[i]->getZoneBB().getAABBox();
					BestFittingBBoxSetuped= true;
				}
			}
		}

		CAABBox	enlBBox = BestFittingBBox;
		enlBBox.setHalfSize(enlBBox.getHalfSize()+CVector(8.0f, 8.0f, 1000.0f));

		// Add neighbor patch
		for (i=0; i<_ZoneIds.size(); ++i)
		{
			if (_ZoneIds[i] == CentralZoneId)
			{
				for (j=0; (sint)j<_ZonePtrs[i]->getNumPatchs(); ++j)
				{
					landscape.excludePatchFromRefineAll(_ZoneIds[i], j, false);
					if (useNoHmZones)
						landscapeNoHm.excludePatchFromRefineAll(_ZoneIds[i], j, false);
				}
				if (Verbose)
					nlinfo(" - selected %d/%d patches for zone %d", _ZonePtrs[i]->getNumPatchs(), _ZonePtrs[i]->getNumPatchs(), _ZoneIds[i]);
			}
			else
			{
				uint	nump = 0;
				for (j=0; (sint)j<_ZonePtrs[i]->getNumPatchs(); ++j)
				{
					CAABBox	pbox = _ZonePtrs[i]->getPatch(j)->buildBBox();
					bool	inters = enlBBox.intersect(pbox);

					if (inters)
					{
						landscape.excludePatchFromRefineAll(_ZoneIds[i], j, false);
						if (useNoHmZones)
							landscapeNoHm.excludePatchFromRefineAll(_ZoneIds[i], j, false);
						++nump;
					}
					else
					{
						landscape.excludePatchFromRefineAll(_ZoneIds[i], j, true);
						if (useNoHmZones)
							landscapeNoHm.excludePatchFromRefineAll(_ZoneIds[i], j, true);
					}
				}
				if (Verbose)
					nlinfo(" - selected %d/%d patches for zone %d", nump, _ZonePtrs[i]->getNumPatchs(), _ZoneIds[i]);
			}
		}

		// tessellate the landscape, get the leaves (the tessellation faces), and convert them
		// into surf elements
		if (Verbose)
			nlinfo("Compute landscape tessellation");

		if (Verbose)
			nlinfo("   - tessellate landscape");

		if (useNoHmZones)
		{
			// Before tesselate, verify that the 2 landscape zones have at least the same binds!
			// Else there will be errors because of not the same tesselation
			checkSameLandscapeHmBinds(landscape, landscapeNoHm);
			
			// Tesselate
			landscapeNoHm.setThreshold(0.0f);
			landscapeNoHm.setTileMaxSubdivision(TessellateLevel);
			landscapeNoHm.refineAll(CVector::Null);
			landscapeNoHm.averageTesselationVertices();

			// get the faces
			vector<const CTessFace *>	leavesNoHm;
			landscapeNoHm.getTessellationLeaves(leavesNoHm);

			for (el=0; el<(sint)leavesNoHm.size(); ++el)
			{
				const CTessFace	*face = leavesNoHm[el];
				const CVector	*v[3];

				// get the vertices of the face
				v[0] = &(face->VBase->EndPos);
				v[1] = &(face->VLeft->EndPos);
				v[2] = &(face->VRight->EndPos);

				normals.push_back( ((*(v[1])-*(v[0])) ^ (*(v[2])-*(v[0]))).normed() );

				vectorCheck.push_back(*(v[0]));
				vectorCheck.push_back(*(v[1]));
				vectorCheck.push_back(*(v[2]));
			}
		}
	}

	// Build the lanscape with heightmap
	landscape.setThreshold(0.0f);
	landscape.setTileMaxSubdivision(TessellateLevel);
	landscape.refineAll(CVector::Null);
	landscape.averageTesselationVertices();

	vector<const CTessFace *>	leaves;
	landscape.getTessellationLeaves(leaves);
	if (Verbose)
	{
		if (useNoHmZones)
			nlinfo("      - used no height map zones");
		nlinfo("      - generated %d leaves", leaves.size());
	}

	// If don't use NoHm zones, build normals and vectorCheck directly from std landscape
	if (!useNoHmZones)
	{
		for (el=0; el<(sint)leaves.size(); ++el)
		{
			const CTessFace	*face = leaves[el];
			const CVector	*v[3];

			// get the vertices of the face
			v[0] = &(face->VBase->EndPos);
			v[1] = &(face->VLeft->EndPos);
			v[2] = &(face->VRight->EndPos);

			normals.push_back( ((*(v[1])-*(v[0])) ^ (*(v[2])-*(v[0]))).normed() );

			vectorCheck.push_back(*(v[0]));
			vectorCheck.push_back(*(v[1]));
			vectorCheck.push_back(*(v[2]));
		}
	}

	// check that there is the same number of faces from landscape with and without heightmap
	if (normals.size() != leaves.size())
	{
		nlwarning ("ERROR : The heightmaped landscape has not the same number of polygon than the nonheightmaped landscape: %d/%d.", 
			normals.size(), leaves.size());
		exit (0);
	}

	// generate a vector of vertices and of surf element
	CHashMap<const CVector *, uint32, CHashPtr<const CVector> >				vremap;
	CHashMap<const CVector *, uint32, CHashPtr<const CVector> >::iterator	vremapit;
	CHashMap<const CTessFace *, CSurfElement *, CHashPtr<const CTessFace> >	fremap;
	CHashMap<const CTessFace *, CSurfElement *, CHashPtr<const CTessFace> >::iterator	fremapit;
	_Vertices.clear();
	_Tessellation.resize(leaves.size());

	if (Verbose)
		nlinfo("   - make and remap surface elements");

	for (el=0; el<(sint)leaves.size(); ++el)
		fremap[leaves[el]] = &(_Tessellation[el]);

	uint	check = 0;

	float	dist, maxdist = 0.0f;

	for (el=0; el<(sint)leaves.size(); ++el)
	{
		const CTessFace	*face = leaves[el];
		const CVector	*v[3];

		CSurfElement	&element = _Tessellation[el];

		// setup zone id
		element.ZoneId = face->Patch->getZone()->getZoneId();

		// get the vertices of the face
		v[0] = &(face->VBase->EndPos);
		v[1] = &(face->VLeft->EndPos);
		v[2] = &(face->VRight->EndPos);

		{
			CVector	vcheck;

			vcheck = vectorCheck[check++] - *(v[0]);
			vcheck.z = 0;
			dist = vcheck.norm();
			if (dist > maxdist)	maxdist = dist;
			//nlassert(vcheck.norm() < 0.1f);

			vcheck = vectorCheck[check++] - *(v[1]);
			vcheck.z = 0;
			dist = vcheck.norm();
			if (dist > maxdist)	maxdist = dist;
			//nlassert(vcheck.norm() < 0.1f);

			vcheck = vectorCheck[check++] - *(v[2]);
			vcheck.z = 0;
			dist = vcheck.norm();
			if (dist > maxdist)	maxdist = dist;
			//nlassert(vcheck.norm() < 0.1f);
		}

		//element.Normal = ((*(v[1])-*(v[0])) ^ (*(v[2])-*(v[0]))).normed();
		element.Normal = normals[el];


		// search the vertices in the map
		for (i=0; i<3; ++i)
		{
			// if doesn't exist, create a new vertex
			if ((vremapit = vremap.find(v[i])) == vremap.end())
			{
				element.Tri[i] = (uint32)_Vertices.size();
				_Vertices.push_back(*(v[i]));
				vremap.insert(make_pair(v[i], element.Tri[i]));
			}
			// else use previous
			else
			{
				element.Tri[i] = vremapit->second;
			}
		}

		// setup the vertices pointer
		element.Vertices = &_Vertices;

		CTessFace		*edge[3];

		edge[0] = face->FBase;
		edge[1] = face->FRight;
		edge[2] = face->FLeft;

		for (i=0; i<3; ++i)
		{
			fremapit = fremap.find(edge[i]);
			element.EdgeLinks[i] = (fremapit != fremap.end() ? fremapit->second : NULL);
		}
	}

	for (el=0; el<(sint)_Tessellation.size(); ++el)
	{
		// add the element to the list of valid elements
		Elements.push_back(&(_Tessellation[el]));
	}

	landscape.clear();
}
コード例 #6
0
void	NLPACS::CZoneTessellation::compile()
{
	sint	el;
	uint	i;

	CAABBox	tbox = computeBBox();

	bool	HasInvertedUnderWater = false;

	// setup cliffs
	for (el=0; el<(sint)Elements.size(); ++el)
	{
		CSurfElement	&element = *(Elements[el]);

		// a cliff ?
		if (element.Normal.z < 0.0)
		{
			CVector		&v0 = _Vertices[element.Tri[0]],
						&v1 = _Vertices[element.Tri[1]],
						&v2 = _Vertices[element.Tri[2]];

			uint8		bits0 = PrimChecker.get((uint)v0.x, (uint)v0.y);
			uint8		bits1 = PrimChecker.get((uint)v1.x, (uint)v1.y);
			uint8		bits2 = PrimChecker.get((uint)v2.x, (uint)v2.y);

			bool		w0 = ((bits0&CPrimChecker::Water) != 0);
			bool		w1 = ((bits1&CPrimChecker::Water) != 0);
			bool		w2 = ((bits2&CPrimChecker::Water) != 0);

			if ((bits0 & CPrimChecker::Water)!=0 || (bits1 & CPrimChecker::Water)!=0 || (bits2 & CPrimChecker::Water)!=0)
			{
				uint		ws = 0;

				uint16		ws0 = PrimChecker.index((uint)v0.x, (uint)v0.y);
				uint16		ws1 = PrimChecker.index((uint)v1.x, (uint)v1.y);
				uint16		ws2 = PrimChecker.index((uint)v2.x, (uint)v2.y);

				if ((w0 && w1 && ws0 == ws1) || (w0 && w2 && ws0 == ws2))
					ws = ws0;
				else if (w1 && w2 && ws1 == ws2)
					ws = ws1;
				else if (w0)
					ws = ws0;
				else if (w1)
					ws = ws1;
				else if (w2)
					ws = ws2;

				float		minz = std::min(_Vertices[element.Tri[0]].z, 
								   std::min(_Vertices[element.Tri[1]].z,
											_Vertices[element.Tri[2]].z));

				bool		exists;
				float		wh = PrimChecker.waterHeight(ws, exists)+WaterThreshold;

				// 
				if (minz <= wh)
				{
					CPolygon	p(v0, v1, v2);
					PrimChecker.renderBits(p, CPrimChecker::Cliff);

					HasInvertedUnderWater = true;
				}
			}
		}
	}

	if (HasInvertedUnderWater)
	{
		nlwarning("zone '%s' has reversed landscape under water", (getZoneNameById((uint16)CentralZoneId)+ZoneExt).c_str());
	}


	// compute elements features
	if (Verbose)
		nlinfo("compute elements quantas");
	for (el=0; el<(sint)Elements.size(); ++el)
	{
		CSurfElement	&element = *(Elements[el]);

		element.ElemId = el;
		element.computeQuantas(this);
	}

	if (ReduceSurfaces)
	{
		// optimizes the number of generated segments
		// it also smoothes a bit the surface border
		// it seems that 3 consecutive passes are optimal to reduce
		// nasty granularity
		if (Verbose)
			nlinfo("reduce surfaces");
		uint	i;
		sint	p;

		for (i=0; i<3; ++i)
		{
			for (p=0; p<(sint)Elements.size(); ++p)
			{
				CSurfElement	&e = *(Elements[p]);
				CSurfElement	&e0 = *e.EdgeLinks[0],
								&e1 = *e.EdgeLinks[1],
								&e2 = *e.EdgeLinks[2];

				if (e.IsMergable && &e0 != NULL && &e1 != NULL && &e2 != NULL &&
					e.ZoneId == e0.ZoneId &&
					e.ZoneId == e1.ZoneId &&
					e.ZoneId == e2.ZoneId &&
					!e.ForceInvalid)
				{
					// Strong optimization
					// merge the element quantas to the neighbors' quantas which are the most numerous
					// quantas are evaluated individually
					if (e0.IsValid && e1.IsValid)						e.IsValid = true;
					if (e1.IsValid && e2.IsValid)						e.IsValid = true;
					if (e0.IsValid && e2.IsValid)						e.IsValid = true;

					if (e0.QuantHeight == e1.QuantHeight)				e.QuantHeight = e0.QuantHeight;
					if (e1.QuantHeight == e2.QuantHeight)				e.QuantHeight = e1.QuantHeight;
					if (e0.QuantHeight == e2.QuantHeight)				e.QuantHeight = e2.QuantHeight;

					if (e0.IsValid && e1.IsValid && e0.WaterShape == e1.WaterShape && e0.IsUnderWater == e1.IsUnderWater)
					{
						e.WaterShape = e0.WaterShape;
						e.IsUnderWater = e0.IsUnderWater;
					}
					if (e1.IsValid && e2.IsValid && e1.WaterShape == e2.WaterShape && e1.IsUnderWater == e2.IsUnderWater)
					{
						e.WaterShape = e1.WaterShape;
						e.IsUnderWater = e1.IsUnderWater;
					}
					if (e0.IsValid && e2.IsValid && e0.WaterShape == e2.WaterShape && e0.IsUnderWater == e2.IsUnderWater)
					{
						e.WaterShape = e2.WaterShape;
						e.IsUnderWater = e2.IsUnderWater;
					}
				}
			}
		}

		for (p=0; p<(sint)Elements.size(); ++p)
		{
			CSurfElement	&e = *(Elements[p]);
			CSurfElement	&e0 = *e.EdgeLinks[0],
							&e1 = *e.EdgeLinks[1],
							&e2 = *e.EdgeLinks[2];

			if (&e != NULL && &e0 != NULL && &e1 != NULL && &e2 != NULL &&
				e.IsValid && e0.IsValid && e1.IsValid && e2.IsValid &&
				!e.IsUnderWater && e0.IsUnderWater && e1.IsUnderWater && e2.IsUnderWater)
			{
				nlwarning("isolated submerged element '%d' !", p);
			}
		}
	}

	// translates vertices to the local axis
	sint64	vx, vy, vz, tx, ty, tz;
	tx = float2Fixed(Translation.x);
	ty = float2Fixed(Translation.y);
	tz = float2Fixed(Translation.z);

	uint	p;
	for (i=0; i<_Vertices.size(); ++i)
	{
		vx = float2Fixed(_Vertices[i].x) + tx;
		vy = float2Fixed(_Vertices[i].y) + ty;
		vz = float2Fixed(_Vertices[i].z) + tz;
		_Vertices[i] = CVector(fixed2Float(vx), fixed2Float(vy), fixed2Float(vz));
	}

	if(BestFittingBBoxSetuped)
		BestFittingBBox.setCenter(BestFittingBBox.getCenter()+Translation);


	//
	//if (false)
	{
		//
		// first pass of flood fill
		// allow detecting landscape irregularities
		//

		if (Verbose)
			nlinfo("build and flood fill surfaces -- pass 1");
		uint32	surfId = 0; // + (ZoneId<<16);

		for (p=0; p<Elements.size(); ++p)
		{
			if (Elements[p]->SurfaceId == UnaffectedSurfaceId)
			{
				Surfaces.push_back(CComputableSurface());
				CComputableSurface	&surf = Surfaces.back();

				surf.BorderKeeper = &Borders;
				surf.floodFill(Elements[p], surfId++, CSurfElemCompareSimple(), this);
				surf.BBox = BestFittingBBox;

				bool	force = false;

				if (surf.Area < 30.0f && surf.Elements.size() > 0)
				{
					uint		i;
					CAABBox		aabbox;

					aabbox.setCenter((*surf.Elements[0]->Vertices)[surf.Elements[0]->Tri[0]]);

					for (i=0; i<surf.Elements.size(); ++i)
					{
						aabbox.extend((*surf.Elements[i]->Vertices)[surf.Elements[i]->Tri[0]]);
						aabbox.extend((*surf.Elements[i]->Vertices)[surf.Elements[i]->Tri[1]]);
						aabbox.extend((*surf.Elements[i]->Vertices)[surf.Elements[i]->Tri[2]]);
					}

					// swap all suface elements validity
					if (!surf.Elements[0]->ForceInvalid && aabbox.getHalfSize().z < 1.5f)
					{
						for (i=0; i<surf.Elements.size(); ++i)
						{
							surf.Elements[i]->IsValid = !surf.Elements[i]->IsValid;
						}
						if (Verbose)
							nlinfo("Reverted surface %d (%d elements, water=%d)", surfId-1, surf.Elements.size(), (surf.IsUnderWater ? 1 : 0));
					}
				}
			}
		}

		Surfaces.clear();
		ExtSurfaces.clear();
	}

	vector<CSurfElement*>	elDup;
	for (el=0; el<(sint)Elements.size(); ++el)
		if (Elements[el]->IsValid)
			elDup.push_back(Elements[el]);
	Elements = elDup;
	elDup.clear();

	for (el=0; el<(sint)Elements.size(); ++el)
	{
		CSurfElement	&element = *(Elements[el]);
		element.SurfaceId = UnaffectedSurfaceId;
		uint	i;
		for (i=0; i<3; ++i)
			if (element.EdgeLinks[i] != NULL && !element.EdgeLinks[i]->IsValid)
				element.EdgeLinks[i] = NULL;
	}

	//
	{
		if (Verbose)
			nlinfo("build and flood fill surfaces");
		uint32	surfId = 0; // + (ZoneId<<16);
		uint	totalSurf = 0;
		sint32	extSurf = -1024;

		for (p=0; p<Elements.size(); ++p)
		{
			if (Elements[p]->SurfaceId == UnaffectedSurfaceId)
			{
				bool	elInCentral = (Elements[p]->ZoneId == CentralZoneId);

				++totalSurf;
				sint32	thisSurfId = (elInCentral) ? surfId++ : extSurf--;
				if (elInCentral)
					Surfaces.push_back(CComputableSurface());
				else
					ExtSurfaces.push_back(CComputableSurface());

				CComputableSurface	&surf = (elInCentral) ? Surfaces.back() : ExtSurfaces.back();

				surf.BorderKeeper = &Borders;
				surf.floodFill(Elements[p], thisSurfId, CSurfElemCompareNormal(), this);
				surf.BBox = BestFittingBBox;
			}
		}

		if (Verbose)
		{
			nlinfo("%d surfaces generated", totalSurf);

			for (p=0; p<Surfaces.size(); ++p)
			{
				nlinfo("surf %d: %d elements", p, Surfaces[p].Elements.size());

				if (Surfaces[p].Elements.size() == 1)
				{
					nlinfo("elm: %d", Surfaces[p].Elements[0]->ElemId);
				}
			}
		}
	}

	// flag vertices that are pointed by more than 2 surfaces
	VerticesFlags.resize(_Vertices.size(), 0);

	for (p=0; p<Elements.size(); ++p)
	{
		CSurfElement	*elem = Elements[p];

		sint32		s = elem->SurfaceId;
		sint32		s0 = (elem->EdgeLinks[0] != NULL ? elem->EdgeLinks[0]->SurfaceId : UnaffectedSurfaceId);
		sint32		s1 = (elem->EdgeLinks[1] != NULL ? elem->EdgeLinks[1]->SurfaceId : UnaffectedSurfaceId);
		sint32		s2 = (elem->EdgeLinks[2] != NULL ? elem->EdgeLinks[2]->SurfaceId : UnaffectedSurfaceId);

		if (s != s0 && s != s1 && s0 != s1)
		{
			VerticesFlags[elem->Tri[2]] = 1;
		}

		if (s != s1 && s != s2 && s1 != s2)
		{
			VerticesFlags[elem->Tri[0]] = 1;
		}

		if (s != s2 && s != s0 && s2 != s0)
		{
			VerticesFlags[elem->Tri[1]] = 1;
		}
	}
}
コード例 #7
0
ファイル: export_skinning.cpp プロジェクト: CCChaos/RyzomCore
bool CExportNel::mirrorPhysiqueSelection(INode &node, TimeValue tvTime, const std::vector<uint> &vertIn, 
		float threshold)
{
	bool	ok;
	uint	i;

	// no vertices selected?
	if(vertIn.empty())
		return true;

	// **** Get all the skeleton node 
	std::vector<INode*>		skeletonNodes;
	INode	*skelRoot= getSkeletonRootBone(node);
	if(!skelRoot)
		return false;
	getObjectNodes(skeletonNodes, tvTime, skelRoot);


	// **** Build the Vector (world) part
	std::vector<CTempSkinVertex>	tempVertex;
	uint	vertCount;

	// Get a pointer on the object's node.
    ObjectState os = node.EvalWorldState(tvTime);
    Object *obj = os.obj;

	// Check if there is an object
	ok= false;
	if (obj)
	{		

		// Object can be converted in triObject ?
		if (obj->CanConvertToType(Class_ID(TRIOBJ_CLASS_ID, 0))) 
		{ 
			// Get a triobject from the node
			TriObject *tri = (TriObject*)obj->ConvertToType(tvTime, Class_ID(TRIOBJ_CLASS_ID, 0));
			
			if (tri)
			{
				// Note that the TriObject should only be deleted
				// if the pointer to it is not equal to the object
				// pointer that called ConvertToType()
				bool deleteIt=false;
				if (obj != tri) 
					deleteIt = true;

				// Get the node matrix. TODO: Matrix headhache?
				/*Matrix3 nodeMatrixMax;
				CMatrix nodeMatrix;
				getLocalMatrix (nodeMatrixMax, node, tvTime);
				convertMatrix (nodeMatrix, nodeMatrixMax);*/

				// retrive Position geometry
				vertCount= tri->NumPoints();
				tempVertex.resize(vertCount);
				for(uint i=0;i<vertCount;i++)
				{
					Point3 v= tri->GetPoint(i);
					tempVertex[i].Pos.set(v.x, v.y, v.z);
				}

				// Delete the triObject if we should...
				if (deleteIt)
					tri->MaybeAutoDelete();
				tri = NULL;

				// ok!
				ok= true;
			}
		}
	}
	if(!ok)
		return false;

	// no vertices? abort
	if(vertCount==0)
		return true;


	// **** Mark all Input vertices
	for(i=0;i<vertIn.size();i++)
	{
		nlassert(vertIn[i]<vertCount);
		tempVertex[vertIn[i]].Input= true;
	}


	// **** Build the output vertices
	std::vector<uint>	vertOut;
	vertOut.reserve(tempVertex.size());

	// Build the in bbox
	CAABBox		bbox;
	bbox.setCenter(tempVertex[vertIn[0]].Pos);
	for(i=0;i<vertIn.size();i++)
	{
		bbox.extend(tempVertex[vertIn[i]].Pos);
	}
	bbox.setHalfSize(bbox.getHalfSize()+CVector(threshold, threshold, threshold));

	// mirror in X
	CVector		vMin= bbox.getMin();
	CVector		vMax= bbox.getMax();
	vMin.x= -vMin.x;
	vMax.x= -vMax.x;
	std::swap(vMin.x, vMax.x);
	bbox.setMinMax(vMin, vMax);

	// get all out vertices in the mirrored bbox.
	for(i=0;i<tempVertex.size();i++)
	{
		if(bbox.include(tempVertex[i].Pos))
		{
			vertOut.push_back(i);
		}
	}


	// **** Build the skin information
	// Get the skin modifier
	Modifier* skin=getModifier (&node, PHYSIQUE_CLASS_ID);

	// Found it ?
	ok= false;
	if (skin)
	{
		// Get a com_skin2 interface
		IPhysiqueExport *physiqueInterface=(IPhysiqueExport *)skin->GetInterface (I_PHYINTERFACE);

		// Found com_skin2 ?
		if (physiqueInterface)
		{
			// Get local data
			IPhyContextExport *localData= physiqueInterface->GetContextInterface(&node);

			// Found ?
			if (localData)
			{
				// Use rigid export
				localData->ConvertToRigid (TRUE);

				// Allow blending
				localData->AllowBlending (TRUE);

				// Skinned
				ok=true;

				// TODO?
				nlassert(tempVertex.size()<=(uint)localData->GetNumberVertices());

				// For each vertex
				for (uint vert=0; vert<vertCount; vert++)
				{
					// Get a vertex interface
					IPhyVertexExport *vertexInterface= localData->GetVertexInterface (vert);

					// Check if it is a rigid vertex or a blended vertex
					IPhyRigidVertex			*rigidInterface=NULL;
					IPhyBlendedRigidVertex	*blendedInterface=NULL;
					int type=vertexInterface->GetVertexType ();
					if (type==RIGID_TYPE)
					{
						// this is a rigid vertex
						rigidInterface=(IPhyRigidVertex*)vertexInterface;
					}
					else
					{
						// It must be a blendable vertex
						nlassert (type==RIGID_BLENDED_TYPE);
						blendedInterface=(IPhyBlendedRigidVertex*)vertexInterface;
					}

					// Get bones count for this vertex
					uint boneCount;
					if (blendedInterface)
					{
						// If blenvertex, only one bone
						boneCount=blendedInterface->GetNumberNodes();
					}
					else
					{
						// If rigid vertex, only one bone
						boneCount=1;
					}
					if(boneCount>TEMP_MAX_WEIGHT)
						boneCount= TEMP_MAX_WEIGHT;

					// NB: if input 0, won't be mirrored
					tempVertex[vert].NumWeight= boneCount;
					for(uint bone=0;bone<boneCount;bone++)
					{
						if (blendedInterface)
						{
							tempVertex[vert].Bone[bone]= blendedInterface->GetNode(bone);
							nlassert(tempVertex[vert].Bone[bone]);
							tempVertex[vert].Weight[bone]= blendedInterface->GetWeight(bone);
						}
						else
						{
							tempVertex[vert].Bone[bone]= rigidInterface->GetNode();
							tempVertex[vert].Weight[bone]= 1;
						}
					}

					// Release vertex interfaces
					localData->ReleaseVertexInterface (vertexInterface);
				}

			}

			// release context interface
			physiqueInterface->ReleaseContextInterface(localData);
		}

		// Release the interface
		skin->ReleaseInterface (I_PHYINTERFACE, physiqueInterface);
	}
	if(!ok)
		return false;


	// **** Real Algo stuff:
	// For all vertices wanted to be mirrored
	std::vector<CSortVertex>	sortVert;
	sortVert.reserve(tempVertex.size());
	for(i=0;i<vertIn.size();i++)
	{
		CTempSkinVertex		&svIn= tempVertex[vertIn[i]];
		// if it still has no bones set, skip
		if(svIn.NumWeight==0)
			continue;

		// mirror vert to test
		CVector		vertTest= svIn.Pos;
		vertTest.x*= -1;

		// get the best vertex
		sortVert.clear();

		// Search for all output vertices if ones match
		for(uint j=0;j<vertOut.size();j++)
		{
			uint	dstIdx= vertOut[j];
			nlassert(dstIdx<tempVertex.size());
			CTempSkinVertex	&skinv= tempVertex[dstIdx];
			// take only if not an input, and if not already mirrored
			if(!skinv.Input && !skinv.Mirrored)
			{
				CSortVertex		sortv;
				sortv.Index= dstIdx;
				sortv.SqrDist= (skinv.Pos - vertTest).sqrnorm();
				// Finally, take it only if sufficiently near
				if(sortv.SqrDist <= threshold*threshold)
					sortVert.push_back(sortv);
			}
		}

		// if some found.
		if(!sortVert.empty())
		{
			// sort array.
			std::sort(sortVert.begin(), sortVert.end());

			// take the first, mirror setup
			uint	dstIdx= sortVert[0].Index;
			tempVertex[dstIdx].NumWeight= svIn.NumWeight;
			for(uint k=0;k<svIn.NumWeight;k++)
			{
				tempVertex[dstIdx].Weight[k]= svIn.Weight[k];
				tempVertex[dstIdx].Bone[k]= getMirrorBone( skeletonNodes, svIn.Bone[k] );
			}

			// mark as mirrored!
			tempVertex[dstIdx].Mirrored= true;
		}
	}


	// **** Write the result to the skin.
	ok= false;
	if (skin)
	{
		// Get a com_skin2 interface
		IPhysiqueImport *physiqueInterface=(IPhysiqueImport *)skin->GetInterface (I_PHYIMPORT);

		// Found com_skin2 ?
		if (physiqueInterface)
		{
			// Get local data
			IPhyContextImport *localData= physiqueInterface->GetContextInterface(&node);

			// TODO?
			nlassert(tempVertex.size()<=(uint)localData->GetNumberVertices());

			// Found ?
			if (localData)
			{
				// Skinned
				ok=true;
				
				for(uint i=0;i<tempVertex.size();i++)
				{
					CTempSkinVertex		&sv= tempVertex[i];

					// if its a mirrored output vertex
					if(sv.Mirrored)
					{
						IPhyBlendedRigidVertexImport	*blendedInterface= NULL;
						blendedInterface= (IPhyBlendedRigidVertexImport*)localData->SetVertexInterface(i, RIGID_BLENDED_TYPE);

						if(blendedInterface)
						{
							// set the vertex data
							for(uint bone=0;bone<sv.NumWeight;bone++)
							{
								blendedInterface->SetWeightedNode(sv.Bone[bone], sv.Weight[bone], bone==0);
							}

							// UI bonus: lock it
							blendedInterface->LockVertex(TRUE);

							// release
							localData->ReleaseVertexInterface(blendedInterface);
						}
					}
				}
			}

			// release
			physiqueInterface->ReleaseContextInterface(localData);
		}

		// release
		skin->ReleaseInterface(I_PHYIMPORT, physiqueInterface);
	}


	return ok;
}