void CPersistIDNet::TraverseSubobject(CPNLBase *pObj, CContext *pContext) { CIDNet *pModel = dynamic_cast<CIDNet*>(pObj); pContext->Put(pModel->GetGraph(), "Graph"); TraverseSubobjectOfGrModel(pModel, pContext); }
// ============================================================================ int main(int argc, char* argv[]) { CIDNet* pIDNet; #ifdef CREATE_LIMID_BY_FUNCTION pIDNet = CreatePigsLIMID(); // pIDNet = CreateAppleJackLIMID(); // pIDNet = CreateOilLIMID(); // pIDNet = CreateLIMIDWith2DecInClick(); #endif #ifdef LOAD_LIMID_BY_XML pIDNet = LoadIDNetFromXML(argv[1]); #endif #ifdef IS_DUMP pIDNet->GetGraph()->Dump(); #endif CLIMIDInfEngine *pInfEng = NULL; pInfEng = CLIMIDInfEngine::Create(pIDNet); pInfEng->DoInference(); #ifdef IS_DUMP pFactorVector *Vec = pInfEng->GetPolitics(); printf("\n=====================\nPolitics are:\n"); for (int i = 0; i < Vec->size(); i++) { (*Vec)[i]->GetDistribFun()->Dump(); } float res = pInfEng->GetExpectation(); printf("\nNumber of iterations is %d", pInfEng->GetIterNum()); printf("\nExpectation is %.3f", res); #endif CLIMIDInfEngine::Release(&pInfEng); delete pIDNet; return 0; }
CIDNet* CreateRandomIDNet(int num_nodes, int num_indep_nodes, int max_size_family, int num_decision_nodes, int max_num_states_chance_nodes, int max_num_states_decision_nodes, int min_utility, int max_utility, bool is_uniform_start_policy) { PNL_CHECK_RANGES(num_decision_nodes, 1, num_nodes-1); PNL_CHECK_LEFT_BORDER(max_num_states_chance_nodes, 1); PNL_CHECK_LEFT_BORDER(max_num_states_decision_nodes, 1); PNL_CHECK_LEFT_BORDER(max_utility, min_utility); CGraph* pGraph = CreateRandomAndSpecificForIDNetGraph(num_nodes, num_indep_nodes, max_size_family); if (!pGraph->IsDAG()) { PNL_THROW(CInconsistentType, " the graph should be a DAG "); } if (!pGraph->IsTopologicallySorted()) { PNL_THROW(CInconsistentType, " the graph should be sorted topologically "); } if (pGraph->NumberOfConnectivityComponents() > 1) { PNL_THROW(CInconsistentType, " the graph should be linked "); } int i, j, k; CNodeType *nodeTypes = new CNodeType [num_nodes]; intVector nonValueNodes(0); intVector posibleDecisionNodes(0); nonValueNodes.resize(0); posibleDecisionNodes.resize(0); for (i = 0; i < num_nodes; i++) { if (pGraph->GetNumberOfChildren(i) == 0) { nodeTypes[i].SetType(1, 1, nsValue); } else { nonValueNodes.push_back(i); posibleDecisionNodes.push_back(i); } } int ind_decision_node; int num_states; int index; int node; intVector neighbors(0); neighborTypeVector neigh_types(0); num_decision_nodes = (num_decision_nodes > posibleDecisionNodes.size()) ? posibleDecisionNodes.size() : num_decision_nodes; for (i = 0; (i < num_decision_nodes) && (posibleDecisionNodes.size()>0); i++) { ind_decision_node = rand() % posibleDecisionNodes.size(); node = posibleDecisionNodes[ind_decision_node]; num_states = GetRandomNumberOfStates(max_num_states_decision_nodes); nodeTypes[node].SetType(1, num_states, nsDecision); index = -1; for (j = 0; j < nonValueNodes.size(); j++) { if (nonValueNodes[j] == node) { index = j; break; } } if (index != -1) nonValueNodes.erase(nonValueNodes.begin() + index); posibleDecisionNodes.erase(posibleDecisionNodes.begin() + ind_decision_node); pGraph->GetNeighbors(node, &neighbors, &neigh_types); for (j = 0; j < neighbors.size(); j++) { index = -1; for (k = 0; k < posibleDecisionNodes.size(); k++) { if (neighbors[j] == posibleDecisionNodes[k]) { index = k; break; } } if (index != -1) posibleDecisionNodes.erase(posibleDecisionNodes.begin() + index); } } for (i = 0; i < nonValueNodes.size(); i++) { num_states = GetRandomNumberOfStates(max_num_states_chance_nodes); nodeTypes[nonValueNodes[i]].SetType(1, num_states, nsChance); } int *nodeAssociation = new int[num_nodes]; for (i = 0; i < num_nodes; i++) { nodeAssociation[i] = i; } CIDNet *pIDNet = CIDNet::Create(num_nodes, num_nodes, nodeTypes, nodeAssociation, pGraph); pGraph = pIDNet->GetGraph(); CModelDomain* pMD = pIDNet->GetModelDomain(); CFactor **myParams = new CFactor*[num_nodes]; int *nodeNumbers = new int[num_nodes]; int **domains = new int*[num_nodes]; intVector parents(0); for (i = 0; i < num_nodes; i++) { nodeNumbers[i] = pGraph->GetNumberOfParents(i) + 1; domains[i] = new int[nodeNumbers[i]]; pGraph->GetParents(i, &parents); for (j = 0; j < parents.size(); j++) { domains[i][j] = parents[j]; } domains[i][nodeNumbers[i]-1] = i; } pIDNet->AllocFactors(); for (i = 0; i < num_nodes; i++) { myParams[i] = CTabularCPD::Create(domains[i], nodeNumbers[i], pMD); } float **data = new float*[num_nodes]; int size_data; int num_states_node; int num_blocks; intVector size_nodes(0); float belief, sum_beliefs; for (i = 0; i < num_nodes; i++) { size_data = 1; size_nodes.resize(0); for (j = 0; j < nodeNumbers[i]; j++) { size_nodes.push_back(pIDNet->GetNodeType(domains[i][j])->GetNodeSize()); size_data *= size_nodes[j]; } num_states_node = size_nodes[size_nodes.size() - 1]; num_blocks = size_data / num_states_node; data[i] = new float[size_data]; switch (pIDNet->GetNodeType(i)->GetNodeState()) { case nsChance: { for (j = 0; j < num_blocks; j++) { sum_beliefs = 0.0; for (k = 0; k < num_states_node - 1; k++) { belief = GetBelief(1.0f - sum_beliefs); data[i][j * num_states_node + k] = belief; sum_beliefs += belief; } belief = 1.0f - sum_beliefs; data[i][j * num_states_node + num_states_node - 1] = belief; } break; } case nsDecision: { if (is_uniform_start_policy) { belief = 1.0f / float(num_states_node); for (j = 0; j < num_blocks; j++) { sum_beliefs = 0.0; for (k = 0; k < num_states_node - 1; k++) { data[i][j * num_states_node + k] = belief; sum_beliefs += belief; } data[i][j * num_states_node + num_states_node - 1] = 1.0f - sum_beliefs; } } else { for (j = 0; j < num_blocks; j++) { sum_beliefs = 0.0; for (k = 0; k < num_states_node - 1; k++) { belief = GetBelief(1.0f - sum_beliefs); data[i][j * num_states_node + k] = belief; sum_beliefs += belief; } belief = 1.0f - sum_beliefs; data[i][j * num_states_node + num_states_node - 1] = belief; } } break; } case nsValue: { for (j = 0; j < num_blocks; j++) { data[i][j] = float(GetUtility(min_utility, max_utility)); } break; } } } for (i = 0; i < num_nodes; i++) { myParams[i]->AllocMatrix(data[i], matTable); pIDNet->AttachFactor(myParams[i]); } delete [] nodeTypes; delete [] nodeAssociation; return pIDNet; }