コード例 #1
0
void CTextRenderer::Translate(float x, float y, float z)
{
	CMatrix3D m;
	m.SetTranslation(x, y, z);
	m_Transform = m_Transform * m;
	m_Dirty = true;
}
コード例 #2
0
void SortModelRenderer::PrepareModels()
{
    CMatrix3D worldToCam;

    if (m->models.size() == 0)
        return;

    g_Renderer.GetViewCamera().m_Orientation.GetInverse(worldToCam);

    for(std::vector<SModel*>::iterator it = m->models.begin(); it != m->models.end(); ++it)
    {
        SModel* smdl = *it;
        CModel* model = smdl->GetModel();

        ENSURE(model->GetRenderData() == smdl);

        m->vertexRenderer->UpdateModelData(model, smdl->m_Data, smdl->m_UpdateFlags);
        smdl->m_UpdateFlags = 0;

        CVector3D modelpos = model->GetTransform().GetTranslation();

        modelpos = worldToCam.Transform(modelpos);

        smdl->m_Distance = modelpos.Z;
    }

    PROFILE_START( "sorting transparent" );
    std::sort(m->models.begin(), m->models.end(), SortModelsByDist());
    PROFILE_END( "sorting transparent" );
}
コード例 #3
0
ファイル: OverlayRenderer.cpp プロジェクト: righnatios/0ad
void OverlayRenderer::RenderSphereOverlays()
{
	PROFILE3_GPU("overlays (spheres)");

#if CONFIG2_GLES
#warning TODO: implement OverlayRenderer::RenderSphereOverlays for GLES
#else
	if (g_Renderer.GetRenderPath() != CRenderer::RP_SHADER)
		return;

	if (m->spheres.empty())
		return;

	glDisable(GL_TEXTURE_2D);
	glEnable(GL_BLEND);
	glDepthMask(0);

	glEnableClientState(GL_VERTEX_ARRAY);

	CShaderProgramPtr shader;
	CShaderTechniquePtr tech;

	tech = g_Renderer.GetShaderManager().LoadEffect(str_overlay_solid);
	tech->BeginPass();
	shader = tech->GetShader();

	m->GenerateSphere();

	shader->VertexPointer(3, GL_FLOAT, 0, &m->sphereVertexes[0]);

	for (size_t i = 0; i < m->spheres.size(); ++i)
	{
		SOverlaySphere* sphere = m->spheres[i];

		CMatrix3D transform;
		transform.SetIdentity();
		transform.Scale(sphere->m_Radius, sphere->m_Radius, sphere->m_Radius);
		transform.Translate(sphere->m_Center);

		shader->Uniform(str_transform, transform);

		shader->Uniform(str_color, sphere->m_Color);

		glDrawElements(GL_TRIANGLES, m->sphereIndexes.size(), GL_UNSIGNED_SHORT, &m->sphereIndexes[0]);

		g_Renderer.GetStats().m_DrawCalls++;
		g_Renderer.GetStats().m_OverlayTris = m->sphereIndexes.size()/3;
	}

	tech->EndPass();

	glDisableClientState(GL_VERTEX_ARRAY);

	glDepthMask(1);
	glDisable(GL_BLEND);
#endif
}
コード例 #4
0
void CTextRenderer::ResetTransform()
{
	m_Transform.SetIdentity();
	m_Transform.Scale(1.0f, -1.f, 1.0f);
	m_Transform.Translate(0.0f, (float)g_yres, -1000.0f);

	CMatrix3D proj;
	proj.SetOrtho(0.f, (float)g_xres, 0.f, (float)g_yres, -1.f, 1000.f);
	m_Transform = proj * m_Transform;
	m_Dirty = true;
}
コード例 #5
0
ファイル: ParticleEmitter.cpp プロジェクト: righnatios/0ad
void CModelParticleEmitter::SetTransform(const CMatrix3D& transform)
{
	if (m_Transform == transform)
		return;

	m_Emitter->SetPosition(transform.GetTranslation());
	m_Emitter->SetRotation(transform.GetRotation());

	// call base class to set transform on this object
	CRenderableObject::SetTransform(transform);
}
コード例 #6
0
ファイル: Camera.cpp プロジェクト: Gallaecio/0ad
void CCamera::GetScreenCoordinates(const CVector3D& world, float& x, float& y) const
{
	CMatrix3D transform = m_ProjMat * m_Orientation.GetInverse();

	CVector4D screenspace = transform.Transform(CVector4D(world.X, world.Y, world.Z, 1.0f));

	x = screenspace.m_X / screenspace.m_W;
	y = screenspace.m_Y / screenspace.m_W;
	x = (x + 1) * 0.5f * g_Renderer.GetWidth();
	y = (1 - y) * 0.5f * g_Renderer.GetHeight();
}
コード例 #7
0
ファイル: Decal.cpp プロジェクト: Gallaecio/0ad
void CModelDecal::SetTransform(const CMatrix3D& transform)
{
	// Since decals are assumed to be horizontal and projected downwards
	// onto the terrain, use just the Y-axis rotation and the translation
	CMatrix3D newTransform;
	newTransform.SetYRotation(transform.GetYRotation() + m_Decal.m_Angle);
	newTransform.Translate(transform.GetTranslation());

	CRenderableObject::SetTransform(newTransform);
	InvalidatePosition();
}
コード例 #8
0
const CBoundingBoxAligned CModel::GetObjectSelectionBoundsRec()
{
	CBoundingBoxAligned objBounds = GetObjectBounds();		// updates the (children-not-included) object-space bounds if necessary

	// now extend these bounds to include the props' selection bounds (if any)
	for (size_t i = 0; i < m_Props.size(); ++i)
	{
		const Prop& prop = m_Props[i];
		if (prop.m_Hidden)
			continue; // prop is hidden from rendering, so it also shouldn't be used for selection

		CBoundingBoxAligned propSelectionBounds = prop.m_Model->GetObjectSelectionBoundsRec();
		if (propSelectionBounds.IsEmpty())
			continue;	// submodel does not wish to participate in selection box, exclude it

		// We have the prop's bounds in its own object-space; now we need to transform them so they can be properly added 
		// to the bounds in our object-space. For that, we need the transform of the prop attachment point.
		// 
		// We have the prop point information; however, it's not trivial to compute its exact location in our object-space
		// since it may or may not be attached to a bone (see SPropPoint), which in turn may or may not be in the middle of
		// an animation. The bone matrices might be of interest, but they're really only meant to be used for the animation 
		// system and are quite opaque to use from the outside (see @ref ValidatePosition).
		// 
		// However, a nice side effect of ValidatePosition is that it also computes the absolute world-space transform of 
		// our props and sets it on their respective models. In particular, @ref ValidatePosition will compute the prop's
		// world-space transform as either
		// 
		// T' = T x	B x O
		// or 
		// T' = T x O
		// 
		// where T' is the prop's world-space transform, T is our world-space transform, O is the prop's local
		// offset/rotation matrix, and B is an optional transformation matrix of the bone the prop is attached to 
		// (taking into account animation and everything).
		// 
		// From this, it is clear that either O or B x O is the object-space transformation matrix of the prop. So,
		// all we need to do is apply our own inverse world-transform T^(-1) to T' to get our desired result. Luckily,
		// this is precomputed upon setting the transform matrix (see @ref SetTransform), so it is free to fetch.
		
		CMatrix3D propObjectTransform = prop.m_Model->GetTransform(); // T'
		propObjectTransform.Concatenate(GetInvTransform()); // T^(-1) x T'

		// Transform the prop's bounds into our object coordinate space
		CBoundingBoxAligned transformedPropSelectionBounds;
		propSelectionBounds.Transform(propObjectTransform, transformedPropSelectionBounds);

		objBounds += transformedPropSelectionBounds;
	}

	return objBounds;
}
コード例 #9
0
ファイル: CinemaManager.cpp プロジェクト: krichter722/0ad
void CCinemaManager::DrawBars() const
{
	int height = (float)g_xres / 2.39f;
	int shift = (g_yres - height) / 2;
	if (shift <= 0)
		return;

#if CONFIG2_GLES
	#warning TODO : implement bars for GLES
#else
	// Set up transform for GL bars
	glMatrixMode(GL_PROJECTION);
	glPushMatrix();
	glLoadIdentity();
	glMatrixMode(GL_MODELVIEW);
	glPushMatrix();
	glLoadIdentity();
	CMatrix3D transform;
	transform.SetOrtho(0.f, (float)g_xres, 0.f, (float)g_yres, -1.f, 1000.f);
	glLoadMatrixf(&transform._11);

	glColor4f(0.0f, 0.0f, 0.0f, 1.0f);

	glEnable(GL_BLEND);
	glDisable(GL_DEPTH_TEST);

	glBegin(GL_QUADS);
	glVertex2i(0, 0);
	glVertex2i(g_xres, 0);
	glVertex2i(g_xres, shift);
	glVertex2i(0, shift);
	glEnd();

	glBegin(GL_QUADS);
	glVertex2i(0, g_yres - shift);
	glVertex2i(g_xres, g_yres - shift);
	glVertex2i(g_xres, g_yres);
	glVertex2i(0, g_yres);
	glEnd();

	glDisable(GL_BLEND);
	glEnable(GL_DEPTH_TEST);

	// Restore transform
	glMatrixMode(GL_PROJECTION);
	glPopMatrix();
	glMatrixMode(GL_MODELVIEW);
	glPopMatrix();
#endif
}
コード例 #10
0
ファイル: TerrainRenderer.cpp プロジェクト: Gallaecio/0ad
///////////////////////////////////////////////////////////////////
// Scissor rectangle of water patches
CBoundingBoxAligned TerrainRenderer::ScissorWater(const CMatrix3D &viewproj)
{
	CBoundingBoxAligned scissor;
	for (size_t i = 0; i < m->visiblePatches.size(); ++i)
	{
		CPatchRData* data = m->visiblePatches[i];
		const CBoundingBoxAligned& waterBounds = data->GetWaterBounds();
		if (waterBounds.IsEmpty())
			continue;

		CVector4D v1 = viewproj.Transform(CVector4D(waterBounds[0].X, waterBounds[1].Y, waterBounds[0].Z, 1.0f));
		CVector4D v2 = viewproj.Transform(CVector4D(waterBounds[1].X, waterBounds[1].Y, waterBounds[0].Z, 1.0f));
		CVector4D v3 = viewproj.Transform(CVector4D(waterBounds[0].X, waterBounds[1].Y, waterBounds[1].Z, 1.0f));
		CVector4D v4 = viewproj.Transform(CVector4D(waterBounds[1].X, waterBounds[1].Y, waterBounds[1].Z, 1.0f));
		CBoundingBoxAligned screenBounds;
		#define ADDBOUND(v1, v2, v3, v4) \
			if (v1[2] >= -v1[3]) \
				screenBounds += CVector3D(v1[0], v1[1], v1[2]) * (1.0f / v1[3]); \
			else \
			{ \
				float t = v1[2] + v1[3]; \
				if (v2[2] > -v2[3]) \
				{ \
					CVector4D c2 = v1 + (v2 - v1) * (t / (t - (v2[2] + v2[3]))); \
					screenBounds += CVector3D(c2[0], c2[1], c2[2]) * (1.0f / c2[3]); \
				} \
				if (v3[2] > -v3[3]) \
				{ \
					CVector4D c3 = v1 + (v3 - v1) * (t / (t - (v3[2] + v3[3]))); \
					screenBounds += CVector3D(c3[0], c3[1], c3[2]) * (1.0f / c3[3]); \
				} \
				if (v4[2] > -v4[3]) \
				{ \
					CVector4D c4 = v1 + (v4 - v1) * (t / (t - (v4[2] + v4[3]))); \
					screenBounds += CVector3D(c4[0], c4[1], c4[2]) * (1.0f / c4[3]); \
				} \
			}
		ADDBOUND(v1, v2, v3, v4);
		ADDBOUND(v2, v1, v3, v4);
		ADDBOUND(v3, v1, v2, v4);
		ADDBOUND(v4, v1, v2, v3);
		#undef ADDBOUND
		if (screenBounds[0].X >= 1.0f || screenBounds[1].X <= -1.0f || screenBounds[0].Y >= 1.0f || screenBounds[1].Y <= -1.0f)
			continue;
		scissor += screenBounds;
	}
	return CBoundingBoxAligned(CVector3D(clamp(scissor[0].X, -1.0f, 1.0f), clamp(scissor[0].Y, -1.0f, 1.0f), -1.0f),
				  CVector3D(clamp(scissor[1].X, -1.0f, 1.0f), clamp(scissor[1].Y, -1.0f, 1.0f), 1.0f));
}
コード例 #11
0
void CBoundingBoxAligned::Transform(const CMatrix3D& transform, CBoundingBoxOriented& result) const
{
	// The idea is this: compute the corners of this bounding box, transform them according to the specified matrix,
	// then derive the box center, orientation vectors, and half-sizes.
	// TODO: this implementation can be further optimized; see Philip's comments on http://trac.wildfiregames.com/ticket/914
	const CVector3D& pMin = m_Data[0];
	const CVector3D& pMax = m_Data[1];

	// Find the corners of these bounds. We only need some of the corners to derive the information we need, so let's 
	// not actually compute all of them. The corners are numbered starting from the minimum position (m_Data[0]), going
	// counter-clockwise in the bottom plane, and then in the same order for the top plane (starting from the corner
	// that's directly above the minimum position). Hence, corner0 is pMin and corner6 is pMax, so we don't need to
	// custom-create those.
	
	CVector3D corner0; // corner0 is pMin, no need to copy it
	CVector3D corner1(pMax.X, pMin.Y, pMin.Z);
	CVector3D corner3(pMin.X, pMin.Y, pMax.Z);
	CVector3D corner4(pMin.X, pMax.Y, pMin.Z);
	CVector3D corner6; // corner6 is pMax, no need to copy it

	// transform corners to world space
	corner0 = transform.Transform(pMin); // = corner0
	corner1 = transform.Transform(corner1);
	corner3 = transform.Transform(corner3);
	corner4 = transform.Transform(corner4);
	corner6 = transform.Transform(pMax); // = corner6

	// Compute orientation vectors, half-size vector, and box center. We can get the orientation vectors by just taking
	// the directional vectors from a specific corner point (corner0) to the other corners, once in each direction. The
	// half-sizes are similarly computed by taking the distances of those sides and dividing them by 2. Finally, the 
	// center is simply the middle between the transformed pMin and pMax corners.

	const CVector3D sideU(corner1 - corner0);
	const CVector3D sideV(corner4 - corner0);
	const CVector3D sideW(corner3 - corner0);

	result.m_Basis[0] = sideU.Normalized();
	result.m_Basis[1] = sideV.Normalized();
	result.m_Basis[2] = sideW.Normalized();

	result.m_HalfSizes = CVector3D(
		sideU.Length()/2.f,
		sideV.Length()/2.f,
		sideW.Length()/2.f
	);

	result.m_Center = (corner0 + corner6) * 0.5f;
}
コード例 #12
0
ファイル: CCmpPosition.cpp プロジェクト: Gallaecio/0ad
	virtual CMatrix3D GetInterpolatedTransform(float frameOffset, bool forceFloating)
	{
		if (!m_InWorld)
		{
			LOGERROR(L"CCmpPosition::GetInterpolatedTransform called on entity when IsInWorld is false");
			CMatrix3D m;
			m.SetIdentity();
			return m;
		}

		float x, z, rotY;
		GetInterpolatedPosition2D(frameOffset, x, z, rotY);

		float baseY = 0;
		if (m_RelativeToGround)
		{
			CmpPtr<ICmpTerrain> cmpTerrain(GetSimContext(), SYSTEM_ENTITY);
			if (cmpTerrain)
				baseY = cmpTerrain->GetExactGroundLevel(x, z);

			if (m_Floating || forceFloating)
			{
				CmpPtr<ICmpWaterManager> cmpWaterManager(GetSimContext(), SYSTEM_ENTITY);
				if (cmpWaterManager)
					baseY = std::max(baseY, cmpWaterManager->GetExactWaterLevel(x, z));
			}
		}

		float y = baseY + m_YOffset.ToFloat();

		// TODO: do something with m_AnchorType

		CMatrix3D m;
		CMatrix3D mXZ;
		float Cos = cosf(rotY);
		float Sin = sinf(rotY);

		m.SetIdentity();
		m._11 = -Cos;
		m._13 = -Sin;
		m._31 = Sin;
		m._33 = -Cos;

		mXZ.SetIdentity();
		mXZ.SetXRotation(m_RotX.ToFloat());
		mXZ.RotateZ(m_RotZ.ToFloat());
		// TODO: is this all done in the correct order?
		mXZ = m * mXZ;
		mXZ.Translate(CVector3D(x, y, z));

		return mXZ;
	}
コード例 #13
0
ファイル: TerrainOverlay.cpp プロジェクト: TiriliPiitPiit/0ad
void TerrainTextureOverlay::RenderAfterWater()
{
	CTerrain* terrain = g_Game->GetWorld()->GetTerrain();

	ssize_t w = (ssize_t)(terrain->GetTilesPerSide() * m_TexelsPerTile);
	ssize_t h = (ssize_t)(terrain->GetTilesPerSide() * m_TexelsPerTile);

	pglActiveTextureARB(GL_TEXTURE0);

	// Recreate the texture with new size if necessary
	if (round_up_to_pow2(w) != m_TextureW || round_up_to_pow2(h) != m_TextureH)
	{
		m_TextureW = round_up_to_pow2(w);
		m_TextureH = round_up_to_pow2(h);

		glBindTexture(GL_TEXTURE_2D, m_Texture);
		glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, m_TextureW, m_TextureH, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);

		glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
		glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
		glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
		glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
	}

	u8* data = (u8*)calloc(w * h, 4);
	BuildTextureRGBA(data, w, h);

	glBindTexture(GL_TEXTURE_2D, m_Texture);
	glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, w, h, GL_RGBA, GL_UNSIGNED_BYTE, data);

	free(data);

	CMatrix3D matrix;
	matrix.SetZero();
	matrix._11 = m_TexelsPerTile / (m_TextureW * TERRAIN_TILE_SIZE);
	matrix._23 = m_TexelsPerTile / (m_TextureH * TERRAIN_TILE_SIZE);
	matrix._44 = 1;

	g_Renderer.GetTerrainRenderer().RenderTerrainOverlayTexture(matrix);
}
コード例 #14
0
ファイル: CConsole.cpp プロジェクト: 2asoft/0ad
//Render Manager.
void CConsole::Render()
{
	if (! (m_bVisible || m_bToggle) ) return;

	PROFILE3_GPU("console");

	glEnable(GL_BLEND);
	glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

	CShaderTechniquePtr solidTech = g_Renderer.GetShaderManager().LoadEffect(str_gui_solid);
	solidTech->BeginPass();
	CShaderProgramPtr solidShader = solidTech->GetShader();

	CMatrix3D transform = GetDefaultGuiMatrix();

	// animation: slide in from top of screen
	const float DeltaY = (1.0f - m_fVisibleFrac) * m_fHeight;
	transform.PostTranslate(m_fX, m_fY - DeltaY, 0.0f); // move to window position
	solidShader->Uniform(str_transform, transform);

	DrawWindow(solidShader);

	solidTech->EndPass();

	CShaderTechniquePtr textTech = g_Renderer.GetShaderManager().LoadEffect(str_gui_text);
	textTech->BeginPass();
	CTextRenderer textRenderer(textTech->GetShader());
	textRenderer.Font(CStrIntern(CONSOLE_FONT));
	textRenderer.SetTransform(transform);

	DrawHistory(textRenderer);
	DrawBuffer(textRenderer);

	textRenderer.Render();

	textTech->EndPass();

	glDisable(GL_BLEND);
}
コード例 #15
0
void CGameView::ResetCameraTarget(const CVector3D& target)
{
	CMatrix3D orientation;
	orientation.SetIdentity();
	orientation.RotateX(DEGTORAD(m->ViewRotateXDefault));
	orientation.RotateY(DEGTORAD(m->ViewRotateYDefault));

	CVector3D delta = orientation.GetIn() * m->ViewZoomDefault;
	m->PosX.SetValue(target.X - delta.X);
	m->PosY.SetValue(target.Y - delta.Y);
	m->PosZ.SetValue(target.Z - delta.Z);
	m->RotateX.SetValue(DEGTORAD(m->ViewRotateXDefault));
	m->RotateY.SetValue(DEGTORAD(m->ViewRotateYDefault));
	m->Zoom.SetValue(m->ViewZoomDefault);

	FocusHeight(m, false);

	SetupCameraMatrixSmooth(m, &m->ViewCamera.m_Orientation);
	m->ViewCamera.UpdateFrustum();

	// Break out of following mode so the camera really moves to the target
	m->FollowEntity = INVALID_ENTITY;
}
コード例 #16
0
ファイル: GUIutil.cpp プロジェクト: Marlinc/0ad
CMatrix3D GetDefaultGuiMatrix()
{
	CMatrix3D m;
	m.SetIdentity();
	m.Scale(1.0f, -1.f, 1.0f);
	m.Translate(0.0f, (float)g_yres, -1000.0f);

	CMatrix3D proj;
	proj.SetOrtho(0.f, (float)g_xres, 0.f, (float)g_yres, -1.f, 1000.f);
	m = proj * m;

	return m;
}
コード例 #17
0
float PSModel::BackToFrontIndexSort(const CMatrix3D& worldToCam)
{
    static std::vector<IntFloatPair> IndexSorter;

    CModelDefPtr mdef = m_Model->GetModelDef();
    size_t numFaces = mdef->GetNumFaces();
    const SModelFace* faces = mdef->GetFaces();

    if (IndexSorter.size() < numFaces)
        IndexSorter.resize(numFaces);

    VertexArrayIterator<CVector3D> Position = m_Position.GetIterator<CVector3D>();
    CVector3D tmpvtx;

    for(size_t i = 0; i < numFaces; ++i)
    {
        tmpvtx = Position[faces[i].m_Verts[0]];
        tmpvtx += Position[faces[i].m_Verts[1]];
        tmpvtx += Position[faces[i].m_Verts[2]];
        tmpvtx *= 1.0f/3.0f;

        tmpvtx = worldToCam.Transform(tmpvtx);
        float distsqrd = SQR(tmpvtx.X)+SQR(tmpvtx.Y)+SQR(tmpvtx.Z);

        IndexSorter[i].first = (int)i;
        IndexSorter[i].second = distsqrd;
    }

    std::sort(IndexSorter.begin(),IndexSorter.begin()+numFaces,SortFacesByDist());

    // now build index list
    size_t idxidx = 0;
    for (size_t i = 0; i < numFaces; ++i) {
        const SModelFace& face = faces[IndexSorter[i].first];
        m_Indices[idxidx++] = (u16)(face.m_Verts[0]);
        m_Indices[idxidx++] = (u16)(face.m_Verts[1]);
        m_Indices[idxidx++] = (u16)(face.m_Verts[2]);
    }

    return IndexSorter[0].second;
}
コード例 #18
0
ファイル: CCmpPosition.cpp プロジェクト: temirio/0ad
	virtual CMatrix3D GetInterpolatedTransform(float frameOffset, bool forceFloating)
	{
		if (!m_InWorld)
		{
			LOGERROR(L"CCmpPosition::GetInterpolatedTransform called on entity when IsInWorld is false");
			CMatrix3D m;
			m.SetIdentity();
			return m;
		}

		float x, z, rotY;
		GetInterpolatedPosition2D(frameOffset, x, z, rotY);

		float baseY = 0;
		if (m_RelativeToGround)
		{
			CmpPtr<ICmpTerrain> cmpTerrain(GetSimContext(), SYSTEM_ENTITY);
			if (cmpTerrain)
				baseY = cmpTerrain->GetExactGroundLevel(x, z);

			if (m_Floating || forceFloating)
			{
				CmpPtr<ICmpWaterManager> cmpWaterManager(GetSimContext(), SYSTEM_ENTITY);
				if (cmpWaterManager)
					baseY = std::max(baseY, cmpWaterManager->GetExactWaterLevel(x, z));
			}
		}

		float y = baseY + m_YOffset.ToFloat();

		CMatrix3D m;
		
		// linear interpolation is good enough (for RotX/Z). 
		// As you always stay close to zero angle.	
		m.SetXRotation(Interpolate(m_LastInterpolatedRotX, m_InterpolatedRotX, frameOffset));
		m.RotateZ(Interpolate(m_LastInterpolatedRotZ, m_InterpolatedRotZ, frameOffset));
	
		m.RotateY(rotY + (float)M_PI);
		m.Translate(CVector3D(x, y, z));
		
		return m;
	}
コード例 #19
0
ファイル: Render.cpp プロジェクト: 2asoft/0ad
void SimRender::ConstructAxesMarker(const CMatrix3D& coordSystem, SOverlayLine& outX, SOverlayLine& outY, SOverlayLine& outZ)
{
	outX.m_Coords.clear();
	outY.m_Coords.clear();
	outZ.m_Coords.clear();

	outX.m_Color = CColor(1, 0, 0, .5f); // X axis; red
	outY.m_Color = CColor(0, 1, 0, .5f); // Y axis; green
	outZ.m_Color = CColor(0, 0, 1, .5f); // Z axis; blue

	outX.m_Thickness = 2;
	outY.m_Thickness = 2;
	outZ.m_Thickness = 2;

	CVector3D origin = coordSystem.GetTranslation();
	outX.PushCoords(origin);
	outY.PushCoords(origin);
	outZ.PushCoords(origin);

	outX.PushCoords(origin + CVector3D(coordSystem(0,0), coordSystem(1,0), coordSystem(2,0)));
	outY.PushCoords(origin + CVector3D(coordSystem(0,1), coordSystem(1,1), coordSystem(2,1)));
	outZ.PushCoords(origin + CVector3D(coordSystem(0,2), coordSystem(1,2), coordSystem(2,2)));
}
コード例 #20
0
ファイル: View.cpp プロジェクト: Moralitycore/0ad
void AtlasViewGame::DrawOverlays()
{
#if CONFIG2_GLES
#warning TODO: implement Atlas game overlays for GLES
#else
	// Set up transform for overlays
	glMatrixMode(GL_PROJECTION);
	glPushMatrix();
	glLoadIdentity();
	glMatrixMode(GL_MODELVIEW);
	glPushMatrix();
	glLoadIdentity();
	CMatrix3D transform;
	transform.SetIdentity();
	transform.Scale(1.0f, -1.f, 1.0f);
	transform.Translate(0.0f, (float)g_yres, -1000.0f);
	CMatrix3D proj;
	proj.SetOrtho(0.f, (float)g_xres, 0.f, (float)g_yres, -1.f, 1000.f);
	transform = proj * transform;
	glLoadMatrixf(&transform._11);

	if (m_BandboxArray.size() > 0)
	{
		glEnableClientState(GL_COLOR_ARRAY);
		glEnableClientState(GL_VERTEX_ARRAY);

		// Render bandbox as array of lines
		glVertexPointer(2, GL_FLOAT, sizeof(SBandboxVertex), &m_BandboxArray[0].x);
		glColorPointer(4, GL_UNSIGNED_BYTE, sizeof(SBandboxVertex), &m_BandboxArray[0].r);

		glDrawArrays(GL_LINES, 0, m_BandboxArray.size());

		glDisableClientState(GL_VERTEX_ARRAY);
		glDisableClientState(GL_COLOR_ARRAY);
	}

	glMatrixMode(GL_PROJECTION);
	glPopMatrix();
	glMatrixMode(GL_MODELVIEW);
	glPopMatrix();
#endif
}
コード例 #21
0
ファイル: CCmpPosition.cpp プロジェクト: 2asoft/0ad
	virtual CMatrix3D GetInterpolatedTransform(float frameOffset)
	{
		if (m_TurretParent != INVALID_ENTITY)
		{
			CmpPtr<ICmpPosition> cmpPosition(GetSimContext(), m_TurretParent);
			if (!cmpPosition)
			{
				LOGERROR("Turret with parent without position component");
				CMatrix3D m;
				m.SetIdentity();
				return m;
			}
			if (!cmpPosition->IsInWorld())
			{
				LOGERROR("CCmpPosition::GetInterpolatedTransform called on turret entity when IsInWorld is false");
				CMatrix3D m;
				m.SetIdentity();
				return m;
			}
			else
			{
				CMatrix3D parentTransformMatrix = cmpPosition->GetInterpolatedTransform(frameOffset);
				CMatrix3D ownTransformation = CMatrix3D();
				ownTransformation.SetYRotation(m_InterpolatedRotY);
				ownTransformation.Translate(-m_TurretPosition.X.ToFloat(), m_TurretPosition.Y.ToFloat(), -m_TurretPosition.Z.ToFloat());
				return parentTransformMatrix * ownTransformation;
			}
		}
		if (!m_InWorld)
		{
			LOGERROR("CCmpPosition::GetInterpolatedTransform called on entity when IsInWorld is false");
			CMatrix3D m;
			m.SetIdentity();
			return m;
		}

		float x, z, rotY;
		GetInterpolatedPosition2D(frameOffset, x, z, rotY);


		float baseY = 0;
		if (m_RelativeToGround)
		{
			CmpPtr<ICmpTerrain> cmpTerrain(GetSystemEntity());
			if (cmpTerrain)
				baseY = cmpTerrain->GetExactGroundLevel(x, z);

			if (m_Floating || m_ActorFloating)
			{
				CmpPtr<ICmpWaterManager> cmpWaterManager(GetSystemEntity());
				if (cmpWaterManager)
					baseY = std::max(baseY, cmpWaterManager->GetExactWaterLevel(x, z));
			}
		}

		float y = baseY + m_Y.ToFloat() + Interpolate(-1 * m_LastYDifference.ToFloat(), 0.f, frameOffset);

		CMatrix3D m;

		// linear interpolation is good enough (for RotX/Z).
		// As you always stay close to zero angle.
		m.SetXRotation(Interpolate(m_LastInterpolatedRotX, m_InterpolatedRotX, frameOffset));
		m.RotateZ(Interpolate(m_LastInterpolatedRotZ, m_InterpolatedRotZ, frameOffset));

		CVector3D pos(x, y, z);

		pos.Y += GetConstructionProgressOffset(pos);

		m.RotateY(rotY + (float)M_PI);
		m.Translate(pos);

		return m;
	}
コード例 #22
0
ファイル: ProfileViewer.cpp プロジェクト: Rektosauros/0ad
// Render
void CProfileViewer::RenderProfile()
{
	if (!m->profileVisible)
		return;

	if (!m->path.size())
	{
		m->profileVisible = false;
		return;
	}

	PROFILE3_GPU("profile viewer");

	glEnable(GL_BLEND);
	glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

	AbstractProfileTable* table = m->path[m->path.size() - 1];
	const std::vector<ProfileColumn>& columns = table->GetColumns();
	size_t numrows = table->GetNumberRows();

	CStrIntern font_name("mono-stroke-10");
	CFontMetrics font(font_name);
	int lineSpacing = font.GetLineSpacing();

	// Render background
	GLint estimate_height;
	GLint estimate_width;

	estimate_width = 50;
	for(size_t i = 0; i < columns.size(); ++i)
		estimate_width += (GLint)columns[i].width;

	estimate_height = 3 + (GLint)numrows;
	if (m->path.size() > 1)
		estimate_height += 2;
	estimate_height = lineSpacing*estimate_height;

	CShaderTechniquePtr solidTech = g_Renderer.GetShaderManager().LoadEffect(str_gui_solid);
	solidTech->BeginPass();
	CShaderProgramPtr solidShader = solidTech->GetShader();

	solidShader->Uniform(str_color, 0.0f, 0.0f, 0.0f, 0.5f);

	CMatrix3D transform = GetDefaultGuiMatrix();
	solidShader->Uniform(str_transform, transform);

	float backgroundVerts[] = {
		(float)estimate_width, 0.0f,
		0.0f, 0.0f,
		0.0f, (float)estimate_height,
		0.0f, (float)estimate_height,
		(float)estimate_width, (float)estimate_height,
		(float)estimate_width, 0.0f
	};
	solidShader->VertexPointer(2, GL_FLOAT, 0, backgroundVerts);
	solidShader->AssertPointersBound();
	glDrawArrays(GL_TRIANGLES, 0, 6);

	transform.PostTranslate(22.0f, lineSpacing*3.0f, 0.0f);
	solidShader->Uniform(str_transform, transform);

	// Draw row backgrounds
	for (size_t row = 0; row < numrows; ++row)
	{
		if (row % 2)
			solidShader->Uniform(str_color, 1.0f, 1.0f, 1.0f, 0.1f);
		else
			solidShader->Uniform(str_color, 0.0f, 0.0f, 0.0f, 0.1f);

		float rowVerts[] = {
			-22.f, 2.f,
			estimate_width-22.f, 2.f,
			estimate_width-22.f, 2.f-lineSpacing,

			estimate_width-22.f, 2.f-lineSpacing,
			-22.f, 2.f-lineSpacing,
			-22.f, 2.f
		};
		solidShader->VertexPointer(2, GL_FLOAT, 0, rowVerts);
		solidShader->AssertPointersBound();
		glDrawArrays(GL_TRIANGLES, 0, 6);

		transform.PostTranslate(0.0f, lineSpacing, 0.0f);
		solidShader->Uniform(str_transform, transform);
	}

	solidTech->EndPass();

	// Print table and column titles

	CShaderTechniquePtr textTech = g_Renderer.GetShaderManager().LoadEffect(str_gui_text);
	textTech->BeginPass();

	CTextRenderer textRenderer(textTech->GetShader());
	textRenderer.Font(font_name);
	textRenderer.Color(1.0f, 1.0f, 1.0f);

	textRenderer.PrintfAt(2.0f, lineSpacing, L"%hs", table->GetTitle().c_str());

	textRenderer.Translate(22.0f, lineSpacing*2.0f, 0.0f);

	float colX = 0.0f;
	for (size_t col = 0; col < columns.size(); ++col)
	{
		CStrW text = columns[col].title.FromUTF8();
		int w, h;
		font.CalculateStringSize(text.c_str(), w, h);

		float x = colX;
		if (col > 0) // right-align all but the first column
			x += columns[col].width - w;
		textRenderer.Put(x, 0.0f, text.c_str());
		
		colX += columns[col].width;
	}

	textRenderer.Translate(0.0f, lineSpacing, 0.0f);

	// Print rows
	int currentExpandId = 1;

	for (size_t row = 0; row < numrows; ++row)
	{
		if (table->IsHighlightRow(row))
			textRenderer.Color(1.0f, 0.5f, 0.5f);
		else
			textRenderer.Color(1.0f, 1.0f, 1.0f);

		if (table->GetChild(row))
		{
			textRenderer.PrintfAt(-15.0f, 0.0f, L"%d", currentExpandId);
			currentExpandId++;
		}

		float colX = 0.0f;
		for (size_t col = 0; col < columns.size(); ++col)
		{
			CStrW text = table->GetCellText(row, col).FromUTF8();
			int w, h;
			font.CalculateStringSize(text.c_str(), w, h);

			float x = colX;
			if (col > 0) // right-align all but the first column
				x += columns[col].width - w;
			textRenderer.Put(x, 0.0f, text.c_str());

			colX += columns[col].width;
		}

		textRenderer.Translate(0.0f, lineSpacing, 0.0f);
	}

	textRenderer.Color(1.0f, 1.0f, 1.0f);

	if (m->path.size() > 1)
	{
		textRenderer.Translate(0.0f, lineSpacing, 0.0f);
		textRenderer.Put(-15.0f, 0.0f, L"0");
		textRenderer.Put(0.0f, 0.0f, L"back to parent");
	}

	textRenderer.Render();
	textTech->EndPass();

	glDisable(GL_BLEND);

	glEnable(GL_DEPTH_TEST);
}
コード例 #23
0
void Render()
{
	PROFILE3("render");

	if (g_SoundManager)
		g_SoundManager->IdleTask();

	ogl_WarnIfError();

	g_Profiler2.RecordGPUFrameStart();

	ogl_WarnIfError();

	// prepare before starting the renderer frame
	if (g_Game && g_Game->IsGameStarted())
		g_Game->GetView()->BeginFrame();

	if (g_Game)
		g_Renderer.SetSimulation(g_Game->GetSimulation2());

	// start new frame
	g_Renderer.BeginFrame();

	ogl_WarnIfError();

	if (g_Game && g_Game->IsGameStarted())
		g_Game->GetView()->Render();

	ogl_WarnIfError();

	g_Renderer.RenderTextOverlays();

	if (g_DoRenderGui)
		g_GUI->Draw();

	ogl_WarnIfError();

	// If we're in Atlas game view, render special overlays (e.g. editor bandbox)
	if (g_AtlasGameLoop && g_AtlasGameLoop->view)
	{
		g_AtlasGameLoop->view->DrawOverlays();
		ogl_WarnIfError();
	}

	// Text:

 	glDisable(GL_DEPTH_TEST);

	g_Console->Render();

	ogl_WarnIfError();

	if (g_DoRenderLogger)
		g_Logger->Render();

	ogl_WarnIfError();

	// Profile information

	g_ProfileViewer.RenderProfile();

	ogl_WarnIfError();

	// Draw the cursor (or set the Windows cursor, on Windows)
	if (g_DoRenderCursor)
	{
		PROFILE3_GPU("cursor");
		CStrW cursorName = g_CursorName;
		if (cursorName.empty())
		{
			cursor_draw(g_VFS, NULL, g_mouse_x, g_yres-g_mouse_y, false);
		}
		else
		{
			bool forceGL = false;
			CFG_GET_VAL("nohwcursor", forceGL);

#if CONFIG2_GLES
#warning TODO: implement cursors for GLES
#else
			// set up transform for GL cursor
			glMatrixMode(GL_PROJECTION);
			glPushMatrix();
			glLoadIdentity();
			glMatrixMode(GL_MODELVIEW);
			glPushMatrix();
			glLoadIdentity();
			CMatrix3D transform;
			transform.SetOrtho(0.f, (float)g_xres, 0.f, (float)g_yres, -1.f, 1000.f);
			glLoadMatrixf(&transform._11);
#endif

#if OS_ANDROID
#warning TODO: cursors for Android
#else
			if (cursor_draw(g_VFS, cursorName.c_str(), g_mouse_x, g_yres-g_mouse_y, forceGL) < 0)
				LOGWARNING("Failed to draw cursor '%s'", utf8_from_wstring(cursorName));
#endif

#if CONFIG2_GLES
#warning TODO: implement cursors for GLES
#else
			// restore transform
			glMatrixMode(GL_PROJECTION);
			glPopMatrix();
			glMatrixMode(GL_MODELVIEW);
			glPopMatrix();
#endif
		}
	}

	glEnable(GL_DEPTH_TEST);

	g_Renderer.EndFrame();

	PROFILE2_ATTR("draw calls: %d", (int)g_Renderer.GetStats().m_DrawCalls);
	PROFILE2_ATTR("terrain tris: %d", (int)g_Renderer.GetStats().m_TerrainTris);
	PROFILE2_ATTR("water tris: %d", (int)g_Renderer.GetStats().m_WaterTris);
	PROFILE2_ATTR("model tris: %d", (int)g_Renderer.GetStats().m_ModelTris);
	PROFILE2_ATTR("overlay tris: %d", (int)g_Renderer.GetStats().m_OverlayTris);
	PROFILE2_ATTR("blend splats: %d", (int)g_Renderer.GetStats().m_BlendSplats);
	PROFILE2_ATTR("particles: %d", (int)g_Renderer.GetStats().m_Particles);

	ogl_WarnIfError();

	g_Profiler2.RecordGPUFrameEnd();

	ogl_WarnIfError();
}
コード例 #24
0
ファイル: MiniMap.cpp プロジェクト: bdnaor/0ad
// TODO: render the minimap in a framebuffer and just draw the frambuffer texture
//	most of the time, updating the framebuffer twice a frame.
// Here it updates as ping-pong either texture or vertex array each sec to lower gpu stalling
// (those operations cause a gpu sync, which slows down the way gpu works)
void CMiniMap::Draw()
{
	PROFILE3("render minimap");

	// The terrain isn't actually initialized until the map is loaded, which
	// happens when the game is started, so abort until then.
	if (!(GetGUI() && g_Game && g_Game->IsGameStarted()))
		return;

	CSimulation2* sim = g_Game->GetSimulation2();
	CmpPtr<ICmpRangeManager> cmpRangeManager(*sim, SYSTEM_ENTITY);
	ENSURE(cmpRangeManager);

	// Set our globals in case they hadn't been set before
	m_Camera = g_Game->GetView()->GetCamera();
	m_Terrain = g_Game->GetWorld()->GetTerrain();
	m_Width  = (u32)(m_CachedActualSize.right - m_CachedActualSize.left);
	m_Height = (u32)(m_CachedActualSize.bottom - m_CachedActualSize.top);
	m_MapSize = m_Terrain->GetVerticesPerSide();
	m_TextureSize = (GLsizei)round_up_to_pow2((size_t)m_MapSize);
	m_MapScale = (cmpRangeManager->GetLosCircular() ? 1.f : 1.414f);

	if (!m_TerrainTexture || g_GameRestarted)
		CreateTextures();


	// only update 2x / second
	// (note: since units only move a few pixels per second on the minimap,
	// we can get away with infrequent updates; this is slow)
	// TODO: Update all but camera at same speed as simulation
	static double last_time;
	const double cur_time = timer_Time();
	const bool doUpdate = cur_time - last_time > 0.5;
	if (doUpdate)
	{
		last_time = cur_time;
		if (m_TerrainDirty)
			RebuildTerrainTexture();
	}

	const float x = m_CachedActualSize.left, y = m_CachedActualSize.bottom;
	const float x2 = m_CachedActualSize.right, y2 = m_CachedActualSize.top;
	const float z = GetBufferedZ();
	const float texCoordMax = (float)(m_MapSize - 1) / (float)m_TextureSize;
	const float angle = GetAngle();
	const float unitScale = (cmpRangeManager->GetLosCircular() ? 1.f : m_MapScale/2.f);

	// Disable depth updates to prevent apparent z-fighting-related issues
	//  with some drivers causing units to get drawn behind the texture.
	glDepthMask(0);

	CShaderProgramPtr shader;
	CShaderTechniquePtr tech;

	CShaderDefines baseDefines;
	baseDefines.Add(str_MINIMAP_BASE, str_1);
	tech = g_Renderer.GetShaderManager().LoadEffect(str_minimap, g_Renderer.GetSystemShaderDefines(), baseDefines);
	tech->BeginPass();
	shader = tech->GetShader();

	// Draw the main textured quad
	shader->BindTexture(str_baseTex, m_TerrainTexture);
	const CMatrix3D baseTransform = GetDefaultGuiMatrix();
	CMatrix3D baseTextureTransform;
	baseTextureTransform.SetIdentity();
	shader->Uniform(str_transform, baseTransform);
	shader->Uniform(str_textureTransform, baseTextureTransform);

	DrawTexture(shader, texCoordMax, angle, x, y, x2, y2, z);

	// Draw territory boundaries
	glEnable(GL_BLEND);

	CTerritoryTexture& territoryTexture = g_Game->GetView()->GetTerritoryTexture();

	shader->BindTexture(str_baseTex, territoryTexture.GetTexture());
	const CMatrix3D* territoryTransform = territoryTexture.GetMinimapTextureMatrix();
	shader->Uniform(str_transform, baseTransform);
	shader->Uniform(str_textureTransform, *territoryTransform);

	DrawTexture(shader, 1.0f, angle, x, y, x2, y2, z);
	tech->EndPass();

	// Draw the LOS quad in black, using alpha values from the LOS texture
	CLOSTexture& losTexture = g_Game->GetView()->GetLOSTexture();

	CShaderDefines losDefines;
	losDefines.Add(str_MINIMAP_LOS, str_1);
	tech = g_Renderer.GetShaderManager().LoadEffect(str_minimap, g_Renderer.GetSystemShaderDefines(), losDefines);
	tech->BeginPass();
	shader = tech->GetShader();
	shader->BindTexture(str_baseTex, losTexture.GetTexture());

	glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

	const CMatrix3D* losTransform = losTexture.GetMinimapTextureMatrix();
	shader->Uniform(str_transform, baseTransform);
	shader->Uniform(str_textureTransform, *losTransform);

	DrawTexture(shader, 1.0f, angle, x, y, x2, y2, z);
	tech->EndPass();

	glDisable(GL_BLEND);

	PROFILE_START("minimap units");

	CShaderDefines pointDefines;
	pointDefines.Add(str_MINIMAP_POINT, str_1);
	tech = g_Renderer.GetShaderManager().LoadEffect(str_minimap, g_Renderer.GetSystemShaderDefines(), pointDefines);
	tech->BeginPass();
	shader = tech->GetShader();
	shader->Uniform(str_transform, baseTransform);
	shader->Uniform(str_pointSize, 3.f);

	CMatrix3D unitMatrix;
	unitMatrix.SetIdentity();
	// Center the minimap on the origin of the axis of rotation.
	unitMatrix.Translate(-(x2 - x) / 2.f, -(y2 - y) / 2.f, 0.f);
	// Rotate the map.
	unitMatrix.RotateZ(angle);
	// Scale square maps to fit.
	unitMatrix.Scale(unitScale, unitScale, 1.f);
	// Move the minimap back to it's starting position.
	unitMatrix.Translate((x2 - x) / 2.f, (y2 - y) / 2.f, 0.f);
	// Move the minimap to it's final location.
	unitMatrix.Translate(x, y, z);
	// Apply the gui matrix.
	unitMatrix *= GetDefaultGuiMatrix();
	// Load the transform into the shader.
	shader->Uniform(str_transform, unitMatrix);

	const float sx = (float)m_Width / ((m_MapSize - 1) * TERRAIN_TILE_SIZE);
	const float sy = (float)m_Height / ((m_MapSize - 1) * TERRAIN_TILE_SIZE);

	CSimulation2::InterfaceList ents = sim->GetEntitiesWithInterface(IID_Minimap);

	if (doUpdate)
	{
		VertexArrayIterator<float[2]> attrPos = m_AttributePos.GetIterator<float[2]>();
		VertexArrayIterator<u8[4]> attrColor = m_AttributeColor.GetIterator<u8[4]>();

		m_EntitiesDrawn = 0;
		MinimapUnitVertex v;
		std::vector<MinimapUnitVertex> pingingVertices;
		pingingVertices.reserve(MAX_ENTITIES_DRAWN / 2);

		if (cur_time > m_NextBlinkTime)
		{
			m_BlinkState = !m_BlinkState;
			m_NextBlinkTime = cur_time + m_HalfBlinkDuration;
		}

		entity_pos_t posX, posZ;
		for (CSimulation2::InterfaceList::const_iterator it = ents.begin(); it != ents.end(); ++it)
		{
			ICmpMinimap* cmpMinimap = static_cast<ICmpMinimap*>(it->second);
			if (cmpMinimap->GetRenderData(v.r, v.g, v.b, posX, posZ))
			{
				ICmpRangeManager::ELosVisibility vis = cmpRangeManager->GetLosVisibility(it->first, g_Game->GetPlayerID());
				if (vis != ICmpRangeManager::VIS_HIDDEN)
				{
					v.a = 255;
					v.x = posX.ToFloat() * sx;
					v.y = -posZ.ToFloat() * sy;

					// Check minimap pinging to indicate something
					if (m_BlinkState && cmpMinimap->CheckPing(cur_time, m_PingDuration))
					{
						v.r = 255; // ping color is white
						v.g = 255;
						v.b = 255;
						pingingVertices.push_back(v);
					}
					else
					{
						addVertex(v, attrColor, attrPos);
						++m_EntitiesDrawn;
					}
				}
			}
		}

		// Add the pinged vertices at the end, so they are drawn on top
		for (size_t v = 0; v < pingingVertices.size(); ++v)
		{
			addVertex(pingingVertices[v], attrColor, attrPos);
			++m_EntitiesDrawn;
		}

		ENSURE(m_EntitiesDrawn < MAX_ENTITIES_DRAWN);
		m_VertexArray.Upload();
	}

	m_VertexArray.PrepareForRendering();

	if (m_EntitiesDrawn > 0)
	{
#if !CONFIG2_GLES
		if (g_Renderer.GetRenderPath() == CRenderer::RP_SHADER)
			glEnable(GL_VERTEX_PROGRAM_POINT_SIZE);
#endif

		u8* indexBase = m_IndexArray.Bind();
		u8* base = m_VertexArray.Bind();
		const GLsizei stride = (GLsizei)m_VertexArray.GetStride();

		shader->VertexPointer(2, GL_FLOAT, stride, base + m_AttributePos.offset);
		shader->ColorPointer(4, GL_UNSIGNED_BYTE, stride, base + m_AttributeColor.offset);
		shader->AssertPointersBound();

		if (!g_Renderer.m_SkipSubmit)
			glDrawElements(GL_POINTS, (GLsizei)(m_EntitiesDrawn), GL_UNSIGNED_SHORT, indexBase);

		g_Renderer.GetStats().m_DrawCalls++;
		CVertexBuffer::Unbind();

#if !CONFIG2_GLES
		if (g_Renderer.GetRenderPath() == CRenderer::RP_SHADER)
			glDisable(GL_VERTEX_PROGRAM_POINT_SIZE);
#endif
	}

	tech->EndPass();

	DrawViewRect(unitMatrix);

	PROFILE_END("minimap units");

	// Reset depth mask
	glDepthMask(1);
}
コード例 #25
0
ファイル: ParticleEmitter.cpp プロジェクト: stonefruit/0ad
void CModelParticleEmitter::SetTransform(const CMatrix3D& transform)
{
	m_Emitter->SetPosition(transform.GetTranslation());
}
コード例 #26
0
void CGameView::Update(const float deltaRealTime)
{
	// If camera movement is being handled by the touch-input system,
	// then we should stop to avoid conflicting with it
	if (g_TouchInput.IsEnabled())
		return;

	if (!g_app_has_focus)
		return;

	// TODO: this is probably not an ideal place for this, it should probably go
	// in a CCmpWaterManager or some such thing (once such a thing exists)
	if (!m->Game->m_Paused)
		g_Renderer.GetWaterManager()->m_WaterTexTimer += deltaRealTime;

	if (m->TrackManager.IsActive() && m->TrackManager.IsPlaying())
	{
		if (! m->TrackManager.Update(deltaRealTime))
		{
//			ResetCamera();
		}
		return;
	}

	// Calculate mouse movement
	static int mouse_last_x = 0;
	static int mouse_last_y = 0;
	int mouse_dx = g_mouse_x - mouse_last_x;
	int mouse_dy = g_mouse_y - mouse_last_y;
	mouse_last_x = g_mouse_x;
	mouse_last_y = g_mouse_y;

	if (HotkeyIsPressed("camera.rotate.cw"))
		m->RotateY.AddSmoothly(m->ViewRotateYSpeed * deltaRealTime);
	if (HotkeyIsPressed("camera.rotate.ccw"))
		m->RotateY.AddSmoothly(-m->ViewRotateYSpeed * deltaRealTime);
	if (HotkeyIsPressed("camera.rotate.up"))
		m->RotateX.AddSmoothly(-m->ViewRotateXSpeed * deltaRealTime);
	if (HotkeyIsPressed("camera.rotate.down"))
		m->RotateX.AddSmoothly(m->ViewRotateXSpeed * deltaRealTime);

	float moveRightward = 0.f;
	float moveForward = 0.f;

	if (HotkeyIsPressed("camera.pan"))
	{
		moveRightward += m->ViewDragSpeed * mouse_dx;
		moveForward += m->ViewDragSpeed * -mouse_dy;
	}

	if (g_mouse_active)
	{
		if (g_mouse_x >= g_xres - 2 && g_mouse_x < g_xres)
			moveRightward += m->ViewScrollSpeed * deltaRealTime;
		else if (g_mouse_x <= 3 && g_mouse_x >= 0)
			moveRightward -= m->ViewScrollSpeed * deltaRealTime;

		if (g_mouse_y >= g_yres - 2 && g_mouse_y < g_yres)
			moveForward -= m->ViewScrollSpeed * deltaRealTime;
		else if (g_mouse_y <= 3 && g_mouse_y >= 0)
			moveForward += m->ViewScrollSpeed * deltaRealTime;
	}

	if (HotkeyIsPressed("camera.right"))
		moveRightward += m->ViewScrollSpeed * deltaRealTime;
	if (HotkeyIsPressed("camera.left"))
		moveRightward -= m->ViewScrollSpeed * deltaRealTime;
	if (HotkeyIsPressed("camera.up"))
		moveForward += m->ViewScrollSpeed * deltaRealTime;
	if (HotkeyIsPressed("camera.down"))
		moveForward -= m->ViewScrollSpeed * deltaRealTime;

	if (g_Joystick.IsEnabled())
	{
		// This could all be improved with extra speed and sensitivity settings
		// (maybe use pow to allow finer control?), and inversion settings

		moveRightward += g_Joystick.GetAxisValue(m->JoystickPanX) * m->ViewScrollSpeed * deltaRealTime;
		moveForward -= g_Joystick.GetAxisValue(m->JoystickPanY) * m->ViewScrollSpeed * deltaRealTime;

		m->RotateX.AddSmoothly(g_Joystick.GetAxisValue(m->JoystickRotateX) * m->ViewRotateXSpeed * deltaRealTime);
		m->RotateY.AddSmoothly(-g_Joystick.GetAxisValue(m->JoystickRotateY) * m->ViewRotateYSpeed * deltaRealTime);

		// Use a +1 bias for zoom because I want this to work with trigger buttons that default to -1
		m->Zoom.AddSmoothly((g_Joystick.GetAxisValue(m->JoystickZoomIn) + 1.0f) / 2.0f * m->ViewZoomSpeed * deltaRealTime);
		m->Zoom.AddSmoothly(-(g_Joystick.GetAxisValue(m->JoystickZoomOut) + 1.0f) / 2.0f * m->ViewZoomSpeed * deltaRealTime);
	}

	if (moveRightward || moveForward)
	{
		// Break out of following mode when the user starts scrolling
		m->FollowEntity = INVALID_ENTITY;

		float s = sin(m->RotateY.GetSmoothedValue());
		float c = cos(m->RotateY.GetSmoothedValue());
		m->PosX.AddSmoothly(c * moveRightward);
		m->PosZ.AddSmoothly(-s * moveRightward);
		m->PosX.AddSmoothly(s * moveForward);
		m->PosZ.AddSmoothly(c * moveForward);
	}

	if (m->FollowEntity)
	{
		CmpPtr<ICmpPosition> cmpPosition(*(m->Game->GetSimulation2()), m->FollowEntity);
		if (cmpPosition && cmpPosition->IsInWorld())
		{
			// Get the most recent interpolated position
			float frameOffset = m->Game->GetSimulation2()->GetLastFrameOffset();
			CMatrix3D transform = cmpPosition->GetInterpolatedTransform(frameOffset, false);
			CVector3D pos = transform.GetTranslation();

			if (m->FollowFirstPerson)
			{
				float x, z, angle;
				cmpPosition->GetInterpolatedPosition2D(frameOffset, x, z, angle);
				float height = 4.f;
				m->ViewCamera.m_Orientation.SetIdentity();
				m->ViewCamera.m_Orientation.RotateX((float)M_PI/24.f);
				m->ViewCamera.m_Orientation.RotateY(angle);
				m->ViewCamera.m_Orientation.Translate(pos.X, pos.Y + height, pos.Z);

				m->ViewCamera.UpdateFrustum();
				return;
			}
			else
			{
				// Move the camera to match the unit
				CCamera targetCam = m->ViewCamera;
				SetupCameraMatrixSmoothRot(m, &targetCam.m_Orientation);

				CVector3D pivot = GetSmoothPivot(targetCam);
				CVector3D delta = pos - pivot;
				m->PosX.AddSmoothly(delta.X);
				m->PosY.AddSmoothly(delta.Y);
				m->PosZ.AddSmoothly(delta.Z);
			}
		}
		else
		{
			// The unit disappeared (died or garrisoned etc), so stop following it
			m->FollowEntity = INVALID_ENTITY;
		}
	}

	if (HotkeyIsPressed("camera.zoom.in"))
		m->Zoom.AddSmoothly(-m->ViewZoomSpeed * deltaRealTime);
	if (HotkeyIsPressed("camera.zoom.out"))
		m->Zoom.AddSmoothly(m->ViewZoomSpeed * deltaRealTime);

	if (m->ConstrainCamera)
		m->Zoom.ClampSmoothly(m->ViewZoomMin, m->ViewZoomMax);

	float zoomDelta = -m->Zoom.Update(deltaRealTime);
	if (zoomDelta)
	{
		CVector3D forwards = m->ViewCamera.m_Orientation.GetIn();
		m->PosX.AddSmoothly(forwards.X * zoomDelta);
		m->PosY.AddSmoothly(forwards.Y * zoomDelta);
		m->PosZ.AddSmoothly(forwards.Z * zoomDelta);
	}

	if (m->ConstrainCamera)
		m->RotateX.ClampSmoothly(DEGTORAD(m->ViewRotateXMin), DEGTORAD(m->ViewRotateXMax));

	FocusHeight(m, true);

	// Ensure the ViewCamera focus is inside the map with the chosen margins
	// if not so - apply margins to the camera
	if (m->ConstrainCamera)
	{
		CCamera targetCam = m->ViewCamera;
		SetupCameraMatrixSmoothRot(m, &targetCam.m_Orientation);

		CTerrain* pTerrain = m->Game->GetWorld()->GetTerrain();

		CVector3D pivot = GetSmoothPivot(targetCam);
		CVector3D delta = targetCam.m_Orientation.GetTranslation() - pivot;

		CVector3D desiredPivot = pivot;

		CmpPtr<ICmpRangeManager> cmpRangeManager(*m->Game->GetSimulation2(), SYSTEM_ENTITY);
		if (cmpRangeManager && cmpRangeManager->GetLosCircular())
		{
			// Clamp to a circular region around the center of the map
			float r = pTerrain->GetMaxX() / 2;
			CVector3D center(r, desiredPivot.Y, r);
			float dist = (desiredPivot - center).Length();
			if (dist > r - CAMERA_EDGE_MARGIN)
				desiredPivot = center + (desiredPivot - center).Normalized() * (r - CAMERA_EDGE_MARGIN);
		}
		else
		{
			// Clamp to the square edges of the map
			desiredPivot.X = Clamp(desiredPivot.X, pTerrain->GetMinX() + CAMERA_EDGE_MARGIN, pTerrain->GetMaxX() - CAMERA_EDGE_MARGIN);
			desiredPivot.Z = Clamp(desiredPivot.Z, pTerrain->GetMinZ() + CAMERA_EDGE_MARGIN, pTerrain->GetMaxZ() - CAMERA_EDGE_MARGIN);
		}

		// Update the position so that pivot is within the margin
		m->PosX.SetValueSmoothly(desiredPivot.X + delta.X);
		m->PosZ.SetValueSmoothly(desiredPivot.Z + delta.Z);
	}

	m->PosX.Update(deltaRealTime);
	m->PosY.Update(deltaRealTime);
	m->PosZ.Update(deltaRealTime);

	// Handle rotation around the Y (vertical) axis
	{
		CCamera targetCam = m->ViewCamera;
		SetupCameraMatrixSmooth(m, &targetCam.m_Orientation);

		float rotateYDelta = m->RotateY.Update(deltaRealTime);
		if (rotateYDelta)
		{
			// We've updated RotateY, and need to adjust Pos so that it's still
			// facing towards the original focus point (the terrain in the center
			// of the screen).

			CVector3D upwards(0.0f, 1.0f, 0.0f);

			CVector3D pivot = GetSmoothPivot(targetCam);
			CVector3D delta = targetCam.m_Orientation.GetTranslation() - pivot;

			CQuaternion q;
			q.FromAxisAngle(upwards, rotateYDelta);
			CVector3D d = q.Rotate(delta) - delta;

			m->PosX.Add(d.X);
			m->PosY.Add(d.Y);
			m->PosZ.Add(d.Z);
		}
	}

	// Handle rotation around the X (sideways, relative to camera) axis
	{
		CCamera targetCam = m->ViewCamera;
		SetupCameraMatrixSmooth(m, &targetCam.m_Orientation);

		float rotateXDelta = m->RotateX.Update(deltaRealTime);
		if (rotateXDelta)
		{
			CVector3D rightwards = targetCam.m_Orientation.GetLeft() * -1.0f;

			CVector3D pivot = GetSmoothPivot(targetCam);
			CVector3D delta = targetCam.m_Orientation.GetTranslation() - pivot;

			CQuaternion q;
			q.FromAxisAngle(rightwards, rotateXDelta);
			CVector3D d = q.Rotate(delta) - delta;

			m->PosX.Add(d.X);
			m->PosY.Add(d.Y);
			m->PosZ.Add(d.Z);
		}
	}

	/* This is disabled since it doesn't seem necessary:

	// Ensure the camera's near point is never inside the terrain
	if (m->ConstrainCamera)
	{
		CMatrix3D target;
		target.SetIdentity();
		target.RotateX(m->RotateX.GetValue());
		target.RotateY(m->RotateY.GetValue());
		target.Translate(m->PosX.GetValue(), m->PosY.GetValue(), m->PosZ.GetValue());

		CVector3D nearPoint = target.GetTranslation() + target.GetIn() * defaultNear;
		float ground = m->Game->GetWorld()->GetTerrain()->GetExactGroundLevel(nearPoint.X, nearPoint.Z);
		float limit = ground + 16.f;
		if (nearPoint.Y < limit)
			m->PosY.AddSmoothly(limit - nearPoint.Y);
	}
	*/

	m->RotateY.Wrap(-(float)M_PI, (float)M_PI);

	// Update the camera matrix
	m->ViewCamera.SetProjection(m->ViewNear, m->ViewFar, m->ViewFOV);
	SetupCameraMatrixSmooth(m, &m->ViewCamera.m_Orientation);
	m->ViewCamera.UpdateFrustum();
}
コード例 #27
0
ファイル: ModelRenderer.cpp プロジェクト: righnatios/0ad
void ShaderModelRenderer::Render(const RenderModifierPtr& modifier, const CShaderDefines& context, int cullGroup, int flags)
{
	if (m->submissions[cullGroup].empty())
		return;

	CMatrix3D worldToCam;
	g_Renderer.GetViewCamera().m_Orientation.GetInverse(worldToCam);

	/*
	 * Rendering approach:
	 * 
	 * m->submissions contains the list of CModels to render.
	 * 
	 * The data we need to render a model is:
	 *  - CShaderTechnique
	 *  - CTexture
	 *  - CShaderUniforms
	 *  - CModelDef (mesh data)
	 *  - CModel (model instance data)
	 * 
	 * For efficient rendering, we need to batch the draw calls to minimise state changes.
	 * (Uniform and texture changes are assumed to be cheaper than binding new mesh data,
	 * and shader changes are assumed to be most expensive.)
	 * First, group all models that share a technique to render them together.
	 * Within those groups, sub-group by CModelDef.
	 * Within those sub-groups, sub-sub-group by CTexture.
	 * Within those sub-sub-groups, sub-sub-sub-group by CShaderUniforms.
	 * 
	 * Alpha-blended models have to be sorted by distance from camera,
	 * then we can batch as long as the order is preserved.
	 * Non-alpha-blended models can be arbitrarily reordered to maximise batching.
	 * 
	 * For each model, the CShaderTechnique is derived from:
	 *  - The current global 'context' defines
	 *  - The CModel's material's defines
	 *  - The CModel's material's shader effect name
	 * 
	 * There are a smallish number of materials, and a smaller number of techniques.
	 * 
	 * To minimise technique lookups, we first group models by material,
	 * in 'materialBuckets' (a hash table).
	 * 
	 * For each material bucket we then look up the appropriate shader technique.
	 * If the technique requires sort-by-distance, the model is added to the
	 * 'sortByDistItems' list with its computed distance.
	 * Otherwise, the bucket's list of models is sorted by modeldef+texture+uniforms,
	 * then the technique and model list is added to 'techBuckets'.
	 * 
	 * 'techBuckets' is then sorted by technique, to improve batching when multiple
	 * materials map onto the same technique.
	 * 
	 * (Note that this isn't perfect batching: we don't sort across models in
	 * multiple buckets that share a technique. In practice that shouldn't reduce
	 * batching much (we rarely have one mesh used with multiple materials),
	 * and it saves on copying and lets us sort smaller lists.)
	 * 
	 * Extra tech buckets are added for the sorted-by-distance models without reordering.
	 * Finally we render by looping over each tech bucket, then looping over the model
	 * list in each, rebinding the GL state whenever it changes.
	 */

	Allocators::DynamicArena arena(256 * KiB);
	typedef ProxyAllocator<CModel*, Allocators::DynamicArena> ModelListAllocator;
	typedef std::vector<CModel*, ModelListAllocator> ModelList_t;
	typedef boost::unordered_map<SMRMaterialBucketKey, ModelList_t,
		SMRMaterialBucketKeyHash, std::equal_to<SMRMaterialBucketKey>,
		ProxyAllocator<std::pair<const SMRMaterialBucketKey, ModelList_t>, Allocators::DynamicArena>
	> MaterialBuckets_t;
	MaterialBuckets_t materialBuckets((MaterialBuckets_t::allocator_type(arena)));

	{
		PROFILE3("bucketing by material");

		for (size_t i = 0; i < m->submissions[cullGroup].size(); ++i)
		{
			CModel* model = m->submissions[cullGroup][i];

			uint32_t condFlags = 0;

			const CShaderConditionalDefines& condefs = model->GetMaterial().GetConditionalDefines();
			for (size_t j = 0; j < condefs.GetSize(); ++j)
			{
				const CShaderConditionalDefines::CondDefine& item = condefs.GetItem(j);
				int type = item.m_CondType;
				switch (type)
				{
					case DCOND_DISTANCE:
					{
						CVector3D modelpos = model->GetTransform().GetTranslation();
						float dist = worldToCam.Transform(modelpos).Z;
						
						float dmin = item.m_CondArgs[0];
						float dmax = item.m_CondArgs[1];
						
						if ((dmin < 0 || dist >= dmin) && (dmax < 0 || dist < dmax))
							condFlags |= (1 << j);
						
						break;
					}
				}
			}

			CShaderDefines defs = model->GetMaterial().GetShaderDefines(condFlags);
			SMRMaterialBucketKey key(model->GetMaterial().GetShaderEffect(), defs);

			MaterialBuckets_t::iterator it = materialBuckets.find(key);
			if (it == materialBuckets.end())
			{
				std::pair<MaterialBuckets_t::iterator, bool> inserted = materialBuckets.insert(
					std::make_pair(key, ModelList_t(ModelList_t::allocator_type(arena))));
				inserted.first->second.reserve(32);
				inserted.first->second.push_back(model);
			}
			else
			{
				it->second.push_back(model);
			}
		}
	}

	typedef ProxyAllocator<SMRSortByDistItem, Allocators::DynamicArena> SortByDistItemsAllocator;
	std::vector<SMRSortByDistItem, SortByDistItemsAllocator> sortByDistItems((SortByDistItemsAllocator(arena)));

	typedef ProxyAllocator<CShaderTechniquePtr, Allocators::DynamicArena> SortByTechItemsAllocator;
	std::vector<CShaderTechniquePtr, SortByTechItemsAllocator> sortByDistTechs((SortByTechItemsAllocator(arena)));
		// indexed by sortByDistItems[i].techIdx
		// (which stores indexes instead of CShaderTechniquePtr directly
		// to avoid the shared_ptr copy cost when sorting; maybe it'd be better
		// if we just stored raw CShaderTechnique* and assumed the shader manager
		// will keep it alive long enough)

	typedef ProxyAllocator<SMRTechBucket, Allocators::DynamicArena> TechBucketsAllocator;
	std::vector<SMRTechBucket, TechBucketsAllocator> techBuckets((TechBucketsAllocator(arena)));

	{
		PROFILE3("processing material buckets");
		for (MaterialBuckets_t::iterator it = materialBuckets.begin(); it != materialBuckets.end(); ++it)
		{
			CShaderTechniquePtr tech = g_Renderer.GetShaderManager().LoadEffect(it->first.effect, context, it->first.defines);

			// Skip invalid techniques (e.g. from data file errors)
			if (!tech)
				continue;

			if (tech->GetSortByDistance())
			{
				// Add the tech into a vector so we can index it
				// (There might be duplicates in this list, but that doesn't really matter)
				if (sortByDistTechs.empty() || sortByDistTechs.back() != tech)
					sortByDistTechs.push_back(tech);
				size_t techIdx = sortByDistTechs.size()-1;

				// Add each model into sortByDistItems
				for (size_t i = 0; i < it->second.size(); ++i)
				{
					SMRSortByDistItem itemWithDist;
					itemWithDist.techIdx = techIdx;

					CModel* model = it->second[i];
					itemWithDist.model = model;

					CVector3D modelpos = model->GetTransform().GetTranslation();
					itemWithDist.dist = worldToCam.Transform(modelpos).Z;

					sortByDistItems.push_back(itemWithDist);
				}
			}
			else
			{
				// Sort model list by modeldef+texture, for batching
				// TODO: This only sorts by base texture. While this is an OK approximation
				// for most cases (as related samplers are usually used together), it would be better
				// to take all the samplers into account when sorting here.
				std::sort(it->second.begin(), it->second.end(), SMRBatchModel());

				// Add a tech bucket pointing at this model list
				SMRTechBucket techBucket = { tech, &it->second[0], it->second.size() };
				techBuckets.push_back(techBucket);
			}
		}
	}

	{
		PROFILE3("sorting tech buckets");
		// Sort by technique, for better batching
		std::sort(techBuckets.begin(), techBuckets.end(), SMRCompareTechBucket());
	}

	// List of models corresponding to sortByDistItems[i].model
	// (This exists primarily because techBuckets wants a CModel**;
	// we could avoid the cost of copying into this list by adding
	// a stride length into techBuckets and not requiring contiguous CModel*s)
	std::vector<CModel*, ModelListAllocator> sortByDistModels((ModelListAllocator(arena)));

	if (!sortByDistItems.empty())
	{
		{
			PROFILE3("sorting items by dist");
			std::sort(sortByDistItems.begin(), sortByDistItems.end(), SMRCompareSortByDistItem());
		}

		{
			PROFILE3("batching dist-sorted items");

			sortByDistModels.reserve(sortByDistItems.size());

			// Find runs of distance-sorted models that share a technique,
			// and create a new tech bucket for each run

			size_t start = 0; // start of current run
			size_t currentTechIdx = sortByDistItems[start].techIdx;

			for (size_t end = 0; end < sortByDistItems.size(); ++end)
			{
				sortByDistModels.push_back(sortByDistItems[end].model);

				size_t techIdx = sortByDistItems[end].techIdx;
				if (techIdx != currentTechIdx)
				{
					// Start of a new run - push the old run into a new tech bucket
					SMRTechBucket techBucket = { sortByDistTechs[currentTechIdx], &sortByDistModels[start], end-start };
					techBuckets.push_back(techBucket);
					start = end;
					currentTechIdx = techIdx;
				}
			}

			// Add the tech bucket for the final run
			SMRTechBucket techBucket = { sortByDistTechs[currentTechIdx], &sortByDistModels[start], sortByDistItems.size()-start };
			techBuckets.push_back(techBucket);
		}
	}

	{
		PROFILE3("rendering bucketed submissions");

		size_t idxTechStart = 0;
		
		// This vector keeps track of texture changes during rendering. It is kept outside the
		// loops to avoid excessive reallocations. The token allocation of 64 elements 
		// should be plenty, though it is reallocated below (at a cost) if necessary.
		typedef ProxyAllocator<CTexture*, Allocators::DynamicArena> TextureListAllocator;
		std::vector<CTexture*, TextureListAllocator> currentTexs((TextureListAllocator(arena)));
		currentTexs.reserve(64);
		
		// texBindings holds the identifier bindings in the shader, which can no longer be defined 
		// statically in the ShaderRenderModifier class. texBindingNames uses interned strings to
		// keep track of when bindings need to be reevaluated.
		typedef ProxyAllocator<CShaderProgram::Binding, Allocators::DynamicArena> BindingListAllocator;
		std::vector<CShaderProgram::Binding, BindingListAllocator> texBindings((BindingListAllocator(arena)));
		texBindings.reserve(64);

		typedef ProxyAllocator<CStrIntern, Allocators::DynamicArena> BindingNamesListAllocator;
		std::vector<CStrIntern, BindingNamesListAllocator> texBindingNames((BindingNamesListAllocator(arena)));
		texBindingNames.reserve(64);

		while (idxTechStart < techBuckets.size())
		{
			CShaderTechniquePtr currentTech = techBuckets[idxTechStart].tech;

			// Find runs [idxTechStart, idxTechEnd) in techBuckets of the same technique
			size_t idxTechEnd;
			for (idxTechEnd = idxTechStart + 1; idxTechEnd < techBuckets.size(); ++idxTechEnd)
			{
				if (techBuckets[idxTechEnd].tech != currentTech)
					break;
			}

			// For each of the technique's passes, render all the models in this run
			for (int pass = 0; pass < currentTech->GetNumPasses(); ++pass)
			{
				currentTech->BeginPass(pass);

				const CShaderProgramPtr& shader = currentTech->GetShader(pass);
				int streamflags = shader->GetStreamFlags();

				modifier->BeginPass(shader);

				m->vertexRenderer->BeginPass(streamflags);
				
				// When the shader technique changes, textures need to be
				// rebound, so ensure there are no remnants from the last pass.
				// (the vector size is set to 0, but memory is not freed)
				currentTexs.clear();
				texBindings.clear();
				texBindingNames.clear();
				
				CModelDef* currentModeldef = NULL;
				CShaderUniforms currentStaticUniforms;

				for (size_t idx = idxTechStart; idx < idxTechEnd; ++idx)
				{
					CModel** models = techBuckets[idx].models;
					size_t numModels = techBuckets[idx].numModels;
					for (size_t i = 0; i < numModels; ++i)
					{
						CModel* model = models[i];

						if (flags && !(model->GetFlags() & flags))
							continue;

						const CMaterial::SamplersVector& samplers = model->GetMaterial().GetSamplers();
						size_t samplersNum = samplers.size();
						
						// make sure the vectors are the right virtual sizes, and also
						// reallocate if there are more samplers than expected.
						if (currentTexs.size() != samplersNum)
						{
							currentTexs.resize(samplersNum, NULL);
							texBindings.resize(samplersNum, CShaderProgram::Binding());
							texBindingNames.resize(samplersNum, CStrIntern());
							
							// ensure they are definitely empty
							std::fill(texBindings.begin(), texBindings.end(), CShaderProgram::Binding());
							std::fill(currentTexs.begin(), currentTexs.end(), (CTexture*)NULL);
							std::fill(texBindingNames.begin(), texBindingNames.end(), CStrIntern());
						}
						
						// bind the samplers to the shader
						for (size_t s = 0; s < samplersNum; ++s)
						{
							const CMaterial::TextureSampler& samp = samplers[s];
							
							CShaderProgram::Binding bind = texBindings[s];
							// check that the handles are current
							// and reevaluate them if necessary
							if (texBindingNames[s] == samp.Name && bind.Active())
							{
								bind = texBindings[s];
							}
							else
							{
								bind = shader->GetTextureBinding(samp.Name);
								texBindings[s] = bind;
								texBindingNames[s] = samp.Name;
							}

							// same with the actual sampler bindings
							CTexture* newTex = samp.Sampler.get();
							if (bind.Active() && newTex != currentTexs[s])
							{
								shader->BindTexture(bind, samp.Sampler->GetHandle());
								currentTexs[s] = newTex;
							}
						}
						
						// Bind modeldef when it changes
						CModelDef* newModeldef = model->GetModelDef().get();
						if (newModeldef != currentModeldef)
						{
							currentModeldef = newModeldef;
							m->vertexRenderer->PrepareModelDef(shader, streamflags, *currentModeldef);
						}

						// Bind all uniforms when any change
						CShaderUniforms newStaticUniforms = model->GetMaterial().GetStaticUniforms();
						if (newStaticUniforms != currentStaticUniforms)
						{
							currentStaticUniforms = newStaticUniforms;
							currentStaticUniforms.BindUniforms(shader);
						}
						
						const CShaderRenderQueries& renderQueries = model->GetMaterial().GetRenderQueries();
						
						for (size_t q = 0; q < renderQueries.GetSize(); q++)
						{
							CShaderRenderQueries::RenderQuery rq = renderQueries.GetItem(q);
							if (rq.first == RQUERY_TIME)
							{
								CShaderProgram::Binding binding = shader->GetUniformBinding(rq.second);
								if (binding.Active())
								{
									double time = g_Renderer.GetTimeManager().GetGlobalTime();
									shader->Uniform(binding, time, 0,0,0);
								}
							}
							else if (rq.first == RQUERY_WATER_TEX)
							{
								WaterManager* WaterMgr = g_Renderer.GetWaterManager();
								double time = WaterMgr->m_WaterTexTimer;
								double period = 1.6;
								int curTex = (int)(time*60/period) % 60;
								
								if (WaterMgr->m_RenderWater && WaterMgr->WillRenderFancyWater())
									shader->BindTexture(str_waterTex, WaterMgr->m_NormalMap[curTex]);
								else
									shader->BindTexture(str_waterTex, g_Renderer.GetTextureManager().GetErrorTexture());
							}
							else if (rq.first == RQUERY_SKY_CUBE)
							{
								shader->BindTexture(str_skyCube, g_Renderer.GetSkyManager()->GetSkyCube());
							}
						}

						modifier->PrepareModel(shader, model);

						CModelRData* rdata = static_cast<CModelRData*>(model->GetRenderData());
						ENSURE(rdata->GetKey() == m->vertexRenderer.get());

						m->vertexRenderer->RenderModel(shader, streamflags, model, rdata);
					}
				}

				m->vertexRenderer->EndPass(streamflags);

				currentTech->EndPass(pass);
			}

			idxTechStart = idxTechEnd;
		}
	}
}
コード例 #28
0
ファイル: ActorViewer.cpp プロジェクト: TiriliPiitPiit/0ad
	// Simplistic implementation of the Scene interface
	virtual void EnumerateObjects(const CFrustum& frustum, SceneCollector* c)
	{
		if (GroundEnabled)
		{
			for (ssize_t pj = 0; pj < Terrain.GetPatchesPerSide(); ++pj)
				for (ssize_t pi = 0; pi < Terrain.GetPatchesPerSide(); ++pi)
					c->Submit(Terrain.GetPatch(pi, pj));
		}

		CmpPtr<ICmpVisual> cmpVisual(Simulation2, Entity);
		if (cmpVisual)
		{
			// add selection box outlines manually
			if (SelectionBoxEnabled)
			{
				SelectionBoxOverlay.m_Color = CColor(35/255.f, 86/255.f, 188/255.f, .75f); // pretty blue
				SelectionBoxOverlay.m_Thickness = 2;

				SimRender::ConstructBoxOutline(cmpVisual->GetSelectionBox(), SelectionBoxOverlay);
				c->Submit(&SelectionBoxOverlay);
			}

			// add origin axis thingy
			if (AxesMarkerEnabled)
			{
				CMatrix3D worldSpaceAxes;
				// offset from the ground a little bit to prevent fighting with the floor texture (also note: SetTranslation
				// sets the identity 3x3 transformation matrix, which are the world axes)
				worldSpaceAxes.SetTranslation(cmpVisual->GetPosition() + CVector3D(0, 0.02f, 0));
				SimRender::ConstructAxesMarker(worldSpaceAxes, AxesMarkerOverlays[0], AxesMarkerOverlays[1], AxesMarkerOverlays[2]);

				c->Submit(&AxesMarkerOverlays[0]);
				c->Submit(&AxesMarkerOverlays[1]);
				c->Submit(&AxesMarkerOverlays[2]);
			}

			// add prop point overlays
			if (PropPointsMode > 0 && Props.size() > 0)
			{
				PropPointOverlays.clear(); // doesn't clear capacity, but should be ok since the number of prop points is usually pretty limited
				for (size_t i = 0; i < Props.size(); ++i)
				{
					CModel::Prop& prop = Props[i];
					if (prop.m_Model) // should always be the case
					{
						// prop point positions are automatically updated during animations etc. by CModel::ValidatePosition
						const CMatrix3D& propCoordSystem = prop.m_Model->GetTransform();
						
						SOverlayLine pointGimbal;
						pointGimbal.m_Color = CColor(1.f, 0.f, 1.f, 1.f);
						SimRender::ConstructGimbal(propCoordSystem.GetTranslation(), 0.05f, pointGimbal);
						PropPointOverlays.push_back(pointGimbal);

						if (PropPointsMode > 1)
						{
							// scale the prop axes coord system down a bit to distinguish them from the main world-space axes markers
							CMatrix3D displayCoordSystem = propCoordSystem;
							displayCoordSystem.Scale(0.5f, 0.5f, 0.5f);
							// revert translation scaling
							displayCoordSystem._14 = propCoordSystem._14;
							displayCoordSystem._24 = propCoordSystem._24;
							displayCoordSystem._34 = propCoordSystem._34;

							// construct an XYZ axes marker for the prop's coordinate system
							SOverlayLine xAxis, yAxis, zAxis;
							SimRender::ConstructAxesMarker(displayCoordSystem, xAxis, yAxis, zAxis);
							PropPointOverlays.push_back(xAxis);
							PropPointOverlays.push_back(yAxis);
							PropPointOverlays.push_back(zAxis);
						}
					}
				}

				for (size_t i = 0; i < PropPointOverlays.size(); ++i)
				{
					c->Submit(&PropPointOverlays[i]);
				}
			}
		}

		// send a RenderSubmit message so the components can submit their visuals to the renderer
		Simulation2.RenderSubmit(*c, frustum, false);
	}
コード例 #29
0
///////////////////////////////////////////////////////////////////////////////////////////////////
// CalcShadowMatrices: calculate required matrices for shadow map generation - the light's
// projection and transformation matrices
void ShadowMapInternals::CalcShadowMatrices()
{
	CRenderer& renderer = g_Renderer;

	float minZ = ShadowBound[0].Z;

	ShadowBound.IntersectFrustumConservative(LightspaceCamera.GetFrustum());

	// round off the shadow boundaries to sane increments to help reduce swim effect
	float boundInc = 16.0f;
	ShadowBound[0].X = floor(ShadowBound[0].X / boundInc) * boundInc;
	ShadowBound[0].Y = floor(ShadowBound[0].Y / boundInc) * boundInc;
	ShadowBound[1].X = ceil(ShadowBound[1].X / boundInc) * boundInc;
	ShadowBound[1].Y = ceil(ShadowBound[1].Y / boundInc) * boundInc;

	// minimum Z bound must not be clipped too much, because objects that lie outside
	// the shadow bounds cannot cast shadows either
	// the 2.0 is rather arbitrary: it should be big enough so that we won't accidently miss
	// a shadow generator, and small enough not to affect Z precision
	ShadowBound[0].Z = minZ - 2.0;

	// Setup orthogonal projection (lightspace -> clip space) for shadowmap rendering
	CVector3D scale = ShadowBound[1] - ShadowBound[0];
	CVector3D shift = (ShadowBound[1] + ShadowBound[0]) * -0.5;

	if (scale.X < 1.0)
		scale.X = 1.0;
	if (scale.Y < 1.0)
		scale.Y = 1.0;
	if (scale.Z < 1.0)
		scale.Z = 1.0;

	scale.X = 2.0 / scale.X;
	scale.Y = 2.0 / scale.Y;
	scale.Z = 2.0 / scale.Z;

	// make sure a given world position falls on a consistent shadowmap texel fractional offset
	float offsetX = fmod(ShadowBound[0].X - LightTransform._14, 2.0f/(scale.X*EffectiveWidth));
	float offsetY = fmod(ShadowBound[0].Y - LightTransform._24, 2.0f/(scale.Y*EffectiveHeight));

	LightProjection.SetZero();
	LightProjection._11 = scale.X;
	LightProjection._14 = (shift.X + offsetX) * scale.X;
	LightProjection._22 = scale.Y;
	LightProjection._24 = (shift.Y + offsetY) * scale.Y;
	LightProjection._33 = scale.Z;
	LightProjection._34 = shift.Z * scale.Z + renderer.m_ShadowZBias;
	LightProjection._44 = 1.0;


	// Calculate texture matrix by creating the clip space to texture coordinate matrix
	// and then concatenating all matrices that have been calculated so far
	CMatrix3D lightToTex;
	float texscalex = scale.X * 0.5f * (float)EffectiveWidth / (float)Width;
	float texscaley = scale.Y * 0.5f * (float)EffectiveHeight / (float)Height;
	float texscalez = scale.Z * 0.5f;

	lightToTex.SetZero();
	lightToTex._11 = texscalex;
	lightToTex._14 = (offsetX - ShadowBound[0].X) * texscalex;
	lightToTex._22 = texscaley;
	lightToTex._24 = (offsetY - ShadowBound[0].Y) * texscaley;
	lightToTex._33 = texscalez;
	lightToTex._34 = -ShadowBound[0].Z * texscalez;
	lightToTex._44 = 1.0;

	TextureMatrix = lightToTex * LightTransform;
}
コード例 #30
0
/////////////////////////////////////////////////////////////////////////////////////////////////////////////
// ValidatePosition: ensure that current transform and bone matrices are both uptodate
void CModel::ValidatePosition()
{
	if (m_PositionValid)
	{
		ENSURE(!m_Parent || m_Parent->m_PositionValid);
		return;
	}
	
	if (m_Parent && !m_Parent->m_PositionValid)
	{
		// Make sure we don't base our calculations on
		// a parent animation state that is out of date.
		m_Parent->ValidatePosition();
		
		// Parent will recursively call our validation.
		ENSURE(m_PositionValid);
		return;
	}

	if (m_Anim && m_BoneMatrices)
	{
//		PROFILE( "generating bone matrices" );
	
		ENSURE(m_pModelDef->GetNumBones() == m_Anim->m_AnimDef->GetNumKeys());
	
		m_Anim->m_AnimDef->BuildBoneMatrices(m_AnimTime, m_BoneMatrices, !(m_Flags & MODELFLAG_NOLOOPANIMATION));
	}
	else if (m_BoneMatrices)
	{
		// Bones but no animation - probably a buggy actor forgot to set up the animation,
		// so just render it in its bind pose

		for (size_t i = 0; i < m_pModelDef->GetNumBones(); i++)
		{
			m_BoneMatrices[i].SetIdentity();
			m_BoneMatrices[i].Rotate(m_pModelDef->GetBones()[i].m_Rotation);
			m_BoneMatrices[i].Translate(m_pModelDef->GetBones()[i].m_Translation);
		}
	}

	// For CPU skinning, we precompute as much as possible so that the only
	// per-vertex work is a single matrix*vec multiplication.
	// For GPU skinning, we try to minimise CPU work by doing most computation
	// in the vertex shader instead.
	// Using g_Renderer.m_Options to detect CPU vs GPU is a bit hacky,
	// and this doesn't allow the setting to change at runtime, but there isn't
	// an obvious cleaner way to determine what data needs to be computed,
	// and GPU skinning is a rarely-used experimental feature anyway.
	bool worldSpaceBoneMatrices = !g_Renderer.m_Options.m_GPUSkinning;
	bool computeBlendMatrices = !g_Renderer.m_Options.m_GPUSkinning;

	if (m_BoneMatrices && worldSpaceBoneMatrices)
	{
		// add world-space transformation to m_BoneMatrices
		const CMatrix3D transform = GetTransform();
		for (size_t i = 0; i < m_pModelDef->GetNumBones(); i++)
			m_BoneMatrices[i].Concatenate(transform);
	}

	// our own position is now valid; now we can safely update our props' positions without fearing 
	// that doing so will cause a revalidation of this model (see recursion above).
	m_PositionValid = true;
	
	// re-position and validate all props
	for (size_t j = 0; j < m_Props.size(); ++j)
	{
		const Prop& prop=m_Props[j];

		CMatrix3D proptransform = prop.m_Point->m_Transform;;
		if (prop.m_Point->m_BoneIndex != 0xff)
		{
			CMatrix3D boneMatrix = m_BoneMatrices[prop.m_Point->m_BoneIndex];
			if (!worldSpaceBoneMatrices)
				boneMatrix.Concatenate(GetTransform());
			proptransform.Concatenate(boneMatrix);
		}
		else
		{
			// not relative to any bone; just apply world-space transformation (i.e. relative to object-space origin)
			proptransform.Concatenate(m_Transform);
		}
		
		prop.m_Model->SetTransform(proptransform);
		prop.m_Model->ValidatePosition();
	}

	if (m_BoneMatrices)
	{
		for (size_t i = 0; i < m_pModelDef->GetNumBones(); i++)
		{
			m_BoneMatrices[i] = m_BoneMatrices[i] * m_pModelDef->GetInverseBindBoneMatrices()[i];
		}

		// Note: there is a special case of joint influence, in which the vertex
		//	is influenced by the bind-shape transform instead of a particular bone,
		//	which we indicate with the blending bone ID set to the total number
		//	of bones. But since we're skinning in world space, we use the model's
		//	world space transform and store that matrix in this special index.
		//	(see http://trac.wildfiregames.com/ticket/1012)
		m_BoneMatrices[m_pModelDef->GetNumBones()] = m_Transform;

		if (computeBlendMatrices)
			m_pModelDef->BlendBoneMatrices(m_BoneMatrices);
	}
}