// runEnums - Print out enum values for all of the registers. void RegisterInfoEmitter::runEnums(raw_ostream &OS) { CodeGenTarget Target; const std::vector<CodeGenRegister> &Registers = Target.getRegisters(); std::string Namespace = Registers[0].TheDef->getValueAsString("Namespace"); EmitSourceFileHeader("Target Register Enum Values", OS); OS << "namespace llvm {\n\n"; if (!Namespace.empty()) OS << "namespace " << Namespace << " {\n"; OS << "enum {\n NoRegister,\n"; for (unsigned i = 0, e = Registers.size(); i != e; ++i) OS << " " << Registers[i].getName() << ", \t// " << i+1 << "\n"; OS << " NUM_TARGET_REGS \t// " << Registers.size()+1 << "\n"; OS << "};\n"; if (!Namespace.empty()) OS << "}\n"; const std::vector<Record*> SubRegIndices = Target.getSubRegIndices(); if (!SubRegIndices.empty()) { OS << "\n// Subregister indices\n"; Namespace = SubRegIndices[0]->getValueAsString("Namespace"); if (!Namespace.empty()) OS << "namespace " << Namespace << " {\n"; OS << "enum {\n NoSubRegister,\n"; for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i) OS << " " << SubRegIndices[i]->getName() << ",\t// " << i+1 << "\n"; OS << " NUM_TARGET_SUBREGS = " << SubRegIndices.size()+1 << "\n"; OS << "};\n"; if (!Namespace.empty()) OS << "}\n"; } OS << "} // End llvm namespace \n"; }
// RegisterInfoEmitter::run - Main register file description emitter. // void RegisterInfoEmitter::run(raw_ostream &OS) { CodeGenTarget Target; EmitSourceFileHeader("Register Information Source Fragment", OS); OS << "namespace llvm {\n\n"; // Start out by emitting each of the register classes... to do this, we build // a set of registers which belong to a register class, this is to ensure that // each register is only in a single register class. // const std::vector<CodeGenRegisterClass> &RegisterClasses = Target.getRegisterClasses(); // Loop over all of the register classes... emitting each one. OS << "namespace { // Register classes...\n"; // RegClassesBelongedTo - Keep track of which register classes each reg // belongs to. std::multimap<Record*, const CodeGenRegisterClass*> RegClassesBelongedTo; // Emit the register enum value arrays for each RegisterClass for (unsigned rc = 0, e = RegisterClasses.size(); rc != e; ++rc) { const CodeGenRegisterClass &RC = RegisterClasses[rc]; // Give the register class a legal C name if it's anonymous. std::string Name = RC.TheDef->getName(); // Emit the register list now. OS << " // " << Name << " Register Class...\n" << " static const unsigned " << Name << "[] = {\n "; for (unsigned i = 0, e = RC.Elements.size(); i != e; ++i) { Record *Reg = RC.Elements[i]; OS << getQualifiedName(Reg) << ", "; // Keep track of which regclasses this register is in. RegClassesBelongedTo.insert(std::make_pair(Reg, &RC)); } OS << "\n };\n\n"; } // Emit the ValueType arrays for each RegisterClass for (unsigned rc = 0, e = RegisterClasses.size(); rc != e; ++rc) { const CodeGenRegisterClass &RC = RegisterClasses[rc]; // Give the register class a legal C name if it's anonymous. std::string Name = RC.TheDef->getName() + "VTs"; // Emit the register list now. OS << " // " << Name << " Register Class Value Types...\n" << " static const EVT " << Name << "[] = {\n "; for (unsigned i = 0, e = RC.VTs.size(); i != e; ++i) OS << getEnumName(RC.VTs[i]) << ", "; OS << "MVT::Other\n };\n\n"; } OS << "} // end anonymous namespace\n\n"; // Now that all of the structs have been emitted, emit the instances. if (!RegisterClasses.empty()) { OS << "namespace " << RegisterClasses[0].Namespace << " { // Register class instances\n"; for (unsigned i = 0, e = RegisterClasses.size(); i != e; ++i) OS << " " << RegisterClasses[i].getName() << "Class\t" << RegisterClasses[i].getName() << "RegClass;\n"; std::map<unsigned, std::set<unsigned> > SuperClassMap; std::map<unsigned, std::set<unsigned> > SuperRegClassMap; OS << "\n"; unsigned NumSubRegIndices = Target.getSubRegIndices().size(); if (NumSubRegIndices) { // Emit the sub-register classes for each RegisterClass for (unsigned rc = 0, e = RegisterClasses.size(); rc != e; ++rc) { const CodeGenRegisterClass &RC = RegisterClasses[rc]; std::vector<Record*> SRC(NumSubRegIndices); for (DenseMap<Record*,Record*>::const_iterator i = RC.SubRegClasses.begin(), e = RC.SubRegClasses.end(); i != e; ++i) { // Build SRC array. unsigned idx = Target.getSubRegIndexNo(i->first); SRC.at(idx-1) = i->second; // Find the register class number of i->second for SuperRegClassMap. for (unsigned rc2 = 0, e2 = RegisterClasses.size(); rc2 != e2; ++rc2) { const CodeGenRegisterClass &RC2 = RegisterClasses[rc2]; if (RC2.TheDef == i->second) { SuperRegClassMap[rc2].insert(rc); break; } } } // Give the register class a legal C name if it's anonymous. std::string Name = RC.TheDef->getName(); OS << " // " << Name << " Sub-register Classes...\n" << " static const TargetRegisterClass* const " << Name << "SubRegClasses[] = {\n "; for (unsigned idx = 0; idx != NumSubRegIndices; ++idx) { if (idx) OS << ", "; if (SRC[idx]) OS << "&" << getQualifiedName(SRC[idx]) << "RegClass"; else OS << "0"; } OS << "\n };\n\n"; } // Emit the super-register classes for each RegisterClass for (unsigned rc = 0, e = RegisterClasses.size(); rc != e; ++rc) { const CodeGenRegisterClass &RC = RegisterClasses[rc]; // Give the register class a legal C name if it's anonymous. std::string Name = RC.TheDef->getName(); OS << " // " << Name << " Super-register Classes...\n" << " static const TargetRegisterClass* const " << Name << "SuperRegClasses[] = {\n "; bool Empty = true; std::map<unsigned, std::set<unsigned> >::iterator I = SuperRegClassMap.find(rc); if (I != SuperRegClassMap.end()) { for (std::set<unsigned>::iterator II = I->second.begin(), EE = I->second.end(); II != EE; ++II) { const CodeGenRegisterClass &RC2 = RegisterClasses[*II]; if (!Empty) OS << ", "; OS << "&" << getQualifiedName(RC2.TheDef) << "RegClass"; Empty = false; } } OS << (!Empty ? ", " : "") << "NULL"; OS << "\n };\n\n"; } } else { // No subregindices in this target OS << " static const TargetRegisterClass* const " << "NullRegClasses[] = { NULL };\n\n"; } // Emit the sub-classes array for each RegisterClass for (unsigned rc = 0, e = RegisterClasses.size(); rc != e; ++rc) { const CodeGenRegisterClass &RC = RegisterClasses[rc]; // Give the register class a legal C name if it's anonymous. std::string Name = RC.TheDef->getName(); std::set<Record*> RegSet; for (unsigned i = 0, e = RC.Elements.size(); i != e; ++i) { Record *Reg = RC.Elements[i]; RegSet.insert(Reg); } OS << " // " << Name << " Register Class sub-classes...\n" << " static const TargetRegisterClass* const " << Name << "Subclasses[] = {\n "; bool Empty = true; for (unsigned rc2 = 0, e2 = RegisterClasses.size(); rc2 != e2; ++rc2) { const CodeGenRegisterClass &RC2 = RegisterClasses[rc2]; // RC2 is a sub-class of RC if it is a valid replacement for any // instruction operand where an RC register is required. It must satisfy // these conditions: // // 1. All RC2 registers are also in RC. // 2. The RC2 spill size must not be smaller that the RC spill size. // 3. RC2 spill alignment must be compatible with RC. // // Sub-classes are used to determine if a virtual register can be used // as an instruction operand, or if it must be copied first. if (rc == rc2 || RC2.Elements.size() > RC.Elements.size() || (RC.SpillAlignment && RC2.SpillAlignment % RC.SpillAlignment) || RC.SpillSize > RC2.SpillSize || !isSubRegisterClass(RC2, RegSet)) continue; if (!Empty) OS << ", "; OS << "&" << getQualifiedName(RC2.TheDef) << "RegClass"; Empty = false; std::map<unsigned, std::set<unsigned> >::iterator SCMI = SuperClassMap.find(rc2); if (SCMI == SuperClassMap.end()) { SuperClassMap.insert(std::make_pair(rc2, std::set<unsigned>())); SCMI = SuperClassMap.find(rc2); } SCMI->second.insert(rc); } OS << (!Empty ? ", " : "") << "NULL"; OS << "\n };\n\n"; } for (unsigned rc = 0, e = RegisterClasses.size(); rc != e; ++rc) { const CodeGenRegisterClass &RC = RegisterClasses[rc]; // Give the register class a legal C name if it's anonymous. std::string Name = RC.TheDef->getName(); OS << " // " << Name << " Register Class super-classes...\n" << " static const TargetRegisterClass* const " << Name << "Superclasses[] = {\n "; bool Empty = true; std::map<unsigned, std::set<unsigned> >::iterator I = SuperClassMap.find(rc); if (I != SuperClassMap.end()) { for (std::set<unsigned>::iterator II = I->second.begin(), EE = I->second.end(); II != EE; ++II) { const CodeGenRegisterClass &RC2 = RegisterClasses[*II]; if (!Empty) OS << ", "; OS << "&" << getQualifiedName(RC2.TheDef) << "RegClass"; Empty = false; } } OS << (!Empty ? ", " : "") << "NULL"; OS << "\n };\n\n"; } for (unsigned i = 0, e = RegisterClasses.size(); i != e; ++i) { const CodeGenRegisterClass &RC = RegisterClasses[i]; OS << RC.MethodBodies << "\n"; OS << RC.getName() << "Class::" << RC.getName() << "Class() : TargetRegisterClass(" << RC.getName() + "RegClassID" << ", " << '\"' << RC.getName() << "\", " << RC.getName() + "VTs" << ", " << RC.getName() + "Subclasses" << ", " << RC.getName() + "Superclasses" << ", " << (NumSubRegIndices ? RC.getName() + "Sub" : std::string("Null")) << "RegClasses, " << (NumSubRegIndices ? RC.getName() + "Super" : std::string("Null")) << "RegClasses, " << RC.SpillSize/8 << ", " << RC.SpillAlignment/8 << ", " << RC.CopyCost << ", " << RC.getName() << ", " << RC.getName() << " + " << RC.Elements.size() << ") {}\n"; } OS << "}\n"; } OS << "\nnamespace {\n"; OS << " const TargetRegisterClass* const RegisterClasses[] = {\n"; for (unsigned i = 0, e = RegisterClasses.size(); i != e; ++i) OS << " &" << getQualifiedName(RegisterClasses[i].TheDef) << "RegClass,\n"; OS << " };\n"; // Emit register sub-registers / super-registers, aliases... std::map<Record*, std::set<Record*>, LessRecord> RegisterSubRegs; std::map<Record*, std::set<Record*>, LessRecord> RegisterSuperRegs; std::map<Record*, std::set<Record*>, LessRecord> RegisterAliases; typedef std::map<Record*, std::vector<int64_t>, LessRecord> DwarfRegNumsMapTy; DwarfRegNumsMapTy DwarfRegNums; const std::vector<CodeGenRegister> &Regs = Target.getRegisters(); for (unsigned i = 0, e = Regs.size(); i != e; ++i) { Record *R = Regs[i].TheDef; std::vector<Record*> LI = Regs[i].TheDef->getValueAsListOfDefs("Aliases"); // Add information that R aliases all of the elements in the list... and // that everything in the list aliases R. for (unsigned j = 0, e = LI.size(); j != e; ++j) { Record *Reg = LI[j]; if (RegisterAliases[R].count(Reg)) errs() << "Warning: register alias between " << getQualifiedName(R) << " and " << getQualifiedName(Reg) << " specified multiple times!\n"; RegisterAliases[R].insert(Reg); if (RegisterAliases[Reg].count(R)) errs() << "Warning: register alias between " << getQualifiedName(R) << " and " << getQualifiedName(Reg) << " specified multiple times!\n"; RegisterAliases[Reg].insert(R); } } // Process sub-register sets. for (unsigned i = 0, e = Regs.size(); i != e; ++i) { Record *R = Regs[i].TheDef; std::vector<Record*> LI = Regs[i].TheDef->getValueAsListOfDefs("SubRegs"); // Process sub-register set and add aliases information. for (unsigned j = 0, e = LI.size(); j != e; ++j) { Record *SubReg = LI[j]; if (RegisterSubRegs[R].count(SubReg)) errs() << "Warning: register " << getQualifiedName(SubReg) << " specified as a sub-register of " << getQualifiedName(R) << " multiple times!\n"; addSubSuperReg(R, SubReg, RegisterSubRegs, RegisterSuperRegs, RegisterAliases); } } // Print the SubregHashTable, a simple quadratically probed // hash table for determining if a register is a subregister // of another register. unsigned NumSubRegs = 0; std::map<Record*, unsigned> RegNo; for (unsigned i = 0, e = Regs.size(); i != e; ++i) { RegNo[Regs[i].TheDef] = i; NumSubRegs += RegisterSubRegs[Regs[i].TheDef].size(); } unsigned SubregHashTableSize = 2 * NextPowerOf2(2 * NumSubRegs); unsigned* SubregHashTable = new unsigned[2 * SubregHashTableSize]; std::fill(SubregHashTable, SubregHashTable + 2 * SubregHashTableSize, ~0U); unsigned hashMisses = 0; for (unsigned i = 0, e = Regs.size(); i != e; ++i) { Record* R = Regs[i].TheDef; for (std::set<Record*>::iterator I = RegisterSubRegs[R].begin(), E = RegisterSubRegs[R].end(); I != E; ++I) { Record* RJ = *I; // We have to increase the indices of both registers by one when // computing the hash because, in the generated code, there // will be an extra empty slot at register 0. size_t index = ((i+1) + (RegNo[RJ]+1) * 37) & (SubregHashTableSize-1); unsigned ProbeAmt = 2; while (SubregHashTable[index*2] != ~0U && SubregHashTable[index*2+1] != ~0U) { index = (index + ProbeAmt) & (SubregHashTableSize-1); ProbeAmt += 2; hashMisses++; } SubregHashTable[index*2] = i; SubregHashTable[index*2+1] = RegNo[RJ]; } } OS << "\n\n // Number of hash collisions: " << hashMisses << "\n"; if (SubregHashTableSize) { std::string Namespace = Regs[0].TheDef->getValueAsString("Namespace"); OS << " const unsigned SubregHashTable[] = { "; for (unsigned i = 0; i < SubregHashTableSize - 1; ++i) { if (i != 0) // Insert spaces for nice formatting. OS << " "; if (SubregHashTable[2*i] != ~0U) { OS << getQualifiedName(Regs[SubregHashTable[2*i]].TheDef) << ", " << getQualifiedName(Regs[SubregHashTable[2*i+1]].TheDef) << ", \n"; } else { OS << Namespace << "::NoRegister, " << Namespace << "::NoRegister, \n"; } } unsigned Idx = SubregHashTableSize*2-2; if (SubregHashTable[Idx] != ~0U) { OS << " " << getQualifiedName(Regs[SubregHashTable[Idx]].TheDef) << ", " << getQualifiedName(Regs[SubregHashTable[Idx+1]].TheDef) << " };\n"; } else { OS << Namespace << "::NoRegister, " << Namespace << "::NoRegister };\n"; } OS << " const unsigned SubregHashTableSize = " << SubregHashTableSize << ";\n"; } else { OS << " const unsigned SubregHashTable[] = { ~0U, ~0U };\n" << " const unsigned SubregHashTableSize = 1;\n"; } delete [] SubregHashTable; // Print the AliasHashTable, a simple quadratically probed // hash table for determining if a register aliases another register. unsigned NumAliases = 0; RegNo.clear(); for (unsigned i = 0, e = Regs.size(); i != e; ++i) { RegNo[Regs[i].TheDef] = i; NumAliases += RegisterAliases[Regs[i].TheDef].size(); } unsigned AliasesHashTableSize = 2 * NextPowerOf2(2 * NumAliases); unsigned* AliasesHashTable = new unsigned[2 * AliasesHashTableSize]; std::fill(AliasesHashTable, AliasesHashTable + 2 * AliasesHashTableSize, ~0U); hashMisses = 0; for (unsigned i = 0, e = Regs.size(); i != e; ++i) { Record* R = Regs[i].TheDef; for (std::set<Record*>::iterator I = RegisterAliases[R].begin(), E = RegisterAliases[R].end(); I != E; ++I) { Record* RJ = *I; // We have to increase the indices of both registers by one when // computing the hash because, in the generated code, there // will be an extra empty slot at register 0. size_t index = ((i+1) + (RegNo[RJ]+1) * 37) & (AliasesHashTableSize-1); unsigned ProbeAmt = 2; while (AliasesHashTable[index*2] != ~0U && AliasesHashTable[index*2+1] != ~0U) { index = (index + ProbeAmt) & (AliasesHashTableSize-1); ProbeAmt += 2; hashMisses++; } AliasesHashTable[index*2] = i; AliasesHashTable[index*2+1] = RegNo[RJ]; } } OS << "\n\n // Number of hash collisions: " << hashMisses << "\n"; if (AliasesHashTableSize) { std::string Namespace = Regs[0].TheDef->getValueAsString("Namespace"); OS << " const unsigned AliasesHashTable[] = { "; for (unsigned i = 0; i < AliasesHashTableSize - 1; ++i) { if (i != 0) // Insert spaces for nice formatting. OS << " "; if (AliasesHashTable[2*i] != ~0U) { OS << getQualifiedName(Regs[AliasesHashTable[2*i]].TheDef) << ", " << getQualifiedName(Regs[AliasesHashTable[2*i+1]].TheDef) << ", \n"; } else { OS << Namespace << "::NoRegister, " << Namespace << "::NoRegister, \n"; } } unsigned Idx = AliasesHashTableSize*2-2; if (AliasesHashTable[Idx] != ~0U) { OS << " " << getQualifiedName(Regs[AliasesHashTable[Idx]].TheDef) << ", " << getQualifiedName(Regs[AliasesHashTable[Idx+1]].TheDef) << " };\n"; } else { OS << Namespace << "::NoRegister, " << Namespace << "::NoRegister };\n"; } OS << " const unsigned AliasesHashTableSize = " << AliasesHashTableSize << ";\n"; } else { OS << " const unsigned AliasesHashTable[] = { ~0U, ~0U };\n" << " const unsigned AliasesHashTableSize = 1;\n"; } delete [] AliasesHashTable; if (!RegisterAliases.empty()) OS << "\n\n // Register Alias Sets...\n"; // Emit the empty alias list OS << " const unsigned Empty_AliasSet[] = { 0 };\n"; // Loop over all of the registers which have aliases, emitting the alias list // to memory. for (std::map<Record*, std::set<Record*>, LessRecord >::iterator I = RegisterAliases.begin(), E = RegisterAliases.end(); I != E; ++I) { if (I->second.empty()) continue; OS << " const unsigned " << I->first->getName() << "_AliasSet[] = { "; for (std::set<Record*>::iterator ASI = I->second.begin(), E = I->second.end(); ASI != E; ++ASI) OS << getQualifiedName(*ASI) << ", "; OS << "0 };\n"; } if (!RegisterSubRegs.empty()) OS << "\n\n // Register Sub-registers Sets...\n"; // Emit the empty sub-registers list OS << " const unsigned Empty_SubRegsSet[] = { 0 };\n"; // Loop over all of the registers which have sub-registers, emitting the // sub-registers list to memory. for (std::map<Record*, std::set<Record*>, LessRecord>::iterator I = RegisterSubRegs.begin(), E = RegisterSubRegs.end(); I != E; ++I) { if (I->second.empty()) continue; OS << " const unsigned " << I->first->getName() << "_SubRegsSet[] = { "; std::vector<Record*> SubRegsVector; for (std::set<Record*>::iterator ASI = I->second.begin(), E = I->second.end(); ASI != E; ++ASI) SubRegsVector.push_back(*ASI); RegisterSorter RS(RegisterSubRegs); std::stable_sort(SubRegsVector.begin(), SubRegsVector.end(), RS); for (unsigned i = 0, e = SubRegsVector.size(); i != e; ++i) OS << getQualifiedName(SubRegsVector[i]) << ", "; OS << "0 };\n"; } if (!RegisterSuperRegs.empty()) OS << "\n\n // Register Super-registers Sets...\n"; // Emit the empty super-registers list OS << " const unsigned Empty_SuperRegsSet[] = { 0 };\n"; // Loop over all of the registers which have super-registers, emitting the // super-registers list to memory. for (std::map<Record*, std::set<Record*>, LessRecord >::iterator I = RegisterSuperRegs.begin(), E = RegisterSuperRegs.end(); I != E; ++I) { if (I->second.empty()) continue; OS << " const unsigned " << I->first->getName() << "_SuperRegsSet[] = { "; std::vector<Record*> SuperRegsVector; for (std::set<Record*>::iterator ASI = I->second.begin(), E = I->second.end(); ASI != E; ++ASI) SuperRegsVector.push_back(*ASI); RegisterSorter RS(RegisterSubRegs); std::stable_sort(SuperRegsVector.begin(), SuperRegsVector.end(), RS); for (unsigned i = 0, e = SuperRegsVector.size(); i != e; ++i) OS << getQualifiedName(SuperRegsVector[i]) << ", "; OS << "0 };\n"; } OS<<"\n const TargetRegisterDesc RegisterDescriptors[] = { // Descriptors\n"; OS << " { \"NOREG\",\t0,\t0,\t0 },\n"; // Now that register alias and sub-registers sets have been emitted, emit the // register descriptors now. for (unsigned i = 0, e = Regs.size(); i != e; ++i) { const CodeGenRegister &Reg = Regs[i]; OS << " { \""; OS << Reg.getName() << "\",\t"; if (!RegisterAliases[Reg.TheDef].empty()) OS << Reg.getName() << "_AliasSet,\t"; else OS << "Empty_AliasSet,\t"; if (!RegisterSubRegs[Reg.TheDef].empty()) OS << Reg.getName() << "_SubRegsSet,\t"; else OS << "Empty_SubRegsSet,\t"; if (!RegisterSuperRegs[Reg.TheDef].empty()) OS << Reg.getName() << "_SuperRegsSet },\n"; else OS << "Empty_SuperRegsSet },\n"; } OS << " };\n"; // End of register descriptors... // Emit SubRegIndex names, skipping 0 const std::vector<Record*> SubRegIndices = Target.getSubRegIndices(); OS << "\n const char *const SubRegIndexTable[] = { \""; for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i) { OS << SubRegIndices[i]->getName(); if (i+1 != e) OS << "\", \""; } OS << "\" };\n\n"; OS << "}\n\n"; // End of anonymous namespace... std::string ClassName = Target.getName() + "GenRegisterInfo"; // Calculate the mapping of subregister+index pairs to physical registers. RegisterMaps RegMaps; // Emit the subregister + index mapping function based on the information // calculated above. OS << "unsigned " << ClassName << "::getSubReg(unsigned RegNo, unsigned Index) const {\n" << " switch (RegNo) {\n" << " default:\n return 0;\n"; for (unsigned i = 0, e = Regs.size(); i != e; ++i) { RegisterMaps::SubRegMap &SRM = RegMaps.inferSubRegIndices(Regs[i].TheDef); if (SRM.empty()) continue; OS << " case " << getQualifiedName(Regs[i].TheDef) << ":\n"; OS << " switch (Index) {\n"; OS << " default: return 0;\n"; for (RegisterMaps::SubRegMap::const_iterator ii = SRM.begin(), ie = SRM.end(); ii != ie; ++ii) OS << " case " << getQualifiedName(ii->first) << ": return " << getQualifiedName(ii->second) << ";\n"; OS << " };\n" << " break;\n"; } OS << " };\n"; OS << " return 0;\n"; OS << "}\n\n"; OS << "unsigned " << ClassName << "::getSubRegIndex(unsigned RegNo, unsigned SubRegNo) const {\n" << " switch (RegNo) {\n" << " default:\n return 0;\n"; for (unsigned i = 0, e = Regs.size(); i != e; ++i) { RegisterMaps::SubRegMap &SRM = RegMaps.SubReg[Regs[i].TheDef]; if (SRM.empty()) continue; OS << " case " << getQualifiedName(Regs[i].TheDef) << ":\n"; for (RegisterMaps::SubRegMap::const_iterator ii = SRM.begin(), ie = SRM.end(); ii != ie; ++ii) OS << " if (SubRegNo == " << getQualifiedName(ii->second) << ") return " << getQualifiedName(ii->first) << ";\n"; OS << " return 0;\n"; } OS << " };\n"; OS << " return 0;\n"; OS << "}\n\n"; // Emit composeSubRegIndices RegMaps.computeComposites(); OS << "unsigned " << ClassName << "::composeSubRegIndices(unsigned IdxA, unsigned IdxB) const {\n" << " switch (IdxA) {\n" << " default:\n return IdxB;\n"; for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i) { bool Open = false; for (unsigned j = 0; j != e; ++j) { if (Record *Comp = RegMaps.Composite.lookup( std::make_pair(SubRegIndices[i], SubRegIndices[j]))) { if (!Open) { OS << " case " << getQualifiedName(SubRegIndices[i]) << ": switch(IdxB) {\n default: return IdxB;\n"; Open = true; } OS << " case " << getQualifiedName(SubRegIndices[j]) << ": return " << getQualifiedName(Comp) << ";\n"; } } if (Open) OS << " }\n"; } OS << " }\n}\n\n"; // Emit the constructor of the class... OS << ClassName << "::" << ClassName << "(int CallFrameSetupOpcode, int CallFrameDestroyOpcode)\n" << " : TargetRegisterInfo(RegisterDescriptors, " << Regs.size()+1 << ", RegisterClasses, RegisterClasses+" << RegisterClasses.size() <<",\n" << " SubRegIndexTable,\n" << " CallFrameSetupOpcode, CallFrameDestroyOpcode,\n" << " SubregHashTable, SubregHashTableSize,\n" << " AliasesHashTable, AliasesHashTableSize) {\n" << "}\n\n"; // Collect all information about dwarf register numbers // First, just pull all provided information to the map unsigned maxLength = 0; for (unsigned i = 0, e = Regs.size(); i != e; ++i) { Record *Reg = Regs[i].TheDef; std::vector<int64_t> RegNums = Reg->getValueAsListOfInts("DwarfNumbers"); maxLength = std::max((size_t)maxLength, RegNums.size()); if (DwarfRegNums.count(Reg)) errs() << "Warning: DWARF numbers for register " << getQualifiedName(Reg) << "specified multiple times\n"; DwarfRegNums[Reg] = RegNums; } // Now we know maximal length of number list. Append -1's, where needed for (DwarfRegNumsMapTy::iterator I = DwarfRegNums.begin(), E = DwarfRegNums.end(); I != E; ++I) for (unsigned i = I->second.size(), e = maxLength; i != e; ++i) I->second.push_back(-1); // Emit information about the dwarf register numbers. OS << "int " << ClassName << "::getDwarfRegNumFull(unsigned RegNum, " << "unsigned Flavour) const {\n" << " switch (Flavour) {\n" << " default:\n" << " assert(0 && \"Unknown DWARF flavour\");\n" << " return -1;\n"; for (unsigned i = 0, e = maxLength; i != e; ++i) { OS << " case " << i << ":\n" << " switch (RegNum) {\n" << " default:\n" << " assert(0 && \"Invalid RegNum\");\n" << " return -1;\n"; // Sort by name to get a stable order. for (DwarfRegNumsMapTy::iterator I = DwarfRegNums.begin(), E = DwarfRegNums.end(); I != E; ++I) { int RegNo = I->second[i]; if (RegNo != -2) OS << " case " << getQualifiedName(I->first) << ":\n" << " return " << RegNo << ";\n"; else OS << " case " << getQualifiedName(I->first) << ":\n" << " assert(0 && \"Invalid register for this mode\");\n" << " return -1;\n"; } OS << " };\n"; } OS << " };\n}\n\n"; OS << "} // End llvm namespace \n"; }