/*--------------------------------------------------------------- mahalanobisDistanceTo ---------------------------------------------------------------*/ double CPointPDFGaussian::mahalanobisDistanceTo( const CPointPDFGaussian & other, bool only_2D ) const { // The difference in means: CMatrixDouble13 deltaX; deltaX.get_unsafe(0,0) = other.mean.x() - mean.x(); deltaX.get_unsafe(0,1) = other.mean.y() - mean.y(); deltaX.get_unsafe(0,2) = other.mean.z() - mean.z(); // The inverse of the combined covs: CMatrixDouble33 COV = other.cov; COV += this->cov; if (!only_2D) { CMatrixDouble33 COV_inv; COV.inv(COV_inv); return sqrt( deltaX.multiply_HCHt_scalar(COV_inv) ); } else { CMatrixDouble22 C = COV.block(0,0,2,2); CMatrixDouble22 COV_inv; C.inv(COV_inv); CMatrixDouble12 deltaX2 = deltaX.block(0,0,1,2); return std::sqrt( deltaX2.multiply_HCHt_scalar(COV_inv) ); } }
/*--------------------------------------------------------------- productIntegralWith2D ---------------------------------------------------------------*/ double CPointPDFGaussian::productIntegralWith2D( const CPointPDFGaussian &p) const { MRPT_START // -------------------------------------------------------------- // 12/APR/2009 - Jose Luis Blanco: // The integral over all the variable space of the product of two // Gaussians variables amounts to simply the evaluation of // a normal PDF at (0,0), with mean=M1-M2 and COV=COV1+COV2 // --------------------------------------------------------------- CMatrixDouble22 C = cov.block(0,0,2,2); C+=p.cov.block(0,0,2,2); // Sum of covs: CMatrixDouble22 C_inv; C.inv(C_inv); CMatrixDouble21 MU(UNINITIALIZED_MATRIX); // Diff. of means MU.get_unsafe(0,0) = mean.x() - p.mean.x(); MU.get_unsafe(1,0) = mean.y() - p.mean.y(); return std::pow( M_2PI, -0.5*(state_length-1) ) * (1.0/std::sqrt( C.det() )) * exp( -0.5* MU.multiply_HtCH_scalar(C_inv) ); MRPT_END }
/*--------------------------------------------------------------- bayesianFusion ---------------------------------------------------------------*/ void CPoint2DPDFGaussian::bayesianFusion( const CPoint2DPDFGaussian &p1, const CPoint2DPDFGaussian &p2 ) { MRPT_START CMatrixDouble22 C1_inv; p1.cov.inv(C1_inv); CMatrixDouble22 C2_inv; p2.cov.inv(C2_inv); CMatrixDouble22 L = C1_inv; L+= C2_inv; L.inv(cov); // The new cov. CMatrixDouble21 x1 = CMatrixDouble21(p1.mean); CMatrixDouble21 x2 = CMatrixDouble21(p2.mean); CMatrixDouble21 x = cov * ( C1_inv*x1 + C2_inv*x2 ); mean.x( x.get_unsafe(0,0) ); mean.y( x.get_unsafe(1,0) ); std::cout << "IN1: " << p1.mean << "\n" << p1.cov << "\n"; std::cout << "IN2: " << p2.mean << "\n" << p2.cov << "\n"; std::cout << "OUT: " << mean << "\n" << cov << "\n"; MRPT_END }
/*--------------------------------------------------------------- changeCoordinatesReference ---------------------------------------------------------------*/ void CPoint2DPDFGaussian::changeCoordinatesReference(const CPose3D &newReferenceBase ) { // Clip the 3x3 rotation matrix const CMatrixDouble22 M = newReferenceBase.getRotationMatrix().block(0,0,2,2); // The mean: mean = CPoint2D( newReferenceBase + mean ); // The covariance: cov = M*cov*M.transpose(); }
/*--------------------------------------------------------------- AlignPDF_robustMatch ---------------------------------------------------------------*/ CPosePDF::Ptr CGridMapAligner::AlignPDF_robustMatch( const mrpt::maps::CMetricMap* mm1, const mrpt::maps::CMetricMap* mm2, const CPosePDFGaussian& initialEstimationPDF, float* runningTime, void* info) { MRPT_START ASSERT_( options.methodSelection == CGridMapAligner::amRobustMatch || options.methodSelection == CGridMapAligner::amModifiedRANSAC); TReturnInfo outInfo; mrpt::tfest::TMatchingPairList& correspondences = outInfo.correspondences; // Use directly this placeholder to save 1 // variable & 1 copy. mrpt::tfest::TMatchingPairList largestConsensusCorrs; CTicTac* tictac = nullptr; CPose2D grossEst = initialEstimationPDF.mean; CLandmarksMap::Ptr lm1(new CLandmarksMap()); CLandmarksMap::Ptr lm2(new CLandmarksMap()); std::vector<size_t> idxs1, idxs2; std::vector<size_t>::iterator it1, it2; // Asserts: // ----------------- const CMultiMetricMap* multimap1 = nullptr; const CMultiMetricMap* multimap2 = nullptr; const COccupancyGridMap2D* m1 = nullptr; const COccupancyGridMap2D* m2 = nullptr; if (IS_CLASS(mm1, CMultiMetricMap) && IS_CLASS(mm2, CMultiMetricMap)) { multimap1 = static_cast<const CMultiMetricMap*>(mm1); multimap2 = static_cast<const CMultiMetricMap*>(mm2); ASSERT_(multimap1->m_gridMaps.size() && multimap1->m_gridMaps[0]); ASSERT_(multimap2->m_gridMaps.size() && multimap2->m_gridMaps[0]); m1 = multimap1->m_gridMaps[0].get(); m2 = multimap2->m_gridMaps[0].get(); } else if ( IS_CLASS(mm1, COccupancyGridMap2D) && IS_CLASS(mm2, COccupancyGridMap2D)) { m1 = static_cast<const COccupancyGridMap2D*>(mm1); m2 = static_cast<const COccupancyGridMap2D*>(mm2); } else THROW_EXCEPTION( "Metric maps must be of classes COccupancyGridMap2D or " "CMultiMetricMap"); ASSERTMSG_( m1->getResolution() == m2->getResolution(), mrpt::format( "Different resolutions for m1, m2:\n" "\tres(m1) = %f\n\tres(m2) = %f\n", m1->getResolution(), m2->getResolution())); // The algorithm output auxiliar info: // ------------------------------------------------- outInfo.goodness = 1.0f; outInfo.landmarks_map1 = lm1; outInfo.landmarks_map2 = lm2; // The PDF to estimate: // ------------------------------------------------------ CPosePDFSOG::Ptr pdf_SOG = mrpt::make_aligned_shared<CPosePDFSOG>(); // Extract features from grid-maps: // ------------------------------------------------------ const size_t N1 = std::max(40, mrpt::round(m1->getArea() * options.featsPerSquareMeter)); const size_t N2 = std::max(40, mrpt::round(m2->getArea() * options.featsPerSquareMeter)); m_grid_feat_extr.extractFeatures( *m1, *lm1, N1, options.feature_descriptor, options.feature_detector_options); m_grid_feat_extr.extractFeatures( *m2, *lm2, N2, options.feature_descriptor, options.feature_detector_options); if (runningTime) { tictac = new CTicTac(); tictac->Tic(); } const size_t nLM1 = lm1->size(); const size_t nLM2 = lm2->size(); // At least two landmarks at each map! // ------------------------------------------------------ if (nLM1 < 2 || nLM2 < 2) { outInfo.goodness = 0; } else { //#define METHOD_FFT //#define DEBUG_SHOW_CORRELATIONS // Compute correlation between landmarks: // --------------------------------------------- CMatrixFloat CORR(lm1->size(), lm2->size()), auxCorr; CImage im1, im2; // Grayscale CVectorFloat corr; unsigned int corrsCount = 0; std::vector<bool> hasCorr(nLM1, false); const double thres_max = options.threshold_max; const double thres_delta = options.threshold_delta; // CDisplayWindowPlots::Ptr auxWin; if (options.debug_show_corrs) { // auxWin = CDisplayWindowPlots::Ptr( new // CDisplayWindowPlots("Individual corr.") ); std::cerr << "Warning: options.debug_show_corrs has no effect " "since MRPT 0.9.1\n"; } for (size_t idx1 = 0; idx1 < nLM1; idx1++) { // CVectorFloat corrs_indiv; vector<pair<size_t, float>> corrs_indiv; // (index, distance); // Index is used to // recover the original // index after sorting. vector<float> corrs_indiv_only; corrs_indiv.reserve(nLM2); corrs_indiv_only.reserve(nLM2); for (size_t idx2 = 0; idx2 < nLM2; idx2++) { float minDist; minDist = lm1->landmarks.get(idx1)->features[0]->descriptorDistanceTo( *lm2->landmarks.get(idx2)->features[0]); corrs_indiv.emplace_back(idx2, minDist); corrs_indiv_only.push_back(minDist); } // end for idx2 // double corr_mean,corr_std; // mrpt::math::meanAndStd(corrs_indiv_only,corr_mean,corr_std); const double corr_best = mrpt::math::minimum(corrs_indiv_only); // cout << "M: " << corr_mean << " std: " << corr_std << " best: " // << corr_best << endl; // Sort the list and keep the N best features: std::sort(corrs_indiv.begin(), corrs_indiv.end(), myVectorOrder); // const size_t nBestToKeep = std::min( (size_t)30, // corrs_indiv.size() ); const size_t nBestToKeep = corrs_indiv.size(); for (size_t w = 0; w < nBestToKeep; w++) { if (corrs_indiv[w].second <= thres_max && corrs_indiv[w].second <= (corr_best + thres_delta)) { idxs1.push_back(idx1); idxs2.push_back(corrs_indiv[w].first); outInfo.correspondences_dists_maha.emplace_back( idx1, corrs_indiv[w].first, corrs_indiv[w].second); } } } // end for idx1 // Save an image with each feature and its matches: if (options.save_feat_coors) { mrpt::system::deleteFilesInDirectory("grid_feats"); mrpt::system::createDirectory("grid_feats"); std::map<size_t, std::set<size_t>> corrs_by_idx; for (size_t l = 0; l < idxs1.size(); l++) corrs_by_idx[idxs1[l]].insert(idxs2[l]); for (auto& it : corrs_by_idx) { CMatrixFloat descriptor1; lm1->landmarks.get(it.first) ->features[0] ->getFirstDescriptorAsMatrix(descriptor1); im1 = CImage(descriptor1, true); const size_t FEAT_W = im1.getWidth(); const size_t FEAT_H = im1.getHeight(); const size_t nF = it.second.size(); CImage img_compose(FEAT_W * 2 + 15, 10 + (5 + FEAT_H) * nF); img_compose.filledRectangle( 0, 0, img_compose.getWidth() - 1, img_compose.getHeight() - 1, TColor::black()); img_compose.drawImage(5, 5, im1); size_t j; std::set<size_t>::iterator it_j; string fil = format("grid_feats/_FEAT_MATCH_%03i", (int)it.first); for (j = 0, it_j = it.second.begin(); j < nF; ++j, ++it_j) { fil += format("_%u", static_cast<unsigned int>(*it_j)); CMatrixFloat descriptor2; lm2->landmarks.get(*it_j) ->features[0] ->getFirstDescriptorAsMatrix(descriptor2); im2 = CImage(descriptor2, true); img_compose.drawImage( 10 + FEAT_W, 5 + j * (FEAT_H + 5), im2); } fil += ".png"; img_compose.saveToFile(fil); } // end for map } // ------------------------------------------------------------------ // Create the list of correspondences from the lists: idxs1 & idxs2 // ------------------------------------------------------------------ correspondences.clear(); for (it1 = idxs1.begin(), it2 = idxs2.begin(); it1 != idxs1.end(); ++it1, ++it2) { mrpt::tfest::TMatchingPair mp; mp.this_idx = *it1; mp.this_x = lm1->landmarks.get(*it1)->pose_mean.x; mp.this_y = lm1->landmarks.get(*it1)->pose_mean.y; mp.this_z = lm1->landmarks.get(*it1)->pose_mean.z; mp.other_idx = *it2; mp.other_x = lm2->landmarks.get(*it2)->pose_mean.x; mp.other_y = lm2->landmarks.get(*it2)->pose_mean.y; mp.other_z = lm2->landmarks.get(*it2)->pose_mean.z; correspondences.push_back(mp); if (!hasCorr[*it1]) { hasCorr[*it1] = true; corrsCount++; } } // end for corres. outInfo.goodness = (2.0f * corrsCount) / (nLM1 + nLM2); // Compute the estimation using ALL the correspondences (NO ROBUST): // ---------------------------------------------------------------------- mrpt::math::TPose2D noRobustEst; if (!mrpt::tfest::se2_l2(correspondences, noRobustEst)) { // There's no way to match the maps! e.g. no correspondences outInfo.goodness = 0; pdf_SOG->clear(); outInfo.sog1 = pdf_SOG; outInfo.sog2 = pdf_SOG; outInfo.sog3 = pdf_SOG; } else { outInfo.noRobustEstimation = mrpt::poses::CPose2D(noRobustEst); MRPT_LOG_INFO(mrpt::format( "[CGridMapAligner] Overall estimation(%u corrs, total: " "%u): (%.03f,%.03f,%.03fdeg)\n", corrsCount, (unsigned)correspondences.size(), outInfo.noRobustEstimation.x(), outInfo.noRobustEstimation.y(), RAD2DEG(outInfo.noRobustEstimation.phi()))); // The list of SOG modes & their corresponding sub-sets of // matchings: using TMapMatchingsToPoseMode = mrpt::aligned_std_map< mrpt::tfest::TMatchingPairList, CPosePDFSOG::TGaussianMode>; TMapMatchingsToPoseMode sog_modes; // --------------------------------------------------------------- // Now, we have to choose between the methods: // - CGridMapAligner::amRobustMatch ("normal" RANSAC) // - CGridMapAligner::amModifiedRANSAC // --------------------------------------------------------------- if (options.methodSelection == CGridMapAligner::amRobustMatch) { // ==================================================== // METHOD: "Normal" RANSAC // ==================================================== // RANSAC over the found correspondences: // ------------------------------------------------- const unsigned int min_inliers = options.ransac_minSetSizeRatio * (nLM1 + nLM2) / 2; mrpt::tfest::TSE2RobustParams tfest_params; tfest_params.ransac_minSetSize = min_inliers; tfest_params.ransac_maxSetSize = nLM1 + nLM2; tfest_params.ransac_mahalanobisDistanceThreshold = options.ransac_mahalanobisDistanceThreshold; tfest_params.ransac_nSimulations = 0; // 0=auto tfest_params.ransac_fuseByCorrsMatch = true; tfest_params.ransac_fuseMaxDiffXY = 0.01; tfest_params.ransac_fuseMaxDiffPhi = DEG2RAD(0.1); tfest_params.ransac_algorithmForLandmarks = true; tfest_params.probability_find_good_model = options.ransac_prob_good_inliers; tfest_params.verbose = false; mrpt::tfest::TSE2RobustResult tfest_result; mrpt::tfest::se2_l2_robust( correspondences, options.ransac_SOG_sigma_m, tfest_params, tfest_result); ASSERT_(pdf_SOG); *pdf_SOG = tfest_result.transformation; largestConsensusCorrs = tfest_result.largestSubSet; // Simplify the SOG by merging close modes: // ------------------------------------------------- size_t nB = pdf_SOG->size(); outInfo.sog1 = pdf_SOG; // Keep only the most-likely Gaussian mode: CPosePDFSOG::TGaussianMode best_mode; best_mode.log_w = -std::numeric_limits<double>::max(); for (size_t n = 0; n < pdf_SOG->size(); n++) { const CPosePDFSOG::TGaussianMode& m = (*pdf_SOG)[n]; if (m.log_w > best_mode.log_w) best_mode = m; } pdf_SOG->clear(); pdf_SOG->push_back(best_mode); outInfo.sog2 = pdf_SOG; MRPT_LOG_INFO_STREAM( "[CGridMapAligner] amRobustMatch: " << nB << " SOG modes reduced to " << pdf_SOG->size() << " (most-likely) (min.inliers=" << min_inliers << ")\n"); } // end of amRobustMatch else { // ==================================================== // METHOD: "Modified" RANSAC // ==================================================== mrpt::tfest::TMatchingPairList all_corrs = correspondences; const size_t nCorrs = all_corrs.size(); ASSERT_(nCorrs >= 2); pdf_SOG->clear(); // Start with 0 Gaussian modes // Build a points-map for exploiting its KD-tree: // ---------------------------------------------------- CSimplePointsMap lm1_pnts, lm2_pnts; lm1_pnts.reserve(nLM1); for (size_t i = 0; i < nLM1; i++) lm1_pnts.insertPoint(lm1->landmarks.get(i)->pose_mean); lm2_pnts.reserve(nLM2); for (size_t i = 0; i < nLM2; i++) lm2_pnts.insertPoint(lm2->landmarks.get(i)->pose_mean); // RANSAC loop // --------------------- const size_t minInliersTOaccept = round(options.ransac_minSetSizeRatio * 0.5 * (nLM1 + nLM2)); // Set an initial # of iterations: const unsigned int ransac_min_nSimulations = 2 * (nLM1 + nLM2); // 1000; unsigned int ransac_nSimulations = 10; // It doesn't matter actually, since will be changed in // the first loop const double probability_find_good_model = 0.9999; const double chi2_thres_dim1 = mrpt::math::chi2inv(options.ransac_chi2_quantile, 1); const double chi2_thres_dim2 = mrpt::math::chi2inv(options.ransac_chi2_quantile, 2); // Generic 2x2 covariance matrix for all features in their local // coords: CMatrixDouble22 COV_pnt; COV_pnt.get_unsafe(0, 0) = COV_pnt.get_unsafe(1, 1) = square(options.ransac_SOG_sigma_m); // The absolute number of trials. // in practice it's only important for a reduced number of // correspondences, to avoid a dead-lock: // It's the binomial coefficient: // / n \ n! n * (n-1) // | | = ----------- = ----------- // \ 2 / 2! (n-2)! 2 // const unsigned int max_trials = (nCorrs * (nCorrs - 1) / 2) * 5; // "*5" is just for safety... unsigned int iter = 0; // Valid iterations (those passing the // first mahalanobis test) unsigned int trials = 0; // counter of all iterations, // including "iter" + failing ones. while (iter < ransac_nSimulations && trials < max_trials) // ransac_nSimulations can be dynamic { trials++; mrpt::tfest::TMatchingPairList tentativeSubSet; // Pick 2 random correspondences: uint32_t idx1, idx2; idx1 = getRandomGenerator().drawUniform32bit() % nCorrs; do { idx2 = getRandomGenerator().drawUniform32bit() % nCorrs; } while (idx1 == idx2); // Avoid a degenerated case! // Uniqueness of features: if (all_corrs[idx1].this_idx == all_corrs[idx2].this_idx || all_corrs[idx1].this_idx == all_corrs[idx2].other_idx) continue; if (all_corrs[idx1].other_idx == all_corrs[idx2].this_idx || all_corrs[idx1].other_idx == all_corrs[idx2].other_idx) continue; // Check the feasibility of this pair "idx1"-"idx2": // The distance between the pair of points in MAP1 must be // very close // to that of their correspondences in MAP2: const double corrs_dist1 = mrpt::math::distanceBetweenPoints( all_corrs[idx1].this_x, all_corrs[idx1].this_y, all_corrs[idx1].this_z, all_corrs[idx2].this_x, all_corrs[idx2].this_y, all_corrs[idx2].this_z); const double corrs_dist2 = mrpt::math::distanceBetweenPoints( all_corrs[idx1].other_x, all_corrs[idx1].other_y, all_corrs[idx1].other_z, all_corrs[idx2].other_x, all_corrs[idx2].other_y, all_corrs[idx2].other_z); // Is is a consistent possibility? // We use a chi2 test (see paper for the derivation) const double corrs_dist_chi2 = square(square(corrs_dist1) - square(corrs_dist2)) / (8.0 * square(options.ransac_SOG_sigma_m) * (square(corrs_dist1) + square(corrs_dist2))); if (corrs_dist_chi2 > chi2_thres_dim1) continue; // Nope iter++; // Do not count iterations if they fail the test // above. // before proceeding with this hypothesis, is it an old one? bool is_new_hyp = true; for (auto& sog_mode : sog_modes) { if (sog_mode.first.contains(all_corrs[idx1]) && sog_mode.first.contains(all_corrs[idx2])) { // Increment weight: sog_mode.second.log_w = std::log(std::exp(sog_mode.second.log_w) + 1.0); is_new_hyp = false; break; } } if (!is_new_hyp) continue; // Ok, it's a new hypothesis: tentativeSubSet.push_back(all_corrs[idx1]); tentativeSubSet.push_back(all_corrs[idx2]); // Maintain a list of already used landmarks IDs in both // maps to avoid repetitions: std::vector<bool> used_landmarks1(nLM1, false); std::vector<bool> used_landmarks2(nLM2, false); used_landmarks1[all_corrs[idx1].this_idx] = true; used_landmarks1[all_corrs[idx2].this_idx] = true; used_landmarks2[all_corrs[idx1].other_idx] = true; used_landmarks2[all_corrs[idx2].other_idx] = true; // Build the transformation for these temptative // correspondences: bool keep_incorporating = true; CPosePDFGaussian temptPose; do // Incremently incorporate inliers: { if (!mrpt::tfest::se2_l2(tentativeSubSet, temptPose)) continue; // Invalid matching... // The computed cov is "normalized", i.e. must be // multiplied by std^2_xy temptPose.cov *= square(options.ransac_SOG_sigma_m); // cout << "q: " << temptPose << endl; // Find the landmark in MAP2 with the best (maximum) // product-integral: // (i^* , j^*) = arg max_(i,j) \int p_i()p_j() //---------------------------------------------------------------------- const double ccos = cos(temptPose.mean.phi()); const double ssin = sin(temptPose.mean.phi()); CMatrixDouble22 Hc; // Jacobian wrt point_j Hc.get_unsafe(1, 1) = ccos; Hc.get_unsafe(0, 0) = ccos; Hc.get_unsafe(1, 0) = ssin; Hc.get_unsafe(0, 1) = -ssin; CMatrixFixedNumeric<double, 2, 3> Hq; // Jacobian wrt transformation q Hq(0, 0) = 1; Hq(1, 1) = 1; TPoint2D p2_j_local; vector<float> matches_dist; std::vector<size_t> matches_idx; CPoint2DPDFGaussian pdf_M2_j; CPoint2DPDFGaussian pdf_M1_i; // Use integral-of-product vs. mahalanobis distances to match: #define GRIDMAP_USE_PROD_INTEGRAL #ifdef GRIDMAP_USE_PROD_INTEGRAL double best_pair_value = 0; #else double best_pair_value = std::numeric_limits<double>::max(); #endif double best_pair_d2 = std::numeric_limits<double>::max(); pair<size_t, size_t> best_pair_ij; //#define SHOW_CORRS #ifdef SHOW_CORRS CDisplayWindowPlots win("Matches"); #endif for (size_t j = 0; j < nLM2; j++) { if (used_landmarks2[j]) continue; lm2_pnts.getPoint( j, p2_j_local); // In local coords. pdf_M2_j.mean = mrpt::poses::CPoint2D( temptPose.mean + p2_j_local); // In (temptative) global coords: pdf_M2_j.cov.get_unsafe(0, 0) = pdf_M2_j.cov.get_unsafe(1, 1) = square(options.ransac_SOG_sigma_m); #ifdef SHOW_CORRS win.plotEllipse( pdf_M2_j.mean.x(), pdf_M2_j.mean.y(), pdf_M2_j.cov, 2, "b-", format("M2_%u", (unsigned)j), true); #endif static const unsigned int N_KDTREE_SEARCHED = 3; // Look for a few close features which may be // potential matches: lm1_pnts.kdTreeNClosestPoint2DIdx( pdf_M2_j.mean.x(), pdf_M2_j.mean.y(), N_KDTREE_SEARCHED, matches_idx, matches_dist); // And for each one, compute the product-integral: for (unsigned long u : matches_idx) { if (used_landmarks1[u]) continue; // Jacobian wrt transformation q Hq.get_unsafe(0, 2) = -p2_j_local.x * ssin - p2_j_local.y * ccos; Hq.get_unsafe(1, 2) = p2_j_local.x * ccos - p2_j_local.y * ssin; // COV_j = Hq \Sigma_q Hq^t + Hc Cj Hc^t Hc.multiply_HCHt(COV_pnt, pdf_M1_i.cov); Hq.multiply_HCHt( temptPose.cov, pdf_M1_i.cov, true); float px, py; lm1_pnts.getPoint(u, px, py); pdf_M1_i.mean.x(px); pdf_M1_i.mean.y(py); #ifdef SHOW_CORRS win.plotEllipse( pdf_M1_i.mean.x(), pdf_M1_i.mean.y(), pdf_M1_i.cov, 2, "r-", format("M1_%u", (unsigned)matches_idx[u]), true); #endif // And now compute the product integral: #ifdef GRIDMAP_USE_PROD_INTEGRAL const double prod_ij = pdf_M1_i.productIntegralWith(pdf_M2_j); // const double prod_ij_d2 = square( // pdf_M1_i.mahalanobisDistanceTo(pdf_M2_j) ); if (prod_ij > best_pair_value) #else const double prod_ij = pdf_M1_i.mean.distanceTo(pdf_M2_j.mean); if (prod_ij < best_pair_value) #endif { // const double prodint_ij = // pdf_M1_i.productIntegralWith2D(pdf_M2_j); best_pair_value = prod_ij; best_pair_ij.first = u; best_pair_ij.second = j; best_pair_d2 = square(pdf_M1_i.mahalanobisDistanceTo( pdf_M2_j)); // cout << "P1: " << pdf_M1_i.mean << " C= " // << pdf_M1_i.cov.inMatlabFormat() << endl; // cout << "P2: " << pdf_M2_j.mean << " C= " // << pdf_M2_j.cov.inMatlabFormat() << endl; // cout << " -> " << format("%e",prod_ij) // << " d2: " << best_pair_d2 << endl << // endl; } } // end for u (closest matches of LM2 in MAP 1) #ifdef SHOW_CORRS win.axis_fit(true); win.waitForKey(); win.clear(); #endif } // end for each LM2 // Stop when the best choice has a bad mahal. dist. keep_incorporating = false; // For the best (i,j), gate by the mahalanobis distance: if (best_pair_d2 < chi2_thres_dim2) { // AND, also, check if the descriptors have some // resemblance!! // ---------------------------------------------------------------- // double feat_dist = // lm1->landmarks.get(best_pair_ij.first)->features[0]->descriptorDistanceTo(*lm1->landmarks.get(best_pair_ij.second)->features[0]); // if (feat_dist< options.threshold_max) { float p1_i_localx, p1_i_localy; float p2_j_localx, p2_j_localy; lm1_pnts.getPoint( best_pair_ij.first, p1_i_localx, p1_i_localy); lm2_pnts.getPoint( best_pair_ij.second, p2_j_localx, p2_j_localy); // In local coords. used_landmarks1[best_pair_ij.first] = true; used_landmarks2[best_pair_ij.second] = true; tentativeSubSet.push_back( mrpt::tfest::TMatchingPair( best_pair_ij.first, best_pair_ij.second, p1_i_localx, p1_i_localy, 0, // MAP1 p2_j_localx, p2_j_localy, 0 // MAP2 )); keep_incorporating = true; } } } while (keep_incorporating); // Consider this pairing? const size_t ninliers = tentativeSubSet.size(); if (ninliers > minInliersTOaccept) { CPosePDFSOG::TGaussianMode newGauss; newGauss.log_w = 0; // log(1); // // std::log(static_cast<double>(nCoincidences)); newGauss.mean = temptPose.mean; newGauss.cov = temptPose.cov; sog_modes[tentativeSubSet] = newGauss; // cout << "ITER: " << iter << " #inliers: " << ninliers // << " q: " << temptPose.mean << endl; } // Keep the largest consensus & dynamic # of steps: if (largestConsensusCorrs.size() < ninliers) { largestConsensusCorrs = tentativeSubSet; // Update estimate of N, the number of trials to ensure // we pick, // with probability p, a data set with no outliers. const double fracinliers = ninliers / static_cast<double>(std::min(nLM1, nLM2)); double pNoOutliers = 1 - pow(fracinliers, static_cast<double>( 2.0)); // minimumSizeSamplesToFit pNoOutliers = std::max( std::numeric_limits<double>::epsilon(), pNoOutliers); // Avoid division by -Inf pNoOutliers = std::min( 1.0 - std::numeric_limits<double>::epsilon(), pNoOutliers); // Avoid division by 0. // Number of ransac_nSimulations = log(1 - probability_find_good_model) / log(pNoOutliers); if (ransac_nSimulations < ransac_min_nSimulations) ransac_nSimulations = ransac_min_nSimulations; // if (verbose) // cout << "[Align] Iter #" << iter << " Est. #iters: " //<< ransac_nSimulations << " pNoOutliers=" << // pNoOutliers << " #inliers: " << ninliers << endl; } } // end of RANSAC loop // Move SOG modes into pdf_SOG: pdf_SOG->clear(); for (auto s = sog_modes.begin(); s != sog_modes.end(); ++s) { cout << "SOG mode: " << s->second.mean << " inliers: " << s->first.size() << endl; pdf_SOG->push_back(s->second); } // Normalize: if (pdf_SOG->size() > 0) pdf_SOG->normalizeWeights(); // Simplify the SOG by merging close modes: // ------------------------------------------------- size_t nB = pdf_SOG->size(); outInfo.sog1 = pdf_SOG; CTicTac merge_clock; pdf_SOG->mergeModes(options.maxKLd_for_merge, false); const double merge_clock_tim = merge_clock.Tac(); outInfo.sog2 = pdf_SOG; size_t nA = pdf_SOG->size(); MRPT_LOG_INFO(mrpt::format( "[CGridMapAligner] amModifiedRANSAC: %u SOG modes " "merged to %u in %.03fsec\n", (unsigned int)nB, (unsigned int)nA, merge_clock_tim)); } // end of amModifiedRANSAC // Save best corrs: if (options.debug_save_map_pairs) { static unsigned int NN = 0; static const COccupancyGridMap2D* lastM1 = nullptr; if (lastM1 != m1) { lastM1 = m1; NN = 0; } printf( " Largest consensus: %u\n", static_cast<unsigned>(largestConsensusCorrs.size())); CEnhancedMetaFile::LINUX_IMG_WIDTH( m1->getSizeX() + m2->getSizeX() + 50); CEnhancedMetaFile::LINUX_IMG_HEIGHT( max(m1->getSizeY(), m2->getSizeY()) + 50); for (auto s = sog_modes.begin(); s != sog_modes.end(); ++s) { COccupancyGridMap2D::saveAsEMFTwoMapsWithCorrespondences( format("__debug_corrsGrid_%05u.emf", NN), m1, m2, s->first); COccupancyGridMap2D::saveAsBitmapTwoMapsWithCorrespondences( format("__debug_corrsGrid_%05u.png", NN), m1, m2, s->first); ++NN; } } // -------------------------------------------------------------------- // At this point: // - "pdf_SOG": has the resulting PDF with the SOG (from whatever // method) // - "largestConsensusCorrs": The 'best' set of correspondences // // Now: If we had a multi-metric map, use the points map to improve // the estimation with ICP. // -------------------------------------------------------------------- if (multimap1 && multimap2 && !multimap1->m_pointsMaps.empty() && !multimap2->m_pointsMaps.empty() && multimap1->m_pointsMaps[0] && multimap2->m_pointsMaps[0]) { CSimplePointsMap::Ptr pnts1 = multimap1->m_pointsMaps[0]; CSimplePointsMap::Ptr pnts2 = multimap2->m_pointsMaps[0]; CICP icp; CICP::TReturnInfo icpInfo; icp.options.maxIterations = 20; icp.options.smallestThresholdDist = 0.05f; icp.options.thresholdDist = 0.75f; // cout << "Points: " << pnts1->size() << " " << pnts2->size() // << endl; // Invoke ICP once for each mode in the SOG: size_t cnt = 0; outInfo.icp_goodness_all_sog_modes.clear(); for (auto i = pdf_SOG->begin(); i != pdf_SOG->end(); ++cnt) { CPosePDF::Ptr icp_est = icp.Align( pnts1.get(), pnts2.get(), (i)->mean, nullptr, &icpInfo); //(i)->cov(0,0) += square( 0.05 ); //(i)->cov(1,1) += square( 0.05 ); //(i)->cov(2,2) += square( DEG2RAD(0.05) ); CPosePDFGaussian i_gauss(i->mean, i->cov); CPosePDFGaussian icp_gauss(icp_est->getMeanVal(), i->cov); const double icp_maha_dist = i_gauss.mahalanobisDistanceTo(icp_gauss); cout << "ICP " << cnt << " log-w: " << i->log_w << " Goodness: " << 100 * icpInfo.goodness << " D_M= " << icp_maha_dist << endl; cout << " final pos: " << icp_est->getMeanVal() << endl; cout << " org pos: " << i->mean << endl; outInfo.icp_goodness_all_sog_modes.push_back( icpInfo.goodness); // Discard? if (icpInfo.goodness > options.min_ICP_goodness && icp_maha_dist < options.max_ICP_mahadist) { icp_est->getMean((i)->mean); ++i; } else { // Delete: i = pdf_SOG->erase(i); } } // end for i // Merge: outInfo.sog3 = pdf_SOG; pdf_SOG->mergeModes(options.maxKLd_for_merge, false); MRPT_LOG_DEBUG_STREAM( "[CGridMapAligner] " << pdf_SOG->size() << " SOG modes merged after ICP."); } // end multimapX } // end of, yes, we have enough correspondences } // end of: yes, there are landmarks in the grid maps! // Copy the output info if requested: // ------------------------------------------------- MRPT_TODO( "Refactor `info` so it is polymorphic and can use dynamic_cast<> here"); if (info) { auto* info_ = static_cast<TReturnInfo*>(info); *info_ = outInfo; } if (runningTime) { *runningTime = tictac->Tac(); delete tictac; } return pdf_SOG; MRPT_END }
// ------------------------------------------------------ // TestRandomGenerators // ------------------------------------------------------ void TestRandomGenerators() { vector_double x,y; randomGenerator.randomize(); // Uniform numbers integers: CDisplayWindowPlots win1("Unif(0,5) (integers)"); win1.setPos(10,10); win1.resize(400,400); { //vector_double v1(100000); vector_size_t v1(100000); randomGenerator.drawUniformVector(v1 ,0, 5.999); CHistogram hist(-2,15, 100); hist.add(v1); hist.getHistogramNormalized(x,y); win1.plot(x,y,"b"); win1.axis_fit(); } // Normalized Gauss: CDisplayWindowPlots win2("N(mean=0,std=1)"); win2.setPos(420,10); win2.resize(400,400); { vector_double v1(100000); randomGenerator.drawGaussian1DVector(v1 ,0,1); CHistogram hist(-5,5,100); hist.add(v1); hist.getHistogramNormalized(x,y); win2.plot(x,y,"b"); vector_double y_real(y.size()); for (vector_double::Index k=0; k<y_real.size(); k++) y_real[k] = mrpt::math::normalPDF(x[k],0,1); win2.plot(x,y_real,"k-","real"); win2.axis_fit(); } // Example Gauss: CDisplayWindowPlots win3("N(mean=3,std=2)"); win3.setPos(10,430); win3.resize(400,400); { vector_double v1(100000); randomGenerator.drawGaussian1DVector(v1 ,3,2); CHistogram hist(-5,15,100); hist.add(v1); hist.getHistogramNormalized(x,y); win3.plot(x,y,"b"); vector_double y_real(y.size()); for (vector_double::Index k=0; k<y_real.size(); k++) y_real[k] = mrpt::math::normalPDF(x[k],3,2); win3.plot(x,y_real,"k-","real"); win3.axis_fit(); } // Example multi-variate Gauss: CDisplayWindowPlots win4("N(mean=[3 4],var=[4 -2;-2 4])"); win4.setPos(420,430); win4.resize(400,400); { vector<vector_double> v1; vector_double Mean(2); Mean[0] = 3; Mean[1] = 2; //CMatrixDouble cov(2,2); CMatrixDouble22 cov; cov.fromMatlabStringFormat("[7.5 -7;-7 8]"); randomGenerator.drawGaussianMultivariateMany(v1,10000,cov,&Mean); #if 0 vector_double m; CMatrixDouble c; mrpt::math::meanAndCov(v1,m,c); cout << "Mean: " << m << endl; cout << "Std: " << endl << c << endl; #endif // pass to (x,y) vectors: vector_double x(v1.size()), y(v1.size()); for (size_t i=0; i<v1.size(); i++) { x[i] = v1[i][0]; y[i] = v1[i][1]; } win4.plot(x,y,"b.3"); win4.plotEllipse(Mean[0],Mean[1],cov,3.0,"k-2","99% ellipse",true); win4.axis_fit(); } mrpt::system::pause(); }