コード例 #1
0
ファイル: DataIO_Mdout.cpp プロジェクト: Amber-MD/cpptraj
// DataIO_Mdout::ID_DataFormat()
bool DataIO_Mdout::ID_DataFormat(CpptrajFile& infile) {
  if (infile.OpenFile()) return false;
  bool isMdout = false;
  std::string line = infile.GetLine();
  if (line[0] == '\n') {
    line = infile.GetLine();
    if (line.compare(0, 15, "          -----") == 0) {
      line = infile.GetLine();
      if (line.compare(0, 15, "          Amber") == 0)
        isMdout = true;
    }
  }
  infile.CloseFile();
  return isMdout;
}
コード例 #2
0
bool Parm_CharmmPsf::ID_ParmFormat(CpptrajFile& fileIn) {
  // Assumes already set up
  if (fileIn.OpenFile()) return false;
  std::string nextLine = fileIn.GetLine();
  if (nextLine.empty()) return false;
  bool isPSF = ( nextLine.compare(0, 3, "PSF") == 0 );
  fileIn.CloseFile();
  return isPSF;
}
コード例 #3
0
ファイル: DataIO_OpenDx.cpp プロジェクト: Amber-MD/cpptraj
bool DataIO_OpenDx::ID_DataFormat( CpptrajFile& infile ) {
  bool isDX = false;
  if (!infile.OpenFile()) {
    std::string firstLine = infile.GetLine();
    if (!firstLine.empty())
      isDX = (firstLine.compare(0, 28, "object 1 class gridpositions") == 0);
    infile.CloseFile();
  }
  return isDX;
}
コード例 #4
0
ファイル: PDBfile.cpp プロジェクト: zhangxiaoyu11/mAMBER
// PDBfile::ID_PDB()
bool PDBfile::ID_PDB(CpptrajFile& fileIn) {
  // NOTE: ASSUME FILE SET UP FOR READ
  if (fileIn.OpenFile()) return false;
  std::string line1 = fileIn.GetLine();
  std::string line2 = fileIn.GetLine();
  fileIn.CloseFile();
  if (!IsPDBkeyword( line1 )) return false;
  if (!IsPDBkeyword( line2 )) return false;
  return true;
}
コード例 #5
0
ファイル: CIFfile.cpp プロジェクト: Amber-MD/cpptraj
/** Determine if fileIn is a CIF file. Look for entries beginning with 
  * an underscore (indicating data block), and a 'loop_' keyword or
  * '_entry.id' block.
  */
bool CIFfile::ID_CIF(CpptrajFile& fileIn) {
  // NOTE: ASSUME FILE SET UP FOR READ
  if (fileIn.OpenFile()) return false;
  int ndata = 0; // Number of '_XXX' entries seen
  bool foundLoop = false;
  bool foundEntryID = false;
  for (int i = 0; i < 10; i++) {
    std::string lineIn = fileIn.GetLine();
    if (lineIn[0] == '_') ndata++;
    if (lineIn.compare(0,5,"loop_")==0) foundLoop = true;
    if (lineIn.compare(0,9,"_entry.id")==0) foundEntryID = true;
  }
  fileIn.CloseFile();
  return ( ndata > 2 && (foundLoop || foundEntryID) );
}
コード例 #6
0
// Traj_AmberCoord::ID_TrajFormat()
bool Traj_AmberCoord::ID_TrajFormat(CpptrajFile& fileIn) {
  // File must already be set up for read
  if (fileIn.OpenFile()) return false;
  if (fileIn.NextLine()==0) return false; // Title
  std::string buffer2 = fileIn.GetLine(); // REMD header/coords
  fileIn.CloseFile();
  // Check if second line contains REMD/HREMD, Amber Traj with REMD header
  if ( IsRemdHeader( buffer2.c_str() ) ) {
    if (debug_>0) mprintf("  AMBER TRAJECTORY with (H)REMD header.\n");
    hasREMD_ = REMD_HEADER_SIZE + (size_t)fileIn.IsDos();
    return true;
  }
  // Check if we can read at least 3 coords of width 8, Amber trajectory
  float TrajCoord[3];
  if ( sscanf(buffer2.c_str(), "%8f%8f%8f", TrajCoord, TrajCoord+1, TrajCoord+2) == 3 )
  {
    if (debug_>0) mprintf("  AMBER TRAJECTORY file\n");
    return true;
  }
  return false;
}
コード例 #7
0
ファイル: Traj_AmberCoord.cpp プロジェクト: Amber-MD/cpptraj
// Traj_AmberCoord::ID_TrajFormat()
bool Traj_AmberCoord::ID_TrajFormat(CpptrajFile& fileIn) {
  // File must already be set up for read
  if (fileIn.OpenFile()) return false;
  if (fileIn.NextLine()==0) return false; // Title
  std::string buffer2 = fileIn.GetLine(); // REMD header/coords
  fileIn.CloseFile();
  // Check if second line contains REMD/HREMD, Amber Traj with REMD header
  if ( IsRemdHeader( buffer2.c_str() ) ) {
    if (debug_>0) mprintf("  AMBER TRAJECTORY with (H)REMD header.\n");
    headerSize_ = REMD_HEADER_SIZE + (size_t)fileIn.IsDos();
    tStart_ = 33; // 42 - 8 - 1
    tEnd_   = 41; // 42 - 1
    return true;
  }
  // TODO: Read these in as indices instead of temperatures
  if ( IsRxsgldHeader( buffer2.c_str() ) ) {
    mprintf("  AMBER TRAJECTORY with RXSGLD header.\n");
    headerSize_ = RXSGLD_HEADER_SIZE + (size_t)fileIn.IsDos();
    tStart_ = 35; // 44 - 8 - 1
    tEnd_   = 43; // 44 - 1
    return true;
  }
  // Check if we can read 3, 6, 9, or 10 coords (corresponding to 1, 2, 3 or
  // > 3 atoms) of width 8; Amber trajectory.
  float TrajCoord[10];
  int nscan = sscanf(buffer2.c_str(), "%8f%8f%8f%8f%8f%8f%8f%8f%8f%8f",
                     TrajCoord,   TrajCoord+1, TrajCoord+2, TrajCoord+3,
                     TrajCoord+4, TrajCoord+5, TrajCoord+6, TrajCoord+7,
                     TrajCoord+8, TrajCoord+9);
  if (nscan == 3 || nscan == 6 || nscan == 9 || nscan == 10)
  {
    if (debug_>0) mprintf("  AMBER TRAJECTORY file\n");
    return true;
  }
  return false;
}
コード例 #8
0
// Action_Spam::init()
Action::RetType Action_Spam::Init(ArgList& actionArgs, TopologyList* PFL, DataSetList* DSL, DataFileList* DFL, int debugIn)
{
  // Always use imaged distances
  InitImaging(true);
  // This is needed everywhere in this function scope
  FileName filename;

  // See if we're doing pure water. If so, we don't need a peak file
  purewater_ = actionArgs.hasKey("purewater");

  if (purewater_) {
    // We still need the cutoff
    double cut = actionArgs.getKeyDouble("cut", 12.0);
    cut2_ = cut * cut;
    doublecut_ = 2 * cut;
    onecut2_ = 1 / cut2_;
    // See if we write to a data file
    datafile_ = actionArgs.GetStringKey("out");
    // Generate the data set name, and hold onto the master data set list
    std::string ds_name = actionArgs.GetStringKey("name");
    if (ds_name.empty())
      ds_name = myDSL_.GenerateDefaultName("SPAM");
    // We only have one data set averaging over every water. Add it here
    myDSL_.AddSet(DataSet::DOUBLE, ds_name, NULL);
    solvname_ = actionArgs.GetStringKey("solv");
    if (solvname_.empty())
      solvname_ = std::string("WAT");
  }else {
    // Get the file name with the peaks defined in it
    filename.SetFileName( actionArgs.GetStringNext() );

    if (filename.empty() || !File::Exists(filename)) {
      mprinterr("Spam: Error: Peak file [%s] does not exist!\n", filename.full());
      return Action::ERR;
    }

    // Get the remaining optional arguments
    solvname_ = actionArgs.GetStringKey("solv");
    if (solvname_.empty())
      solvname_ = std::string("WAT");
    reorder_ = actionArgs.hasKey("reorder");
    bulk_ = actionArgs.getKeyDouble("bulk", 0.0);
    double cut = actionArgs.getKeyDouble("cut", 12.0);
    cut2_ = cut * cut;
    doublecut_ = 2 * cut;
    onecut2_ = 1 / cut2_;
    std::string infoname = actionArgs.GetStringKey("info");
    if (infoname.empty())
      infoname = std::string("spam.info");
    infofile_ = DFL->AddCpptrajFile(infoname, "SPAM info");
    if (infofile_ == 0) return Action::ERR;
    // The default maskstr is the Oxygen atom of the solvent
    summaryfile_ = actionArgs.GetStringKey("summary");
    // Divide site size by 2 to make it half the edge length (or radius)
    site_size_ = actionArgs.getKeyDouble("site_size", 2.5) / 2.0;
    sphere_ = actionArgs.hasKey("sphere");
    // If it's a sphere, square the radius to compare with
    if (sphere_)
      site_size_ *= site_size_;
    datafile_ = actionArgs.GetStringKey("out");
    std::string ds_name = actionArgs.GetStringKey("name");
    if (ds_name.empty())
      ds_name = myDSL_.GenerateDefaultName("SPAM");

    // Parse through the peaks file and extract the peaks
    CpptrajFile peakfile;
    if (peakfile.OpenRead(filename)) {
      mprinterr("SPAM: Error: Could not open %s for reading!\n", filename.full());
      return Action::ERR;
    }
    std::string line = peakfile.GetLine();
    int npeaks = 0;
    while (!line.empty()) {
      if (sscanf(line.c_str(), "%d", &npeaks) != 1) {
        line = peakfile.GetLine();
        continue;
      }
      line = peakfile.GetLine();
      break;
    }
    while (!line.empty()) {
      double x, y, z, dens;
      if (sscanf(line.c_str(), "C %lg %lg %lg %lg", &x, &y, &z, &dens) != 4) {
        line = peakfile.GetLine();
        continue;
      }
      line = peakfile.GetLine();
      peaks_.push_back(Vec3(x, y, z));
    }
    peakfile.CloseFile();
    // Check that our initial number of peaks matches our parsed peaks. Warn
    // otherwise
    if (npeaks != (int)peaks_.size())
      mprinterr("SPAM: Warning: %s claims to have %d peaks, but really has %d!\n",
                filename.full(), npeaks, peaks_.size());
    // Now add all of the data sets
    MetaData md(ds_name);
    for (int i = 0; i < (int)peaks_.size(); i++) {
      md.SetAspect( integerToString(i+1) ); // TODO: Should this be Idx?
      if (myDSL_.AddSet(DataSet::DOUBLE, md) == 0) return Action::ERR;
      // Add a new list of integers to keep track of omitted frames
      std::vector<int> vec;
      peakFrameData_.push_back(vec);
    }
  }

  // Print info now
  if (purewater_) {
    mprintf("SPAM: Calculating bulk value for pure solvent\n");
    if (!datafile_.empty())
      mprintf("SPAM: Printing solvent energies to %s\n", datafile_.c_str());
    mprintf("SPAM: Using a %.2f Angstrom non-bonded cutoff with shifted EEL.\n",
            sqrt(cut2_));
    if (reorder_)
      mprintf("SPAM: Warning: Re-ordering makes no sense for pure solvent.\n");
    if (!summaryfile_.empty())
      mprintf("SPAM: Printing solvent SPAM summary to %s\n", summaryfile_.c_str());
  }else {
    mprintf("SPAM: Solvent [%s] density peaks taken from %s.\n",
            solvname_.c_str(), filename.base());
    mprintf("SPAM: %d density peaks will be analyzed from %s.\n",
            peaks_.size(), filename.base());
    mprintf("SPAM: Occupation information printed to %s.\n", infofile_->Filename().full());
    mprintf("SPAM: Sites are ");
    if (sphere_)
      mprintf("spheres with diameter %.3lf\n", site_size_);
    else
      mprintf("boxes with edge length %.3lf\n", site_size_);
    if (reorder_) {
      mprintf("SPAM: Re-ordering trajectory so each site always has ");
      mprintf("the same water molecule.\n");
    }
    if (summaryfile_.empty() && datafile_.empty()) {
      if (!reorder_) {
        mprinterr("SPAM: Error: Not re-ordering trajectory or calculating energies. ");
        mprinterr("Nothing to do!\n");
        return Action::ERR;
      }
      mprintf("SPAM: Not calculating any SPAM energies\n");
    }else {
      mprintf("SPAM: Using a non-bonded cutoff of %.2lf Ang. with a EEL shifting function.\n",
              sqrt(cut2_));
      mprintf("SPAM: Bulk solvent SPAM energy taken as %.3lf kcal/mol\n", bulk_);
    }
  }
  mprintf("#Citation: Cui, G.; Swails, J.M.; Manas, E.S.; \"SPAM: A Simple Approach\n"
          "#          for Profiling Bound Water Molecules\"\n"
          "#          J. Chem. Theory Comput., 2013, 9 (12), pp 5539–5549.\n");

  return Action::OK;
}