コード例 #1
0
    /// Oil viscosity.
    /// \param[in]  po     Array of n oil pressure values.
    /// \param[in]  rs     Array of n gas solution factor values.
    /// \param[in]  cells  Array of n cell indices to be associated with the pressure values.
    /// \return            Array of n viscosity values.
    ADB BlackoilPropsAdFromDeck::muOil(const ADB& po,
                                       const ADB& rs,
                                       const Cells& cells) const
    {
        if (!phase_usage_.phase_used[Oil]) {
            OPM_THROW(std::runtime_error, "Cannot call muOil(): oil phase not present.");
        }
        const int n = cells.size();
        assert(po.size() == n);
        V mu(n);
        V dmudp(n);
        V dmudr(n);

        props_[phase_usage_.phase_pos[Oil]]->mu(n, po.value().data(), rs.value().data(),
                                                mu.data(), dmudp.data(), dmudr.data());

        ADB::M dmudp_diag = spdiag(dmudp);
        ADB::M dmudr_diag = spdiag(dmudr);
        const int num_blocks = po.numBlocks();
        std::vector<ADB::M> jacs(num_blocks);
        for (int block = 0; block < num_blocks; ++block) {
            jacs[block] = dmudp_diag * po.derivative()[block] + dmudr_diag * rs.derivative()[block];
        }
        return ADB::function(mu, jacs);
    }
コード例 #2
0
ファイル: spatial-hash.cpp プロジェクト: JDonner/gabbleduck
// The strategy here is, though this is n^2, it's a very small n, just
// finely-spaced adjacent cells.
bool SpatialHash::isWithinDistanceOfAnything(PointType const& physPt,
                                             double distance) const
{
   // (save taking a lot of square roots)
   double d2 = distance * distance;

   Index idx = index_of(physPt);
   Cells nbrs;
   get_neighbors(idx, nbrs);
   // 27 <= we include the center cell itself, too.
   assert(nbrs.size() <= 27);
   for (Cells::const_iterator itCells = nbrs.begin(), endCells = nbrs.end();
        itCells != endCells; ++itCells) {
      Pts const* pts = *itCells;
      if (pts) {
         for (Pts::const_iterator itPts = pts->begin(), endPts = pts->end();
              itPts != endPts; ++itPts) {
            if (itPts->SquaredEuclideanDistanceTo<double>(physPt) < d2) {
               return true;
            }
         }
      }
   }
   return false;
}
コード例 #3
0
void WriteNumberOfNeighboursToConsole(const Cells& cells) {
    for (int rowIndex = 0; rowIndex < cells.size(); ++rowIndex) {
        for (int columnIndex = 0; columnIndex < cells[rowIndex].size(); columnIndex++) {
            cout << GetNumberOfNeighbours(cells, rowIndex, columnIndex) << " ";
        }
        cout << "\n";
    }
}
コード例 #4
0
    std::vector<ADB> BlackoilPropsAd::capPress(const ADB& sw,
                                               const ADB& so,
                                               const ADB& sg,
                                               const Cells& cells) const

    {
        const int numCells = cells.size();
        const int numActivePhases = numPhases();
        const int numBlocks = so.numBlocks();

        Block activeSat(numCells, numActivePhases);
        if (pu_.phase_used[Water]) {
            assert(sw.value().size() == numCells);
            activeSat.col(pu_.phase_pos[Water]) = sw.value();
        }
        if (pu_.phase_used[Oil]) {
            assert(so.value().size() == numCells);
            activeSat.col(pu_.phase_pos[Oil]) = so.value();
        } else {
            OPM_THROW(std::runtime_error, "BlackoilPropsAdFromDeck::relperm() assumes oil phase is active.");
        }
        if (pu_.phase_used[Gas]) {
            assert(sg.value().size() == numCells);
            activeSat.col(pu_.phase_pos[Gas]) = sg.value();
        }

        Block pc(numCells, numActivePhases);
        Block dpc(numCells, numActivePhases*numActivePhases);
        props_.capPress(numCells, activeSat.data(), cells.data(), pc.data(), dpc.data());

        std::vector<ADB> adbCapPressures;
        adbCapPressures.reserve(3);
        const ADB* s[3] = { &sw, &so, &sg };
        for (int phase1 = 0; phase1 < 3; ++phase1) {
            if (pu_.phase_used[phase1]) {
                const int phase1_pos = pu_.phase_pos[phase1];
                std::vector<ADB::M> jacs(numBlocks);
                for (int block = 0; block < numBlocks; ++block) {
                    jacs[block] = ADB::M(numCells, s[phase1]->derivative()[block].cols());
                }
                for (int phase2 = 0; phase2 < 3; ++phase2) {
                    if (!pu_.phase_used[phase2])
                        continue;
                    const int phase2_pos = pu_.phase_pos[phase2];
                    // Assemble dpc1/ds2.
                    const int column = phase1_pos + numActivePhases*phase2_pos; // Recall: Fortran ordering from props_.relperm()
                    ADB::M dpc1_ds2_diag = spdiag(dpc.col(column));
                    for (int block = 0; block < numBlocks; ++block) {
                        jacs[block] += dpc1_ds2_diag * s[phase2]->derivative()[block];
                    }
                }
                adbCapPressures.emplace_back(ADB::function(pc.col(phase1_pos), jacs));
            } else {
                adbCapPressures.emplace_back(ADB::null());
            }
        }
        return adbCapPressures;
    }
コード例 #5
0
V SolventPropsAdFromDeck::solventSurfaceDensity(const Cells& cells) const {
    const int n = cells.size();
    V density(n);
    for (int i = 0; i < n; ++i) {
        int regionIdx = cellPvtRegionIdx_[cells[i]];
        density[i] = solvent_surface_densities_[regionIdx];
    }
    return density;
}
コード例 #6
0
 /// Relative permeabilities for all phases.
 /// \param[in]  sw     Array of n water saturation values.
 /// \param[in]  so     Array of n oil saturation values.
 /// \param[in]  sg     Array of n gas saturation values.
 /// \param[in]  cells  Array of n cell indices to be associated with the saturation values.
 /// \return            An std::vector with 3 elements, each an array of n relperm values,
 ///                    containing krw, kro, krg. Use PhaseIndex for indexing into the result.
 std::vector<ADB> BlackoilPropsAd::relperm(const ADB& sw,
                                           const ADB& so,
                                           const ADB& sg,
                                           const Cells& cells) const
 {
     const int n = cells.size();
     const int np = props_.numPhases();
     Block s_all(n, np);
     if (pu_.phase_used[Water]) {
         assert(sw.value().size() == n);
         s_all.col(pu_.phase_pos[Water]) = sw.value();
     }
     if (pu_.phase_used[Oil]) {
         assert(so.value().size() == n);
         s_all.col(pu_.phase_pos[Oil]) = so.value();
     } else {
         OPM_THROW(std::runtime_error, "BlackoilPropsAd::relperm() assumes oil phase is active.");
     }
     if (pu_.phase_used[Gas]) {
         assert(sg.value().size() == n);
         s_all.col(pu_.phase_pos[Gas]) = sg.value();
     }
     Block kr(n, np);
     Block dkr(n, np*np);
     props_.relperm(n, s_all.data(), cells.data(), kr.data(), dkr.data());
     const int num_blocks = so.numBlocks();
     std::vector<ADB> relperms;
     relperms.reserve(3);
     typedef const ADB* ADBPtr;
     ADBPtr s[3] = { &sw, &so, &sg };
     for (int phase1 = 0; phase1 < 3; ++phase1) {
         if (pu_.phase_used[phase1]) {
             const int phase1_pos = pu_.phase_pos[phase1];
             std::vector<ADB::M> jacs(num_blocks);
             for (int block = 0; block < num_blocks; ++block) {
                 jacs[block] = ADB::M(n, s[phase1]->derivative()[block].cols());
             }
             for (int phase2 = 0; phase2 < 3; ++phase2) {
                 if (!pu_.phase_used[phase2]) {
                     continue;
                 }
                 const int phase2_pos = pu_.phase_pos[phase2];
                 // Assemble dkr1/ds2.
                 const int column = phase1_pos + np*phase2_pos; // Recall: Fortran ordering from props_.relperm()
                 ADB::M dkr1_ds2_diag = spdiag(dkr.col(column));
                 for (int block = 0; block < num_blocks; ++block) {
                     jacs[block] += dkr1_ds2_diag * s[phase2]->derivative()[block];
                 }
             }
             relperms.emplace_back(ADB::function(kr.col(phase1_pos), jacs));
         } else {
             relperms.emplace_back(ADB::null());
         }
     }
     return relperms;
 }
コード例 #7
0
void WriteToConsole(const Cells& cells) {
    for (int rowIndex = 0; rowIndex < cells.size(); ++rowIndex) {
        for (int columnIndex = 0; columnIndex < cells[rowIndex].size(); columnIndex++) {
            if (cells[rowIndex][columnIndex]) {
                cout << "# ";
            } else {
                cout << "~ ";
            }
        }
        cout << "\n";
    }
}
コード例 #8
0
int GetNumberOfNeighbours(const Cells& cells, int rowIndex, int columnIndex) {
    int numberOfNeighbours = 0;
    int numberOfRows = cells.size();
    int numberOfColumns = cells[0].size();
    int i;
    int j;
    /*
     ---
     -0-
     ###
     */
    i = modulus(rowIndex - 1, numberOfRows);
    j = modulus(columnIndex - 1, numberOfColumns);
    numberOfNeighbours += cells[i][j] ? 1 : 0;

    i = modulus(rowIndex - 1, numberOfRows);
    j = modulus(columnIndex, numberOfColumns);
    numberOfNeighbours += cells[i][j] ? 1 : 0;

    i = modulus(rowIndex - 1, numberOfRows);
    j = modulus(columnIndex + 1, numberOfColumns);
    numberOfNeighbours += cells[i][j] ? 1 : 0;
    /*
     ---
     #0#
     ---
     */
    i = modulus(rowIndex, numberOfRows);
    j = modulus(columnIndex - 1, numberOfColumns);
    numberOfNeighbours += cells[i][j] ? 1 : 0;

    i = modulus(rowIndex, numberOfRows);
    j = modulus(columnIndex + 1, numberOfColumns);
    numberOfNeighbours += cells[i][j] ? 1 : 0;
    /*
     ###
     -0-
     ---
     */
    i = modulus(rowIndex + 1, numberOfRows);
    j = modulus(columnIndex - 1, numberOfColumns);
    numberOfNeighbours += cells[i][j] ? 1 : 0;

    i = modulus(rowIndex + 1, numberOfRows);
    j = modulus(columnIndex, numberOfColumns);
    numberOfNeighbours += cells[i][j] ? 1 : 0;

    i = modulus(rowIndex + 1, numberOfRows);
    j = modulus(columnIndex + 1, numberOfColumns);
    numberOfNeighbours += cells[i][j] ? 1 : 0;
    return numberOfNeighbours;
}
コード例 #9
0
 /// Bubble point curve for Rs as function of oil pressure.
 /// \param[in]  po     Array of n oil pressure values.
 /// \param[in]  cells  Array of n cell indices to be associated with the pressure values.
 /// \return            Array of n bubble point values for Rs.
 V BlackoilPropsAdFromDeck::rsMax(const V& po,
                                  const Cells& cells) const
 {
     if (!phase_usage_.phase_used[Oil]) {
         OPM_THROW(std::runtime_error, "Cannot call rsMax(): oil phase not present.");
     }
     const int n = cells.size();
     assert(po.size() == n);
     V rbub(n);
     V drbubdp(n);
     props_[Oil]->rbub(n, po.data(), rbub.data(), drbubdp.data());
     return rbub;
 }
コード例 #10
0
V SolventPropsAdFromDeck::mixingParameterDensity(const Cells& cells) const {
    const int n = cells.size();
    if (mix_param_viscosity_.size() > 0) {
        V mix_param(n);
        for (int i = 0; i < n; ++i) {
            int regionIdx = cellMiscRegionIdx_[cells[i]];
            mix_param[i] = mix_param_density_[regionIdx];
        }
        return mix_param;
    }
    // return zeros if not specified
    return V::Zero(n);
}
コード例 #11
0
 /// Gas viscosity.
 /// \param[in]  pg     Array of n gas pressure values.
 /// \param[in]  cells  Array of n cell indices to be associated with the pressure values.
 /// \return            Array of n viscosity values.
 V BlackoilPropsAd::muGas(const V& pg,
                          const Cells& cells) const
 {
     if (!pu_.phase_used[Gas]) {
         OPM_THROW(std::runtime_error, "Cannot call muGas(): gas phase not present.");
     }
     const int n = cells.size();
     assert(pg.size() == n);
     const int np = props_.numPhases();
     Block z = Block::Zero(n, np);
     Block mu(n, np);
     props_.viscosity(n, pg.data(), z.data(), cells.data(), mu.data(), 0);
     return mu.col(pu_.phase_pos[Gas]);
 }
コード例 #12
0
 /// Water viscosity.
 /// \param[in]  pw     Array of n water pressure values.
 /// \param[in]  cells  Array of n cell indices to be associated with the pressure values.
 /// \return            Array of n viscosity values.
 V BlackoilPropsAd::muWat(const V& pw,
                          const Cells& cells) const
 {
     if (!pu_.phase_used[Water]) {
         THROW("Cannot call muWat(): water phase not present.");
     }
     const int n = cells.size();
     ASSERT(pw.size() == n);
     const int np = props_.numPhases();
     Block z = Block::Zero(n, np);
     Block mu(n, np);
     props_.viscosity(n, pw.data(), z.data(), cells.data(), mu.data(), 0);
     return mu.col(pu_.phase_pos[Water]);
 }
コード例 #13
0
void WriteToFile(const Cells& cells, string path) {
    ofstream file(path.c_str(), std::ios::trunc);
    for (int rowIndex = 0; rowIndex < cells.size(); ++rowIndex) {
        for (int columnIndex = 0; columnIndex < cells[rowIndex].size(); columnIndex++) {
            if (cells[rowIndex][columnIndex]) {
                file << "# ";
            } else {
                file << "~ ";
            }
        }
        file << "\n";
    }
    file.close();
}
コード例 #14
0
 /// Gas formation volume factor.
 /// \param[in]  pg     Array of n gas pressure values.
 /// \param[in]  cells  Array of n cell indices to be associated with the pressure values.
 /// \return            Array of n formation volume factor values.
 V BlackoilPropsAd::bGas(const V& pg,
                         const Cells& cells) const
 {
     if (!pu_.phase_used[Gas]) {
         OPM_THROW(std::runtime_error, "Cannot call bGas(): gas phase not present.");
     }
     const int n = cells.size();
     assert(pg.size() == n);
     const int np = props_.numPhases();
     Block z = Block::Zero(n, np);
     Block matrix(n, np*np);
     props_.matrix(n, pg.data(), z.data(), cells.data(), matrix.data(), 0);
     const int gi = pu_.phase_pos[Gas];
     return matrix.col(gi*np + gi);
 }
コード例 #15
0
 /// Water formation volume factor.
 /// \param[in]  pw     Array of n water pressure values.
 /// \param[in]  cells  Array of n cell indices to be associated with the pressure values.
 /// \return            Array of n formation volume factor values.
 V BlackoilPropsAd::bWat(const V& pw,
                         const Cells& cells) const
 {
     if (!pu_.phase_used[Water]) {
         OPM_THROW(std::runtime_error, "Cannot call bWat(): water phase not present.");
     }
     const int n = cells.size();
     assert(pw.size() == n);
     const int np = props_.numPhases();
     Block z = Block::Zero(n, np);
     Block matrix(n, np*np);
     props_.matrix(n, pw.data(), z.data(), cells.data(), matrix.data(), 0);
     const int wi = pu_.phase_pos[Water];
     return matrix.col(wi*np + wi);
 }
コード例 #16
0
    /// Oil viscosity.
    /// \param[in]  po     Array of n oil pressure values.
    /// \param[in]  rs     Array of n gas solution factor values.
    /// \param[in]  cells  Array of n cell indices to be associated with the pressure values.
    /// \return            Array of n viscosity values.
    V BlackoilPropsAdFromDeck::muOil(const V& po,
                                     const V& rs,
                                     const Cells& cells) const
    {
        if (!phase_usage_.phase_used[Oil]) {
            OPM_THROW(std::runtime_error, "Cannot call muOil(): oil phase not present.");
        }
        const int n = cells.size();
        assert(po.size() == n);
        V mu(n);
        V dmudp(n);
        V dmudr(n);

        props_[phase_usage_.phase_pos[Oil]]->mu(n, po.data(), rs.data(),
                                                mu.data(), dmudp.data(), dmudr.data());
        return mu;
    }
コード例 #17
0
    /// Gas viscosity.
    /// \param[in]  pg     Array of n gas pressure values.
    /// \param[in]  cells  Array of n cell indices to be associated with the pressure values.
    /// \return            Array of n viscosity values.
    V BlackoilPropsAdFromDeck::muGas(const V& pg,
                                     const Cells& cells) const
    {
        if (!phase_usage_.phase_used[Gas]) {
            OPM_THROW(std::runtime_error, "Cannot call muGas(): gas phase not present.");
        }
        const int n = cells.size();
        assert(pg.size() == n);
        V mu(n);
        V dmudp(n);
        V dmudr(n);
        const double* rs = 0;

        props_[phase_usage_.phase_pos[Gas]]->mu(n, pg.data(), rs,
                                                mu.data(), dmudp.data(), dmudr.data());
        return mu;
    }
コード例 #18
0
 /// Bubble point curve for Rs as function of oil pressure.
 /// \param[in]  po     Array of n oil pressure values.
 /// \param[in]  cells  Array of n cell indices to be associated with the pressure values.
 /// \return            Array of n bubble point values for Rs.
 ADB BlackoilPropsAdFromDeck::rsMax(const ADB& po,
                                    const Cells& cells) const
 {
     if (!phase_usage_.phase_used[Oil]) {
         OPM_THROW(std::runtime_error, "Cannot call rsMax(): oil phase not present.");
     }
     const int n = cells.size();
     assert(po.size() == n);
     V rbub(n);
     V drbubdp(n);
     props_[Oil]->rbub(n, po.value().data(), rbub.data(), drbubdp.data());
     ADB::M drbubdp_diag = spdiag(drbubdp);
     const int num_blocks = po.numBlocks();
     std::vector<ADB::M> jacs(num_blocks);
     for (int block = 0; block < num_blocks; ++block) {
         jacs[block] = drbubdp_diag * po.derivative()[block];
     }
     return ADB::function(rbub, jacs);
 }
コード例 #19
0
    /// Water formation volume factor.
    /// \param[in]  pw     Array of n water pressure values.
    /// \param[in]  cells  Array of n cell indices to be associated with the pressure values.
    /// \return            Array of n formation volume factor values.
    V BlackoilPropsAdFromDeck::bWat(const V& pw,
                                    const Cells& cells) const
    {
        if (!phase_usage_.phase_used[Water]) {
            OPM_THROW(std::runtime_error, "Cannot call bWat(): water phase not present.");
        }
        const int n = cells.size();
        assert(pw.size() == n);

        V b(n);
        V dbdp(n);
        V dbdr(n);
        const double* rs = 0;

        props_[phase_usage_.phase_pos[Water]]->b(n, pw.data(), rs,
                                                 b.data(), dbdp.data(), dbdr.data());

        return b;
    }
コード例 #20
0
 /// Oil viscosity.
 /// \param[in]  po     Array of n oil pressure values.
 /// \param[in]  rs     Array of n gas solution factor values.
 /// \param[in]  cells  Array of n cell indices to be associated with the pressure values.
 /// \return            Array of n viscosity values.
 V BlackoilPropsAd::muOil(const V& po,
                          const V& rs,
                          const Cells& cells) const
 {
     if (!pu_.phase_used[Oil]) {
         THROW("Cannot call muOil(): oil phase not present.");
     }
     const int n = cells.size();
     ASSERT(po.size() == n);
     const int np = props_.numPhases();
     Block z = Block::Zero(n, np);
     if (pu_.phase_used[Gas]) {
         // Faking a z with the right ratio:
         //   rs = zg/zo
         z.col(pu_.phase_pos[Oil]) = V::Ones(n, 1);
         z.col(pu_.phase_pos[Gas]) = rs;
     }
     Block mu(n, np);
     props_.viscosity(n, po.data(), z.data(), cells.data(), mu.data(), 0);
     return mu.col(pu_.phase_pos[Oil]);
 }
コード例 #21
0
 /// Gas viscosity.
 /// \param[in]  pg     Array of n gas pressure values.
 /// \param[in]  rv     Array of n vapor oil/gas ratio
 /// \param[in]  cond   Array of n objects, each specifying which phases are present with non-zero saturation in a cell.
 /// \param[in]  cells  Array of n cell indices to be associated with the pressure values.
 /// \return            Array of n formation volume factor values.
 V BlackoilPropsAd::muGas(const V& pg,
                          const V& rv,
                          const std::vector<PhasePresence>& /*cond*/,
                          const Cells& cells) const
 {
     if (!pu_.phase_used[Gas]) {
         OPM_THROW(std::runtime_error, "Cannot call muGas(): gas phase not present.");
     }
     const int n = cells.size();
     assert(pg.size() == n);
     const int np = props_.numPhases();
     Block z = Block::Zero(n, np);
     if (pu_.phase_used[Oil]) {
         // Faking a z with the right ratio:
         //   rv = zo/zg
         z.col(pu_.phase_pos[Oil]) = rv;
         z.col(pu_.phase_pos[Gas]) = V::Ones(n, 1);
     }
     Block mu(n, np);
     props_.viscosity(n, pg.data(), z.data(), cells.data(), mu.data(), 0);
     return mu.col(pu_.phase_pos[Gas]);
 }
コード例 #22
0
ADB SolventPropsAdFromDeck::makeADBfromTables(const ADB& X_AD,
                                              const Cells& cells,
                                              const std::vector<int>& regionIdx,
                                              const std::vector<NonuniformTableLinear<double>>& tables) const {
    const int n = cells.size();
    assert(X_AD.value().size() == n);
    V x(n);
    V dx(n);
    for (int i = 0; i < n; ++i) {
        const double& X_i = X_AD.value()[i];
        x[i] = tables[regionIdx[cells[i]]](X_i);
        dx[i] = tables[regionIdx[cells[i]]].derivative(X_i);
    }

    ADB::M dx_diag(dx.matrix().asDiagonal());
    const int num_blocks = X_AD.numBlocks();
    std::vector<ADB::M> jacs(num_blocks);
    for (int block = 0; block < num_blocks; ++block) {
        fastSparseProduct(dx_diag, X_AD.derivative()[block], jacs[block]);
    }
    return ADB::function(std::move(x), std::move(jacs));
}
コード例 #23
0
 /// Water formation volume factor.
 /// \param[in]  pw     Array of n water pressure values.
 /// \param[in]  cells  Array of n cell indices to be associated with the pressure values.
 /// \return            Array of n formation volume factor values.
 ADB BlackoilPropsAd::bWat(const ADB& pw,
                           const Cells& cells) const
 {
     if (!pu_.phase_used[Water]) {
         THROW("Cannot call muWat(): water phase not present.");
     }
     const int n = cells.size();
     ASSERT(pw.value().size() == n);
     const int np = props_.numPhases();
     Block z = Block::Zero(n, np);
     Block matrix(n, np*np);
     Block dmatrix(n, np*np);
     props_.matrix(n, pw.value().data(), z.data(), cells.data(), matrix.data(), dmatrix.data());
     const int phase_ind = pu_.phase_pos[Water];
     const int column = phase_ind*np + phase_ind; // Index of our sought diagonal column.
     ADB::M db_diag = spdiag(dmatrix.col(column));
     const int num_blocks = pw.numBlocks();
     std::vector<ADB::M> jacs(num_blocks);
     for (int block = 0; block < num_blocks; ++block) {
         jacs[block] = db_diag * pw.derivative()[block];
     }
     return ADB::function(matrix.col(column), jacs);
 }
コード例 #24
0
 /// Gas formation volume factor.
 /// \param[in]  pg     Array of n gas pressure values.
 /// \param[in]  cells  Array of n cell indices to be associated with the pressure values.
 /// \return            Array of n formation volume factor values.
 ADB BlackoilPropsAd::bGas(const ADB& pg,
                           const Cells& cells) const
 {
     if (!pu_.phase_used[Gas]) {
         OPM_THROW(std::runtime_error, "Cannot call muGas(): gas phase not present.");
     }
     const int n = cells.size();
     assert(pg.value().size() == n);
     const int np = props_.numPhases();
     Block z = Block::Zero(n, np);
     Block matrix(n, np*np);
     Block dmatrix(n, np*np);
     props_.matrix(n, pg.value().data(), z.data(), cells.data(), matrix.data(), dmatrix.data());
     const int phase_ind = pu_.phase_pos[Gas];
     const int column = phase_ind*np + phase_ind; // Index of our sought diagonal column.
     ADB::M db_diag = spdiag(dmatrix.col(column));
     const int num_blocks = pg.numBlocks();
     std::vector<ADB::M> jacs(num_blocks);
     for (int block = 0; block < num_blocks; ++block) {
         jacs[block] = db_diag * pg.derivative()[block];
     }
     return ADB::function(matrix.col(column), jacs);
 }
コード例 #25
0
 /// Oil formation volume factor.
 /// \param[in]  po     Array of n oil pressure values.
 /// \param[in]  rs     Array of n gas solution factor values.
 /// \param[in]  cond   Array of n taxonomies classifying fluid condition.
 /// \param[in]  cells  Array of n cell indices to be associated with the pressure values.
 /// \return            Array of n formation volume factor values.
 V BlackoilPropsAd::bOil(const V& po,
                         const V& rs,
                         const std::vector<PhasePresence>& /*cond*/,
                         const Cells& cells) const
 {
     if (!pu_.phase_used[Oil]) {
         OPM_THROW(std::runtime_error, "Cannot call bOil(): oil phase not present.");
     }
     const int n = cells.size();
     assert(po.size() == n);
     const int np = props_.numPhases();
     Block z = Block::Zero(n, np);
     if (pu_.phase_used[Gas]) {
         // Faking a z with the right ratio:
         //   rs = zg/zo
         z.col(pu_.phase_pos[Oil]) = V::Ones(n, 1);
         z.col(pu_.phase_pos[Gas]) = rs;
     }
     Block matrix(n, np*np);
     props_.matrix(n, po.data(), z.data(), cells.data(), matrix.data(), 0);
     const int oi = pu_.phase_pos[Oil];
     return matrix.col(oi*np + oi);
 }
コード例 #26
0
    /// Oil viscosity.
    /// \param[in]  po     Array of n oil pressure values.
    /// \param[in]  rs     Array of n gas solution factor values.
    /// \param[in]  cond   Array of n taxonomies classifying fluid condition.
    /// \param[in]  cells  Array of n cell indices to be associated with the pressure values.
    /// \return            Array of n viscosity values.
    ADB BlackoilPropsAd::muOil(const ADB& po,
                               const ADB& rs,
                               const std::vector<PhasePresence>& cond,
                               const Cells& cells) const
    {
#if 1
        return ADB::constant(muOil(po.value(), rs.value(), cond, cells), po.blockPattern());
#else
        if (!pu_.phase_used[Oil]) {
            OPM_THROW(std::runtime_error, "Cannot call muOil(): oil phase not present.");
        }
        const int n = cells.size();
        assert(po.value().size() == n);
        const int np = props_.numPhases();
        Block z = Block::Zero(n, np);
        if (pu_.phase_used[Gas]) {
            // Faking a z with the right ratio:
            //   rs = zg/zo
            z.col(pu_.phase_pos[Oil]) = V::Ones(n, 1);
            z.col(pu_.phase_pos[Gas]) = rs.value();
        }
        Block mu(n, np);
        Block dmu(n, np);
        props_.viscosity(n, po.value().data(), z.data(), cells.data(), mu.data(), dmu.data());
        ADB::M dmu_diag = spdiag(dmu.col(pu_.phase_pos[Oil]));
        const int num_blocks = po.numBlocks();
        std::vector<ADB::M> jacs(num_blocks);
        for (int block = 0; block < num_blocks; ++block) {
            // For now, we deliberately ignore the derivative with respect to rs,
            // since the BlackoilPropertiesInterface class does not evaluate it.
            // We would add to the next line: + dmu_drs_diag * rs.derivative()[block]
            jacs[block] = dmu_diag * po.derivative()[block];
        }
        return ADB::function(mu.col(pu_.phase_pos[Oil]), jacs);
#endif
    }
コード例 #27
0
ファイル: test_delaunay.cpp プロジェクト: Asuzer/cgal
void test(const int d, const string & type, const int N)
{
    // we must write 'typename' below, because we are in a template-function,
    // so the parser has no way to know that DC contains sub-types, before
    // instanciating the function.
    typedef typename DC::Full_cell_handle Full_cell_handle;
    typedef typename DC::Face Face;
    typedef typename DC::Point Point;
    typedef typename DC::Finite_full_cell_const_iterator Finite_full_cell_const_iterator;
    typedef typename DC::Finite_vertex_iterator Finite_vertex_iterator;

    typedef CGAL::Random_points_in_cube_d<Point> Random_points_iterator;

    DC pc(d);
    cerr << "\nBuilding Delaunay triangulation of (" << type << d << ") dimension with " << N << " points";
    assert(pc.empty());

    vector<Point> points;
    CGAL::Random rng;
    Random_points_iterator rand_it(d, 2.0, rng);
    //CGAL::cpp11::copy_n(rand_it, N, back_inserter(points));
    
    vector<int> coords(d);
    for( int i = 0; i < N; ++i )
    {
        for( int j = 0; j < d; ++j )
            coords[j] = rand() % 100000;
        points.push_back(Point(d, coords.begin(), coords.end()));
    }
    pc.insert(points.begin(),  points.end());
    cerr << "\nChecking topology and geometry...";
    assert( pc.is_valid() );

    cerr << "\nTraversing finite full_cells... ";
    size_t nbfs(0), nbis(0);
    Finite_full_cell_const_iterator fsit = pc.finite_full_cells_begin();
    while( fsit != pc.finite_full_cells_end() )
        ++fsit, ++nbfs;
    cerr << nbfs << " + ";
    vector<Full_cell_handle> infinite_full_cells;
    pc.tds().incident_full_cells(pc.infinite_vertex(), back_inserter(infinite_full_cells));
    nbis = infinite_full_cells.size();
    cerr << nbis << " = " << (nbis+nbfs)
    << " = " << pc.number_of_full_cells();
    cerr << "\nThe triangulation has current dimension " << pc.current_dimension();
    CGAL_assertion( pc.number_of_full_cells() == nbis+nbfs);

    cerr << "\nTraversing finite vertices... ";
    size_t nbfv(0);
    Finite_vertex_iterator fvit = pc.finite_vertices_begin();
    while( fvit != pc.finite_vertices_end() )
        ++fvit, ++nbfv;
    cerr << nbfv <<endl;

    // Count convex hull vertices:
    if( pc.maximal_dimension() > 1 )
    {
        typedef vector<Face> Faces;
        Faces edges;
        back_insert_iterator<Faces> out(edges);
        pc.tds().incident_faces(pc.infinite_vertex(), 1, out);
        cout << "\nThere are " << edges.size() << " vertices on the convex hull.";
        edges.clear();
    }
    else // pc.maximal_dimension() == 1
    {
        typedef vector<Full_cell_handle> Cells;
        Cells cells;
        back_insert_iterator<Cells> out(cells);
        pc.tds().incident_full_cells(pc.infinite_vertex(), out);
        cout << "\nThere are " << cells.size() << " vertices on the convex hull.";
        cells.clear();
    }

    // Remove all !
    cerr << "\nBefore removal: " << pc.number_of_vertices() << " vertices. After: ";
    random_shuffle(points.begin(),  points.end());
    pc.remove(points.begin(),  points.end());
    assert( pc.is_valid() );
    cerr << pc.number_of_vertices() << " vertices.";
    // assert( pc.empty() ); NOT YET !
    // CLEAR
    pc.clear();
    assert( -1 == pc.current_dimension() );
    assert( pc.empty() );
    assert( pc.is_valid() );
}
コード例 #28
0
vector<vector<int> > CreateTempArray(const Cells& cells) {
    vector<vector<int> > array(cells.size(), vector<int>(cells[0].size(), 0));
    return array;
}
コード例 #29
0
bool testCellularGridSpaceND()
{
  typedef typename KSpace::Cell Cell;
  typedef typename KSpace::SCell SCell;
  typedef typename KSpace::Point Point;
  typedef typename KSpace::DirIterator DirIterator;
  typedef typename KSpace::Cells Cells;
  typedef typename KSpace::SCells SCells;
  unsigned int nbok = 0;
  unsigned int nb = 0;
  
  trace.beginBlock ( "Testing block KSpace instantiation and scan ..." );
  KSpace K;
  int xlow[ 4 ] = { -3, -2, -2, -1 };
  int xhigh[ 4 ] = { 5, 3, 2, 3 };
  Point low( xlow );
  Point high( xhigh ); 
  bool space_ok = K.init( low, high, true );
  nbok += space_ok ? 1 : 0; 
  nb++;
  trace.info() << "(" << nbok << "/" << nb << ") "
         << "K.init( low, high )" << std::endl;
  trace.info() << "K.dim()=" << K.dimension << endl;
  int spel[ 4 ] = { 1, 1, 1, 1 }; // pixel
  Point kp( spel );
  Cell center = K.uCell( kp );
  Cell c1 = K.uCell( kp );
  Cell clow = K.uCell( low, kp );
  Cell chigh = K.uCell( high, kp );
  trace.info() << c1 << clow << chigh 
         << " topo(c1)=" << K.uTopology( c1 ) << " dirs=";
  for ( DirIterator q = K.uDirs( clow ); q != 0; ++q )
    trace.info() << " " << *q;
  trace.info() << endl;
  Cell f = K.uFirst( c1 );
  Cell l = K.uLast( c1 );
  trace.info() << "Loop in " << clow << chigh << endl;
  c1 = f;
  unsigned int nbelems = 0;
  do {
    ++nbelems;
    // trace.info() << c1;
  } while ( K.uNext( c1, f, l ) );
  trace.info() << " -> " << nbelems << " elements." << endl;
  unsigned int exp_nbelems = 1;
  for ( Dimension i = 0; i < K.dimension; ++i )
    exp_nbelems *= K.size( i );
  nbok += nbelems == exp_nbelems ? 1 : 0; 
  nb++;
  trace.info() << "(" << nbok << "/" << nb << ") "
         << nbelems << " scanned elements == "
         << exp_nbelems << " space size."
         << std::endl;
  trace.endBlock();
  trace.beginBlock ( "Testing neighborhoods in KSpace..." );
  Cells N = K.uNeighborhood( center );
  nbok += N.size() == ( K.dimension*2 + 1 ) ? 1 : 0; 
  nb++;
  trace.info() << "(" << nbok << "/" << nb << ") "
         << N.size() << "(neighborhood size) == "
         << ( K.dimension*2 + 1 ) << "(2*dim()+1)" << endl;
  Cells Np = K.uProperNeighborhood( center );
  nbok += Np.size() == ( K.dimension*2 ) ? 1 : 0; 
  nb++;
  trace.info() << "(" << nbok << "/" << nb << ") "
         << Np.size() << "(proper neighborhood size) == "
         << ( K.dimension*2 ) << "(2*dim())" << endl;
  trace.endBlock();

  trace.beginBlock ( "Testing faces in KSpace..." );
  Cells Nf = K.uFaces( center );
  nbok += Nf.size() == ceil( std::pow( 3.0 ,(int) K.dimension ) - 1 ) ? 1 : 0; 
  nb++;
  trace.info() << "(" << nbok << "/" << nb << ") "
         << Nf.size() << "(faces size) == "
         << floor( std::pow( 3.0, (int)K.dimension ) - 1 ) << "(3^dim()-1)" << endl;
  trace.endBlock();
  
  trace.beginBlock ( "Testing block Incidence in KSpace..." );
  SCell sspel = K.sCell( kp, K.POS );
  for ( DirIterator q1 = K.sDirs( sspel ); q1 != 0; ++q1 )
    for ( DirIterator q2 = K.sDirs( sspel ); q2 != 0; ++q2 )
      {
  if ( *q1 != *q2 )
    {
      SCell s0 = K.sIncident( sspel, *q1, true );
      SCell s1 = K.sIncident( sspel, *q2, true );
      SCell l10 = K.sIncident( s0, *q2, true );
      SCell l01 = K.sIncident( s1, *q1, true );
      trace.info() << "D+_" << *q2 << "(D+_" << *q1 << "(V))=" << l10 
       << " D+_" << *q1 << "(D+_" << *q2 << "(V))=" << l01
       << endl;
      nbok += l10 == K.sOpp( l01 ) ? 1 : 0; 
      nb++;
    }
      }
  trace.info() << "(" << nbok << "/" << nb << ") "
         << "anti-commutativity of incidence operators." << std::endl;
  trace.endBlock();

  trace.beginBlock ( "Testing direct Incidence in KSpace..." );
  for ( DirIterator q1 = K.sDirs( sspel ); q1 != 0; ++q1 )
    for ( DirIterator q2 = K.sDirs( sspel ); q2 != 0; ++q2 )
      {
  if ( *q1 != *q2 )
    {
      SCell s0 = K.sDirectIncident( sspel, *q1 );
      SCell l10 = K.sDirectIncident( s0, *q2 );
      SCell s1 = K.sDirectIncident( sspel, *q2 );
      SCell l01 = K.sDirectIncident( s1, *q1 );
      trace.info() << "Dd_" << *q2 << "(Dd_" << *q1 << "(V))=" << l10 
       << " Dd_" << *q1 << "(Dd_" << *q2 << "(V))=" << l01
       << endl;
      nbok += l10 != l01 ? 1 : 0; 
      nbok += K.sSign( s0 ) == K.POS ? 1 : 0;
      nbok += K.sSign( s1 ) == K.POS ? 1 : 0;
      nbok += K.sSign( l10 ) == K.POS ? 1 : 0;
      nbok += K.sSign( l01 ) == K.POS ? 1 : 0;
      nbok += s0 == K.sIncident( sspel, *q1, K.sDirect( sspel, *q1 ) )
        ? 1 : 0;
      nbok += s1 == K.sIncident( sspel, *q2, K.sDirect( sspel, *q2 ) )
        ? 1 : 0;
      nbok += l10 == K.sIncident( s0, *q2, K.sDirect( s0, *q2 ) )
        ? 1 : 0;
      nbok += l01 == K.sIncident( s1, *q1, K.sDirect( s1, *q1 ) )
        ? 1 : 0;
      nb += 9;
    }
      }
  trace.info() << "(" << nbok << "/" << nb << ") "
         << "correctness of direct and indirect orientations." << std::endl;
  
  trace.endBlock();
  
  
  return nbok == nb;
}