void CallGraph::addToCallGraph(Function *F) { CallGraphNode *Node = getOrInsertFunction(F); // If this function has external linkage or has its address taken, anything // could call it. if (!F->hasLocalLinkage() || F->hasAddressTaken()) ExternalCallingNode->addCalledFunction(CallSite(), Node); // If this function is not defined in this translation unit, it could call // anything. if (F->isDeclaration() && !F->isIntrinsic()) Node->addCalledFunction(CallSite(), CallsExternalNode.get()); // Look for calls by this function. for (BasicBlock &BB : *F) for (Instruction &I : BB) { if (auto CS = CallSite(&I)) { const Function *Callee = CS.getCalledFunction(); if (!Callee || !Intrinsic::isLeaf(Callee->getIntrinsicID())) // Indirect calls of intrinsics are not allowed so no need to check. // We can be more precise here by using TargetArg returned by // Intrinsic::isLeaf. Node->addCalledFunction(CS, CallsExternalNode.get()); else if (!Callee->isIntrinsic()) Node->addCalledFunction(CS, getOrInsertFunction(Callee)); } } }
/// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee /// into the caller, update the specified callgraph to reflect the changes we /// made. Note that it's possible that not all code was copied over, so only /// some edges of the callgraph may remain. static void UpdateCallGraphAfterInlining(CallSite CS, Function::iterator FirstNewBlock, ValueToValueMapTy &VMap, InlineFunctionInfo &IFI) { CallGraph &CG = *IFI.CG; const Function *Caller = CS.getInstruction()->getParent()->getParent(); const Function *Callee = CS.getCalledFunction(); CallGraphNode *CalleeNode = CG[Callee]; CallGraphNode *CallerNode = CG[Caller]; // Since we inlined some uninlined call sites in the callee into the caller, // add edges from the caller to all of the callees of the callee. CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); // Consider the case where CalleeNode == CallerNode. CallGraphNode::CalledFunctionsVector CallCache; if (CalleeNode == CallerNode) { CallCache.assign(I, E); I = CallCache.begin(); E = CallCache.end(); } for (; I != E; ++I) { const Value *OrigCall = I->first; ValueToValueMapTy::iterator VMI = VMap.find(OrigCall); // Only copy the edge if the call was inlined! if (VMI == VMap.end() || VMI->second == 0) continue; // If the call was inlined, but then constant folded, there is no edge to // add. Check for this case. Instruction *NewCall = dyn_cast<Instruction>(VMI->second); if (NewCall == 0) continue; // Remember that this call site got inlined for the client of // InlineFunction. IFI.InlinedCalls.push_back(NewCall); // It's possible that inlining the callsite will cause it to go from an // indirect to a direct call by resolving a function pointer. If this // happens, set the callee of the new call site to a more precise // destination. This can also happen if the call graph node of the caller // was just unnecessarily imprecise. if (I->second->getFunction() == 0) if (Function *F = CallSite(NewCall).getCalledFunction()) { // Indirect call site resolved to direct call. CallerNode->addCalledFunction(CallSite(NewCall), CG[F]); continue; } CallerNode->addCalledFunction(CallSite(NewCall), I->second); } // Update the call graph by deleting the edge from Callee to Caller. We must // do this after the loop above in case Caller and Callee are the same. CallerNode->removeCallEdgeFor(CS); }
/// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee /// into the caller, update the specified callgraph to reflect the changes we /// made. Note that it's possible that not all code was copied over, so only /// some edges of the callgraph will be remain. static void UpdateCallGraphAfterInlining(const Function *Caller, const Function *Callee, Function::iterator FirstNewBlock, DenseMap<const Value*, Value*> &ValueMap, CallGraph &CG) { // Update the call graph by deleting the edge from Callee to Caller CallGraphNode *CalleeNode = CG[Callee]; CallGraphNode *CallerNode = CG[Caller]; CallerNode->removeCallEdgeTo(CalleeNode); // Since we inlined some uninlined call sites in the callee into the caller, // add edges from the caller to all of the callees of the callee. for (CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); I != E; ++I) { const Instruction *OrigCall = I->first.getInstruction(); DenseMap<const Value*, Value*>::iterator VMI = ValueMap.find(OrigCall); // Only copy the edge if the call was inlined! if (VMI != ValueMap.end() && VMI->second) { // If the call was inlined, but then constant folded, there is no edge to // add. Check for this case. if (Instruction *NewCall = dyn_cast<Instruction>(VMI->second)) CallerNode->addCalledFunction(CallSite::get(NewCall), I->second); } } }
void ManualInliner::run(std::vector<Function *>::iterator fbegin, std::vector<Function *>::iterator fend) { std::vector<CallGraphNode*> nodes; //the inliner requires an up to date callgraph, so we add the functions in the SCC //to the callgraph. If needed, we can do this during function creation to make it faster for(std::vector<Function *>::iterator fp = fbegin; fp != fend; ++fp) { Function * F = *fp; CallGraphNode * n = CG->getOrInsertFunction(F); for (Function::iterator BB = F->begin(), BBE = F->end(); BB != BBE; ++BB) for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE; ++II) { CallSite CS(cast<Value>(II)); if (CS) { const Function *Callee = CS.getCalledFunction(); if (Callee && !Callee->isIntrinsic()) { CallGraphNode * n2 = CG->getOrInsertFunction(Callee); n->addCalledFunction(CS,n2); } } } nodes.push_back(n); } //create a fake SCC node and manually run the inliner pass on it. CallGraphSCC SCC(NULL); SCC.initialize(&nodes[0], &nodes[0]+nodes.size()); SI->runOnSCC(SCC); //We optimize the function now, which will invalidate the call graph, //removing called functions makes sure that further inlining passes don't attempt to add invalid callsites as inlining candidates for(std::vector<Function *>::iterator fp = fbegin; fp != fend; ++fp) { CG->getOrInsertFunction(*fp)->removeAllCalledFunctions(); } }
// addToCallGraph - Add a function to the call graph, and link the node to all // of the functions that it calls. // void addToCallGraph(Function *F) { CallGraphNode *Node = getOrInsertFunction(F); // If this function has external linkage, anything could call it. if (!F->hasLocalLinkage()) { ExternalCallingNode->addCalledFunction(CallSite(), Node); // Found the entry point? if (F->getName() == "main") { if (Root) // Found multiple external mains? Don't pick one. Root = ExternalCallingNode; else Root = Node; // Found a main, keep track of it! } } // Loop over all of the users of the function, looking for non-call uses. for (Value::use_iterator I = F->use_begin(), E = F->use_end(); I != E; ++I) if ((!isa<CallInst>(I) && !isa<InvokeInst>(I)) || !CallSite(cast<Instruction>(I)).isCallee(I)) { // Not a call, or being used as a parameter rather than as the callee. ExternalCallingNode->addCalledFunction(CallSite(), Node); break; } // If this function is not defined in this translation unit, it could call // anything. if (F->isDeclaration() && !F->isIntrinsic()) Node->addCalledFunction(CallSite(), CallsExternalNode); // Look for calls by this function. for (Function::iterator BB = F->begin(), BBE = F->end(); BB != BBE; ++BB) for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE; ++II) { CallSite CS = CallSite::get(II); if (CS.getInstruction() && !isa<DbgInfoIntrinsic>(II)) { const Function *Callee = CS.getCalledFunction(); if (Callee) Node->addCalledFunction(CS, getOrInsertFunction(Callee)); else Node->addCalledFunction(CS, CallsExternalNode); } } }
void CallGraph::addToCallGraph(Function *F) { CallGraphNode *Node = getOrInsertFunction(F); // If this function has external linkage, anything could call it. if (!F->hasLocalLinkage()) { ExternalCallingNode->addCalledFunction(CallSite(), Node); // Found the entry point? if (F->getName() == "main") { if (Root) // Found multiple external mains? Don't pick one. Root = ExternalCallingNode; else Root = Node; // Found a main, keep track of it! } } // If this function has its address taken, anything could call it. if (F->hasAddressTaken()) ExternalCallingNode->addCalledFunction(CallSite(), Node); // If this function is not defined in this translation unit, it could call // anything. if (F->isDeclaration() && !F->isIntrinsic()) Node->addCalledFunction(CallSite(), CallsExternalNode.get()); // Look for calls by this function. for (Function::iterator BB = F->begin(), BBE = F->end(); BB != BBE; ++BB) for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE; ++II) { CallSite CS(cast<Value>(II)); if (CS) { const Function *Callee = CS.getCalledFunction(); if (!Callee || !Intrinsic::isLeaf(Callee->getIntrinsicID())) // Indirect calls of intrinsics are not allowed so no need to check. // We can be more precise here by using TargetArg returned by // Intrinsic::isLeaf. Node->addCalledFunction(CS, CallsExternalNode.get()); else if (!Callee->isIntrinsic()) Node->addCalledFunction(CS, getOrInsertFunction(Callee)); } } }
Function * StructuredModuleEditor::cloneFunc(Function * Original) { if (Original == NULL) return NULL; ValueMap<const Value*, WeakVH> VMap; // Creates a clone of the function we are cloning Function *Clone = CloneFunction(Original, VMap, false); Clone->setName(Original->getName() + "-cloned"); // Adds the clone to the Module M->getFunctionList().push_back(Clone); // Adds the clone to the CFG CG->getOrInsertFunction(Clone); // Adds each of the original function's CFG node's interprocedural out-edges // to the clone's node. All of the original function's intraprocedural in-edges are redirected to the cloned function. // The clone will have no interprocedural in-edges as it // was just created. CallGraphNode *CloneNode = CG->getOrInsertFunction(Clone); for (Function::iterator BBI = Clone->begin(), BBE = Clone->end(); BBI != BBE; ++BBI) { for (BasicBlock::iterator II = BBI->begin(), IE = BBI->end(); II != IE; ++II) { CallSite CS(cast<Value>(II)); // If this isn't a call, or it is a call to an intrinsic... if (!CS || isa<IntrinsicInst>(II)) continue; Function *Callee = CS.getCalledFunction(); if (Callee == Original) { Callee = Clone; CS.setCalledFunction(Clone); } CloneNode->addCalledFunction(CS, CG->getOrInsertFunction(Callee)); } } return Clone; }
/// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee /// into the caller, update the specified callgraph to reflect the changes we /// made. Note that it's possible that not all code was copied over, so only /// some edges of the callgraph may remain. static void UpdateCallGraphAfterInlining(CallSite CS, Function::iterator FirstNewBlock, DenseMap<const Value*, Value*> &ValueMap, CallGraph &CG) { const Function *Caller = CS.getInstruction()->getParent()->getParent(); const Function *Callee = CS.getCalledFunction(); CallGraphNode *CalleeNode = CG[Callee]; CallGraphNode *CallerNode = CG[Caller]; // Since we inlined some uninlined call sites in the callee into the caller, // add edges from the caller to all of the callees of the callee. CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); // Consider the case where CalleeNode == CallerNode. CallGraphNode::CalledFunctionsVector CallCache; if (CalleeNode == CallerNode) { CallCache.assign(I, E); I = CallCache.begin(); E = CallCache.end(); } for (; I != E; ++I) { const Instruction *OrigCall = I->first.getInstruction(); DenseMap<const Value*, Value*>::iterator VMI = ValueMap.find(OrigCall); // Only copy the edge if the call was inlined! if (VMI != ValueMap.end() && VMI->second) { // If the call was inlined, but then constant folded, there is no edge to // add. Check for this case. if (Instruction *NewCall = dyn_cast<Instruction>(VMI->second)) CallerNode->addCalledFunction(CallSite::get(NewCall), I->second); } } // Update the call graph by deleting the edge from Callee to Caller. We must // do this after the loop above in case Caller and Callee are the same. CallerNode->removeCallEdgeFor(CS); }
// InlineFunction - This function inlines the called function into the basic // block of the caller. This returns false if it is not possible to inline this // call. The program is still in a well defined state if this occurs though. // // Note that this only does one level of inlining. For example, if the // instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now // exists in the instruction stream. Similiarly this will inline a recursive // function by one level. // bool llvm::InlineFunction(CallSite CS, CallGraph *CG, const TargetData *TD) { Instruction *TheCall = CS.getInstruction(); assert(TheCall->getParent() && TheCall->getParent()->getParent() && "Instruction not in function!"); const Function *CalledFunc = CS.getCalledFunction(); if (CalledFunc == 0 || // Can't inline external function or indirect CalledFunc->isDeclaration() || // call, or call to a vararg function! CalledFunc->getFunctionType()->isVarArg()) return false; // If the call to the callee is not a tail call, we must clear the 'tail' // flags on any calls that we inline. bool MustClearTailCallFlags = !(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall()); // If the call to the callee cannot throw, set the 'nounwind' flag on any // calls that we inline. bool MarkNoUnwind = CS.doesNotThrow(); BasicBlock *OrigBB = TheCall->getParent(); Function *Caller = OrigBB->getParent(); // GC poses two hazards to inlining, which only occur when the callee has GC: // 1. If the caller has no GC, then the callee's GC must be propagated to the // caller. // 2. If the caller has a differing GC, it is invalid to inline. if (CalledFunc->hasGC()) { if (!Caller->hasGC()) Caller->setGC(CalledFunc->getGC()); else if (CalledFunc->getGC() != Caller->getGC()) return false; } // Get an iterator to the last basic block in the function, which will have // the new function inlined after it. // Function::iterator LastBlock = &Caller->back(); // Make sure to capture all of the return instructions from the cloned // function. std::vector<ReturnInst*> Returns; ClonedCodeInfo InlinedFunctionInfo; Function::iterator FirstNewBlock; { // Scope to destroy ValueMap after cloning. DenseMap<const Value*, Value*> ValueMap; assert(CalledFunc->arg_size() == CS.arg_size() && "No varargs calls can be inlined!"); // Calculate the vector of arguments to pass into the function cloner, which // matches up the formal to the actual argument values. CallSite::arg_iterator AI = CS.arg_begin(); unsigned ArgNo = 0; for (Function::const_arg_iterator I = CalledFunc->arg_begin(), E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { Value *ActualArg = *AI; // When byval arguments actually inlined, we need to make the copy implied // by them explicit. However, we don't do this if the callee is readonly // or readnone, because the copy would be unneeded: the callee doesn't // modify the struct. if (CalledFunc->paramHasAttr(ArgNo+1, Attribute::ByVal) && !CalledFunc->onlyReadsMemory()) { const Type *AggTy = cast<PointerType>(I->getType())->getElementType(); const Type *VoidPtrTy = PointerType::getUnqual(Type::Int8Ty); // Create the alloca. If we have TargetData, use nice alignment. unsigned Align = 1; if (TD) Align = TD->getPrefTypeAlignment(AggTy); Value *NewAlloca = new AllocaInst(AggTy, 0, Align, I->getName(), Caller->begin()->begin()); // Emit a memcpy. const Type *Tys[] = { Type::Int64Ty }; Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(), Intrinsic::memcpy, Tys, 1); Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall); Value *SrcCast = new BitCastInst(*AI, VoidPtrTy, "tmp", TheCall); Value *Size; if (TD == 0) Size = ConstantExpr::getSizeOf(AggTy); else Size = ConstantInt::get(Type::Int64Ty, TD->getTypeStoreSize(AggTy)); // Always generate a memcpy of alignment 1 here because we don't know // the alignment of the src pointer. Other optimizations can infer // better alignment. Value *CallArgs[] = { DestCast, SrcCast, Size, ConstantInt::get(Type::Int32Ty, 1) }; CallInst *TheMemCpy = CallInst::Create(MemCpyFn, CallArgs, CallArgs+4, "", TheCall); // If we have a call graph, update it. if (CG) { CallGraphNode *MemCpyCGN = CG->getOrInsertFunction(MemCpyFn); CallGraphNode *CallerNode = (*CG)[Caller]; CallerNode->addCalledFunction(TheMemCpy, MemCpyCGN); } // Uses of the argument in the function should use our new alloca // instead. ActualArg = NewAlloca; } ValueMap[I] = ActualArg; } // We want the inliner to prune the code as it copies. We would LOVE to // have no dead or constant instructions leftover after inlining occurs // (which can happen, e.g., because an argument was constant), but we'll be // happy with whatever the cloner can do. CloneAndPruneFunctionInto(Caller, CalledFunc, ValueMap, Returns, ".i", &InlinedFunctionInfo, TD); // Remember the first block that is newly cloned over. FirstNewBlock = LastBlock; ++FirstNewBlock; // Update the callgraph if requested. if (CG) UpdateCallGraphAfterInlining(CS, FirstNewBlock, ValueMap, *CG); } // If there are any alloca instructions in the block that used to be the entry // block for the callee, move them to the entry block of the caller. First // calculate which instruction they should be inserted before. We insert the // instructions at the end of the current alloca list. // { BasicBlock::iterator InsertPoint = Caller->begin()->begin(); for (BasicBlock::iterator I = FirstNewBlock->begin(), E = FirstNewBlock->end(); I != E; ) if (AllocaInst *AI = dyn_cast<AllocaInst>(I++)) { // If the alloca is now dead, remove it. This often occurs due to code // specialization. if (AI->use_empty()) { AI->eraseFromParent(); continue; } if (isa<Constant>(AI->getArraySize())) { // Scan for the block of allocas that we can move over, and move them // all at once. while (isa<AllocaInst>(I) && isa<Constant>(cast<AllocaInst>(I)->getArraySize())) ++I; // Transfer all of the allocas over in a block. Using splice means // that the instructions aren't removed from the symbol table, then // reinserted. Caller->getEntryBlock().getInstList().splice( InsertPoint, FirstNewBlock->getInstList(), AI, I); } } } // If the inlined code contained dynamic alloca instructions, wrap the inlined // code with llvm.stacksave/llvm.stackrestore intrinsics. if (InlinedFunctionInfo.ContainsDynamicAllocas) { Module *M = Caller->getParent(); // Get the two intrinsics we care about. Constant *StackSave, *StackRestore; StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); StackRestore = Intrinsic::getDeclaration(M, Intrinsic::stackrestore); // If we are preserving the callgraph, add edges to the stacksave/restore // functions for the calls we insert. CallGraphNode *StackSaveCGN = 0, *StackRestoreCGN = 0, *CallerNode = 0; if (CG) { // We know that StackSave/StackRestore are Function*'s, because they are // intrinsics which must have the right types. StackSaveCGN = CG->getOrInsertFunction(cast<Function>(StackSave)); StackRestoreCGN = CG->getOrInsertFunction(cast<Function>(StackRestore)); CallerNode = (*CG)[Caller]; } // Insert the llvm.stacksave. CallInst *SavedPtr = CallInst::Create(StackSave, "savedstack", FirstNewBlock->begin()); if (CG) CallerNode->addCalledFunction(SavedPtr, StackSaveCGN); // Insert a call to llvm.stackrestore before any return instructions in the // inlined function. for (unsigned i = 0, e = Returns.size(); i != e; ++i) { CallInst *CI = CallInst::Create(StackRestore, SavedPtr, "", Returns[i]); if (CG) CallerNode->addCalledFunction(CI, StackRestoreCGN); } // Count the number of StackRestore calls we insert. unsigned NumStackRestores = Returns.size(); // If we are inlining an invoke instruction, insert restores before each // unwind. These unwinds will be rewritten into branches later. if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) { for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB) if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) { CallInst::Create(StackRestore, SavedPtr, "", UI); ++NumStackRestores; } } } // If we are inlining tail call instruction through a call site that isn't // marked 'tail', we must remove the tail marker for any calls in the inlined // code. Also, calls inlined through a 'nounwind' call site should be marked // 'nounwind'. if (InlinedFunctionInfo.ContainsCalls && (MustClearTailCallFlags || MarkNoUnwind)) { for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB) for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) if (CallInst *CI = dyn_cast<CallInst>(I)) { if (MustClearTailCallFlags) CI->setTailCall(false); if (MarkNoUnwind) CI->setDoesNotThrow(); } } // If we are inlining through a 'nounwind' call site then any inlined 'unwind' // instructions are unreachable. if (InlinedFunctionInfo.ContainsUnwinds && MarkNoUnwind) for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB) { TerminatorInst *Term = BB->getTerminator(); if (isa<UnwindInst>(Term)) { new UnreachableInst(Term); BB->getInstList().erase(Term); } } // If we are inlining for an invoke instruction, we must make sure to rewrite // any inlined 'unwind' instructions into branches to the invoke exception // destination, and call instructions into invoke instructions. if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo); // If we cloned in _exactly one_ basic block, and if that block ends in a // return instruction, we splice the body of the inlined callee directly into // the calling basic block. if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { // Move all of the instructions right before the call. OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(), FirstNewBlock->begin(), FirstNewBlock->end()); // Remove the cloned basic block. Caller->getBasicBlockList().pop_back(); // If the call site was an invoke instruction, add a branch to the normal // destination. if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) BranchInst::Create(II->getNormalDest(), TheCall); // If the return instruction returned a value, replace uses of the call with // uses of the returned value. if (!TheCall->use_empty()) { ReturnInst *R = Returns[0]; TheCall->replaceAllUsesWith(R->getReturnValue()); } // Since we are now done with the Call/Invoke, we can delete it. TheCall->eraseFromParent(); // Since we are now done with the return instruction, delete it also. Returns[0]->eraseFromParent(); // We are now done with the inlining. return true; } // Otherwise, we have the normal case, of more than one block to inline or // multiple return sites. // We want to clone the entire callee function into the hole between the // "starter" and "ender" blocks. How we accomplish this depends on whether // this is an invoke instruction or a call instruction. BasicBlock *AfterCallBB; if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { // Add an unconditional branch to make this look like the CallInst case... BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall); // Split the basic block. This guarantees that no PHI nodes will have to be // updated due to new incoming edges, and make the invoke case more // symmetric to the call case. AfterCallBB = OrigBB->splitBasicBlock(NewBr, CalledFunc->getName()+".exit"); } else { // It's a call // If this is a call instruction, we need to split the basic block that // the call lives in. // AfterCallBB = OrigBB->splitBasicBlock(TheCall, CalledFunc->getName()+".exit"); } // Change the branch that used to go to AfterCallBB to branch to the first // basic block of the inlined function. // TerminatorInst *Br = OrigBB->getTerminator(); assert(Br && Br->getOpcode() == Instruction::Br && "splitBasicBlock broken!"); Br->setOperand(0, FirstNewBlock); // Now that the function is correct, make it a little bit nicer. In // particular, move the basic blocks inserted from the end of the function // into the space made by splitting the source basic block. Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(), FirstNewBlock, Caller->end()); // Handle all of the return instructions that we just cloned in, and eliminate // any users of the original call/invoke instruction. const Type *RTy = CalledFunc->getReturnType(); if (Returns.size() > 1) { // The PHI node should go at the front of the new basic block to merge all // possible incoming values. PHINode *PHI = 0; if (!TheCall->use_empty()) { PHI = PHINode::Create(RTy, TheCall->getName(), AfterCallBB->begin()); // Anything that used the result of the function call should now use the // PHI node as their operand. TheCall->replaceAllUsesWith(PHI); } // Loop over all of the return instructions adding entries to the PHI node // as appropriate. if (PHI) { for (unsigned i = 0, e = Returns.size(); i != e; ++i) { ReturnInst *RI = Returns[i]; assert(RI->getReturnValue()->getType() == PHI->getType() && "Ret value not consistent in function!"); PHI->addIncoming(RI->getReturnValue(), RI->getParent()); } } // Add a branch to the merge points and remove return instructions. for (unsigned i = 0, e = Returns.size(); i != e; ++i) { ReturnInst *RI = Returns[i]; BranchInst::Create(AfterCallBB, RI); RI->eraseFromParent(); } } else if (!Returns.empty()) { // Otherwise, if there is exactly one return value, just replace anything // using the return value of the call with the computed value. if (!TheCall->use_empty()) TheCall->replaceAllUsesWith(Returns[0]->getReturnValue()); // Splice the code from the return block into the block that it will return // to, which contains the code that was after the call. BasicBlock *ReturnBB = Returns[0]->getParent(); AfterCallBB->getInstList().splice(AfterCallBB->begin(), ReturnBB->getInstList()); // Update PHI nodes that use the ReturnBB to use the AfterCallBB. ReturnBB->replaceAllUsesWith(AfterCallBB); // Delete the return instruction now and empty ReturnBB now. Returns[0]->eraseFromParent(); ReturnBB->eraseFromParent(); } else if (!TheCall->use_empty()) { // No returns, but something is using the return value of the call. Just // nuke the result. TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); } // Since we are now done with the Call/Invoke, we can delete it. TheCall->eraseFromParent(); // We should always be able to fold the entry block of the function into the // single predecessor of the block... assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); // Splice the code entry block into calling block, right before the // unconditional branch. OrigBB->getInstList().splice(Br, CalleeEntry->getInstList()); CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes // Remove the unconditional branch. OrigBB->getInstList().erase(Br); // Now we can remove the CalleeEntry block, which is now empty. Caller->getBasicBlockList().erase(CalleeEntry); return true; }
/// updateCallSites - Update all sites that call F to use NF. CallGraphNode *SRETPromotion::updateCallSites(Function *F, Function *NF) { CallGraph &CG = getAnalysis<CallGraph>(); SmallVector<Value*, 16> Args; // Attributes - Keep track of the parameter attributes for the arguments. SmallVector<AttributeWithIndex, 8> ArgAttrsVec; // Get a new callgraph node for NF. CallGraphNode *NF_CGN = CG.getOrInsertFunction(NF); while (!F->use_empty()) { CallSite CS(*F->use_begin()); Instruction *Call = CS.getInstruction(); const AttrListPtr &PAL = F->getAttributes(); // Add any return attributes. if (Attributes attrs = PAL.getRetAttributes()) ArgAttrsVec.push_back(AttributeWithIndex::get(0, attrs)); // Copy arguments, however skip first one. CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end(); Value *FirstCArg = *AI; ++AI; // 0th parameter attribute is reserved for return type. // 1th parameter attribute is for first 1st sret argument. unsigned ParamIndex = 2; while (AI != AE) { Args.push_back(*AI); if (Attributes Attrs = PAL.getParamAttributes(ParamIndex)) ArgAttrsVec.push_back(AttributeWithIndex::get(ParamIndex - 1, Attrs)); ++ParamIndex; ++AI; } // Add any function attributes. if (Attributes attrs = PAL.getFnAttributes()) ArgAttrsVec.push_back(AttributeWithIndex::get(~0, attrs)); AttrListPtr NewPAL = AttrListPtr::get(ArgAttrsVec.begin(), ArgAttrsVec.end()); // Build new call instruction. Instruction *New; if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) { New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(), Args.begin(), Args.end(), "", Call); cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv()); cast<InvokeInst>(New)->setAttributes(NewPAL); } else { New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call); cast<CallInst>(New)->setCallingConv(CS.getCallingConv()); cast<CallInst>(New)->setAttributes(NewPAL); if (cast<CallInst>(Call)->isTailCall()) cast<CallInst>(New)->setTailCall(); } Args.clear(); ArgAttrsVec.clear(); New->takeName(Call); // Update the callgraph to know that the callsite has been transformed. CallGraphNode *CalleeNode = CG[Call->getParent()->getParent()]; CalleeNode->removeCallEdgeFor(Call); CalleeNode->addCalledFunction(New, NF_CGN); // Update all users of sret parameter to extract value using extractvalue. for (Value::use_iterator UI = FirstCArg->use_begin(), UE = FirstCArg->use_end(); UI != UE; ) { User *U2 = *UI++; CallInst *C2 = dyn_cast<CallInst>(U2); if (C2 && (C2 == Call)) continue; GetElementPtrInst *UGEP = cast<GetElementPtrInst>(U2); ConstantInt *Idx = cast<ConstantInt>(UGEP->getOperand(2)); Value *GR = ExtractValueInst::Create(New, Idx->getZExtValue(), "evi", UGEP); while(!UGEP->use_empty()) { // isSafeToUpdateAllCallers has checked that all GEP uses are // LoadInsts LoadInst *L = cast<LoadInst>(*UGEP->use_begin()); L->replaceAllUsesWith(GR); L->eraseFromParent(); } UGEP->eraseFromParent(); continue; } Call->eraseFromParent(); } return NF_CGN; }