コード例 #1
0
void SetTheory::evaluate(Init *Expr, RecSet &Elts) {
  // A def in a list can be a just an element, or it may expand.
  if (DefInit *Def = dynamic_cast<DefInit*>(Expr)) {
    if (const RecVec *Result = expand(Def->getDef()))
      return Elts.insert(Result->begin(), Result->end());
    Elts.insert(Def->getDef());
    return;
  }

  // Lists simply expand.
  if (ListInit *LI = dynamic_cast<ListInit*>(Expr))
    return evaluate(LI->begin(), LI->end(), Elts);

  // Anything else must be a DAG.
  DagInit *DagExpr = dynamic_cast<DagInit*>(Expr);
  if (!DagExpr)
    throw "Invalid set element: " + Expr->getAsString();
  DefInit *OpInit = dynamic_cast<DefInit*>(DagExpr->getOperator());
  if (!OpInit)
    throw "Bad set expression: " + Expr->getAsString();
  Operator *Op = Operators.lookup(OpInit->getDef()->getName());
  if (!Op)
    throw "Unknown set operator: " + Expr->getAsString();
  Op->apply(*this, DagExpr, Elts);
}
コード例 #2
0
/// \brief Invert the 1-[0/1] mapping of diags to group into a one to many
/// mapping of groups to diags in the group.
static void groupDiagnostics(const std::vector<Record*> &Diags,
                             const std::vector<Record*> &DiagGroups,
                             std::map<std::string, GroupInfo> &DiagsInGroup) {
  for (unsigned i = 0, e = Diags.size(); i != e; ++i) {
    const Record *R = Diags[i];
    DefInit *DI = dynamic_cast<DefInit*>(R->getValueInit("Group"));
    if (DI == 0) continue;
    assert(R->getValueAsDef("Class")->getName() != "CLASS_NOTE" &&
           "Note can't be in a DiagGroup");
    std::string GroupName = DI->getDef()->getValueAsString("GroupName");
    DiagsInGroup[GroupName].DiagsInGroup.push_back(R);
  }
  
  // Add all DiagGroup's to the DiagsInGroup list to make sure we pick up empty
  // groups (these are warnings that GCC supports that clang never produces).
  for (unsigned i = 0, e = DiagGroups.size(); i != e; ++i) {
    Record *Group = DiagGroups[i];
    GroupInfo &GI = DiagsInGroup[Group->getValueAsString("GroupName")];
    
    std::vector<Record*> SubGroups = Group->getValueAsListOfDefs("SubGroups");
    for (unsigned j = 0, e = SubGroups.size(); j != e; ++j)
      GI.SubGroups.push_back(SubGroups[j]->getValueAsString("GroupName"));
  }
  
  // Assign unique ID numbers to the groups.
  unsigned IDNo = 0;
  for (std::map<std::string, GroupInfo>::iterator
       I = DiagsInGroup.begin(), E = DiagsInGroup.end(); I != E; ++I, ++IDNo)
    I->second.IDNo = IDNo;
}
コード例 #3
0
ファイル: SetTheory.cpp プロジェクト: 0x00evil/llvm
void SetTheory::evaluate(Init *Expr, RecSet &Elts, ArrayRef<SMLoc> Loc) {
  // A def in a list can be a just an element, or it may expand.
  if (DefInit *Def = dyn_cast<DefInit>(Expr)) {
    if (const RecVec *Result = expand(Def->getDef()))
      return Elts.insert(Result->begin(), Result->end());
    Elts.insert(Def->getDef());
    return;
  }

  // Lists simply expand.
  if (ListInit *LI = dyn_cast<ListInit>(Expr))
    return evaluate(LI->begin(), LI->end(), Elts, Loc);

  // Anything else must be a DAG.
  DagInit *DagExpr = dyn_cast<DagInit>(Expr);
  if (!DagExpr)
    PrintFatalError(Loc, "Invalid set element: " + Expr->getAsString());
  DefInit *OpInit = dyn_cast<DefInit>(DagExpr->getOperator());
  if (!OpInit)
    PrintFatalError(Loc, "Bad set expression: " + Expr->getAsString());
  auto I = Operators.find(OpInit->getDef()->getName());
  if (I == Operators.end())
    PrintFatalError(Loc, "Unknown set operator: " + Expr->getAsString());
  I->second->apply(*this, DagExpr, Elts, Loc);
}
コード例 #4
0
CodeGenRegisterClass::CodeGenRegisterClass(Record *R) : TheDef(R) {
  // Rename anonymous register classes.
  if (R->getName().size() > 9 && R->getName()[9] == '.') {
    static unsigned AnonCounter = 0;
    R->setName("AnonRegClass_"+utostr(AnonCounter++));
  }

  std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes");
  for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
    Record *Type = TypeList[i];
    if (!Type->isSubClassOf("ValueType"))
      throw "RegTypes list member '" + Type->getName() +
        "' does not derive from the ValueType class!";
    VTs.push_back(getValueType(Type));
  }
  assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!");

  std::vector<Record*> RegList = R->getValueAsListOfDefs("MemberList");
  for (unsigned i = 0, e = RegList.size(); i != e; ++i) {
    Record *Reg = RegList[i];
    if (!Reg->isSubClassOf("Register"))
      throw "Register Class member '" + Reg->getName() +
            "' does not derive from the Register class!";
    Elements.push_back(Reg);
  }

  // SubRegClasses is a list<dag> containing (RC, subregindex, ...) dags.
  ListInit *SRC = R->getValueAsListInit("SubRegClasses");
  for (ListInit::const_iterator i = SRC->begin(), e = SRC->end(); i != e; ++i) {
    DagInit *DAG = dynamic_cast<DagInit*>(*i);
    if (!DAG) throw "SubRegClasses must contain DAGs";
    DefInit *DAGOp = dynamic_cast<DefInit*>(DAG->getOperator());
    Record *RCRec;
    if (!DAGOp || !(RCRec = DAGOp->getDef())->isSubClassOf("RegisterClass"))
      throw "Operator '" + DAG->getOperator()->getAsString() +
        "' in SubRegClasses is not a RegisterClass";
    // Iterate over args, all SubRegIndex instances.
    for (DagInit::const_arg_iterator ai = DAG->arg_begin(), ae = DAG->arg_end();
         ai != ae; ++ai) {
      DefInit *Idx = dynamic_cast<DefInit*>(*ai);
      Record *IdxRec;
      if (!Idx || !(IdxRec = Idx->getDef())->isSubClassOf("SubRegIndex"))
        throw "Argument '" + (*ai)->getAsString() +
          "' in SubRegClasses is not a SubRegIndex";
      if (!SubRegClasses.insert(std::make_pair(IdxRec, RCRec)).second)
        throw "SubRegIndex '" + IdxRec->getName() + "' mentioned twice";
    }
  }

  // Allow targets to override the size in bits of the RegisterClass.
  unsigned Size = R->getValueAsInt("Size");

  Namespace = R->getValueAsString("Namespace");
  SpillSize = Size ? Size : EVT(VTs[0]).getSizeInBits();
  SpillAlignment = R->getValueAsInt("Alignment");
  CopyCost = R->getValueAsInt("CopyCost");
  MethodBodies = R->getValueAsCode("MethodBodies");
  MethodProtos = R->getValueAsCode("MethodProtos");
}
コード例 #5
0
static std::string PhyRegForNode(TreePatternNode *Op,
                                 const CodeGenTarget &Target) {
  std::string PhysReg;

  if (!Op->isLeaf())
    return PhysReg;

  DefInit *OpDI = dynamic_cast<DefInit*>(Op->getLeafValue());
  Record *OpLeafRec = OpDI->getDef();
  if (!OpLeafRec->isSubClassOf("Register"))
    return PhysReg;

  PhysReg += static_cast<StringInit*>(OpLeafRec->getValue( \
             "Namespace")->getValue())->getValue();
  PhysReg += "::";
  PhysReg += Target.getRegBank().getReg(OpLeafRec)->getName();
  return PhysReg;
}
コード例 #6
0
ファイル: CodeGenInstruction.cpp プロジェクト: JuliaLang/llvm
/// tryAliasOpMatch - This is a helper function for the CodeGenInstAlias
/// constructor.  It checks if an argument in an InstAlias pattern matches
/// the corresponding operand of the instruction.  It returns true on a
/// successful match, with ResOp set to the result operand to be used.
bool CodeGenInstAlias::tryAliasOpMatch(DagInit *Result, unsigned AliasOpNo,
                                       Record *InstOpRec, bool hasSubOps,
                                       ArrayRef<SMLoc> Loc, CodeGenTarget &T,
                                       ResultOperand &ResOp) {
    Init *Arg = Result->getArg(AliasOpNo);
    DefInit *ADI = dyn_cast<DefInit>(Arg);
    Record *ResultRecord = ADI ? ADI->getDef() : nullptr;

    if (ADI && ADI->getDef() == InstOpRec) {
        // If the operand is a record, it must have a name, and the record type
        // must match up with the instruction's argument type.
        if (Result->getArgName(AliasOpNo).empty())
            PrintFatalError(Loc, "result argument #" + Twine(AliasOpNo) +
                            " must have a name!");
        ResOp = ResultOperand(Result->getArgName(AliasOpNo), ResultRecord);
        return true;
    }

    // For register operands, the source register class can be a subclass
    // of the instruction register class, not just an exact match.
    if (InstOpRec->isSubClassOf("RegisterOperand"))
        InstOpRec = InstOpRec->getValueAsDef("RegClass");

    if (ADI && ADI->getDef()->isSubClassOf("RegisterOperand"))
        ADI = ADI->getDef()->getValueAsDef("RegClass")->getDefInit();

    if (ADI && ADI->getDef()->isSubClassOf("RegisterClass")) {
        if (!InstOpRec->isSubClassOf("RegisterClass"))
            return false;
        if (!T.getRegisterClass(InstOpRec)
                .hasSubClass(&T.getRegisterClass(ADI->getDef())))
            return false;
        ResOp = ResultOperand(Result->getArgName(AliasOpNo), ResultRecord);
        return true;
    }

    // Handle explicit registers.
    if (ADI && ADI->getDef()->isSubClassOf("Register")) {
        if (InstOpRec->isSubClassOf("OptionalDefOperand")) {
            DagInit *DI = InstOpRec->getValueAsDag("MIOperandInfo");
            // The operand info should only have a single (register) entry. We
            // want the register class of it.
            InstOpRec = cast<DefInit>(DI->getArg(0))->getDef();
        }

        if (!InstOpRec->isSubClassOf("RegisterClass"))
            return false;

        if (!T.getRegisterClass(InstOpRec)
                .contains(T.getRegBank().getReg(ADI->getDef())))
            PrintFatalError(Loc, "fixed register " + ADI->getDef()->getName() +
                            " is not a member of the " + InstOpRec->getName() +
                            " register class!");

        if (!Result->getArgName(AliasOpNo).empty())
            PrintFatalError(Loc, "result fixed register argument must "
                            "not have a name!");

        ResOp = ResultOperand(ResultRecord);
        return true;
    }

    // Handle "zero_reg" for optional def operands.
    if (ADI && ADI->getDef()->getName() == "zero_reg") {

        // Check if this is an optional def.
        // Tied operands where the source is a sub-operand of a complex operand
        // need to represent both operands in the alias destination instruction.
        // Allow zero_reg for the tied portion. This can and should go away once
        // the MC representation of things doesn't use tied operands at all.
        //if (!InstOpRec->isSubClassOf("OptionalDefOperand"))
        //  throw TGError(Loc, "reg0 used for result that is not an "
        //                "OptionalDefOperand!");

        ResOp = ResultOperand(static_cast<Record*>(nullptr));
        return true;
    }

    // Literal integers.
    if (IntInit *II = dyn_cast<IntInit>(Arg)) {
        if (hasSubOps || !InstOpRec->isSubClassOf("Operand"))
            return false;
        // Integer arguments can't have names.
        if (!Result->getArgName(AliasOpNo).empty())
            PrintFatalError(Loc, "result argument #" + Twine(AliasOpNo) +
                            " must not have a name!");
        ResOp = ResultOperand(II->getValue());
        return true;
    }

    // If both are Operands with the same MVT, allow the conversion. It's
    // up to the user to make sure the values are appropriate, just like
    // for isel Pat's.
    if (InstOpRec->isSubClassOf("Operand") &&
            ADI->getDef()->isSubClassOf("Operand")) {
        // FIXME: What other attributes should we check here? Identical
        // MIOperandInfo perhaps?
        if (InstOpRec->getValueInit("Type") != ADI->getDef()->getValueInit("Type"))
            return false;
        ResOp = ResultOperand(Result->getArgName(AliasOpNo), ADI->getDef());
        return true;
    }

    return false;
}
コード例 #7
0
ファイル: CodeGenInstruction.cpp プロジェクト: JuliaLang/llvm
CGIOperandList::CGIOperandList(Record *R) : TheDef(R) {
    isPredicable = false;
    hasOptionalDef = false;
    isVariadic = false;

    DagInit *OutDI = R->getValueAsDag("OutOperandList");

    if (DefInit *Init = dyn_cast<DefInit>(OutDI->getOperator())) {
        if (Init->getDef()->getName() != "outs")
            PrintFatalError(R->getName() + ": invalid def name for output list: use 'outs'");
    } else
        PrintFatalError(R->getName() + ": invalid output list: use 'outs'");

    NumDefs = OutDI->getNumArgs();

    DagInit *InDI = R->getValueAsDag("InOperandList");
    if (DefInit *Init = dyn_cast<DefInit>(InDI->getOperator())) {
        if (Init->getDef()->getName() != "ins")
            PrintFatalError(R->getName() + ": invalid def name for input list: use 'ins'");
    } else
        PrintFatalError(R->getName() + ": invalid input list: use 'ins'");

    unsigned MIOperandNo = 0;
    std::set<std::string> OperandNames;
    for (unsigned i = 0, e = InDI->getNumArgs()+OutDI->getNumArgs(); i != e; ++i) {
        Init *ArgInit;
        std::string ArgName;
        if (i < NumDefs) {
            ArgInit = OutDI->getArg(i);
            ArgName = OutDI->getArgName(i);
        } else {
            ArgInit = InDI->getArg(i-NumDefs);
            ArgName = InDI->getArgName(i-NumDefs);
        }

        DefInit *Arg = dyn_cast<DefInit>(ArgInit);
        if (!Arg)
            PrintFatalError("Illegal operand for the '" + R->getName() + "' instruction!");

        Record *Rec = Arg->getDef();
        std::string PrintMethod = "printOperand";
        std::string EncoderMethod;
        std::string OperandType = "OPERAND_UNKNOWN";
        unsigned NumOps = 1;
        DagInit *MIOpInfo = nullptr;
        if (Rec->isSubClassOf("RegisterOperand")) {
            PrintMethod = Rec->getValueAsString("PrintMethod");
        } else if (Rec->isSubClassOf("Operand")) {
            PrintMethod = Rec->getValueAsString("PrintMethod");
            OperandType = Rec->getValueAsString("OperandType");
            // If there is an explicit encoder method, use it.
            EncoderMethod = Rec->getValueAsString("EncoderMethod");
            MIOpInfo = Rec->getValueAsDag("MIOperandInfo");

            // Verify that MIOpInfo has an 'ops' root value.
            if (!isa<DefInit>(MIOpInfo->getOperator()) ||
                    cast<DefInit>(MIOpInfo->getOperator())->getDef()->getName() != "ops")
                PrintFatalError("Bad value for MIOperandInfo in operand '" + Rec->getName() +
                                "'\n");

            // If we have MIOpInfo, then we have #operands equal to number of entries
            // in MIOperandInfo.
            if (unsigned NumArgs = MIOpInfo->getNumArgs())
                NumOps = NumArgs;

            if (Rec->isSubClassOf("PredicateOp"))
                isPredicable = true;
            else if (Rec->isSubClassOf("OptionalDefOperand"))
                hasOptionalDef = true;
        } else if (Rec->getName() == "variable_ops") {
            isVariadic = true;
            continue;
        } else if (Rec->isSubClassOf("RegisterClass")) {
            OperandType = "OPERAND_REGISTER";
        } else if (!Rec->isSubClassOf("PointerLikeRegClass") &&
                   !Rec->isSubClassOf("unknown_class"))
            PrintFatalError("Unknown operand class '" + Rec->getName() +
                            "' in '" + R->getName() + "' instruction!");

        // Check that the operand has a name and that it's unique.
        if (ArgName.empty())
            PrintFatalError("In instruction '" + R->getName() + "', operand #" +
                            Twine(i) + " has no name!");
        if (!OperandNames.insert(ArgName).second)
            PrintFatalError("In instruction '" + R->getName() + "', operand #" +
                            Twine(i) + " has the same name as a previous operand!");

        OperandList.push_back(OperandInfo(Rec, ArgName, PrintMethod, EncoderMethod,
                                          OperandType, MIOperandNo, NumOps,
                                          MIOpInfo));
        MIOperandNo += NumOps;
    }


    // Make sure the constraints list for each operand is large enough to hold
    // constraint info, even if none is present.
    for (unsigned i = 0, e = OperandList.size(); i != e; ++i)
        OperandList[i].Constraints.resize(OperandList[i].MINumOperands);
}
コード例 #8
0
ファイル: RegisterInfoEmitter.cpp プロジェクト: Sciumo/llvm
//
// RegisterInfoEmitter::run - Main register file description emitter.
//
void RegisterInfoEmitter::run(raw_ostream &OS) {
  CodeGenTarget Target(Records);
  CodeGenRegBank &RegBank = Target.getRegBank();
  RegBank.computeDerivedInfo();
  std::map<const CodeGenRegister*, CodeGenRegister::Set> Overlaps;
  RegBank.computeOverlaps(Overlaps);

  EmitSourceFileHeader("Register Information Source Fragment", OS);

  OS << "namespace llvm {\n\n";

  // Start out by emitting each of the register classes.
  const std::vector<CodeGenRegisterClass> &RegisterClasses =
    Target.getRegisterClasses();

  // Collect all registers belonging to any allocatable class.
  std::set<Record*> AllocatableRegs;

  // Loop over all of the register classes... emitting each one.
  OS << "namespace {     // Register classes...\n";

  // Emit the register enum value arrays for each RegisterClass
  for (unsigned rc = 0, e = RegisterClasses.size(); rc != e; ++rc) {
    const CodeGenRegisterClass &RC = RegisterClasses[rc];
    ArrayRef<Record*> Order = RC.getOrder();

    // Collect allocatable registers.
    if (RC.Allocatable)
      AllocatableRegs.insert(Order.begin(), Order.end());

    // Give the register class a legal C name if it's anonymous.
    std::string Name = RC.getName();

    // Emit the register list now.
    OS << "  // " << Name << " Register Class...\n"
       << "  static const unsigned " << Name
       << "[] = {\n    ";
    for (unsigned i = 0, e = Order.size(); i != e; ++i) {
      Record *Reg = Order[i];
      OS << getQualifiedName(Reg) << ", ";
    }
    OS << "\n  };\n\n";
  }

  // Emit the ValueType arrays for each RegisterClass
  for (unsigned rc = 0, e = RegisterClasses.size(); rc != e; ++rc) {
    const CodeGenRegisterClass &RC = RegisterClasses[rc];

    // Give the register class a legal C name if it's anonymous.
    std::string Name = RC.getName() + "VTs";

    // Emit the register list now.
    OS << "  // " << Name
       << " Register Class Value Types...\n"
       << "  static const EVT " << Name
       << "[] = {\n    ";
    for (unsigned i = 0, e = RC.VTs.size(); i != e; ++i)
      OS << getEnumName(RC.VTs[i]) << ", ";
    OS << "MVT::Other\n  };\n\n";
  }
  OS << "}  // end anonymous namespace\n\n";

  // Now that all of the structs have been emitted, emit the instances.
  if (!RegisterClasses.empty()) {
    OS << "namespace " << RegisterClasses[0].Namespace
       << " {   // Register class instances\n";
    for (unsigned i = 0, e = RegisterClasses.size(); i != e; ++i)
      OS << "  " << RegisterClasses[i].getName()  << "Class\t"
         << RegisterClasses[i].getName() << "RegClass;\n";

    std::map<unsigned, std::set<unsigned> > SuperClassMap;
    std::map<unsigned, std::set<unsigned> > SuperRegClassMap;
    OS << "\n";

    unsigned NumSubRegIndices = RegBank.getSubRegIndices().size();

    if (NumSubRegIndices) {
      // Emit the sub-register classes for each RegisterClass
      for (unsigned rc = 0, e = RegisterClasses.size(); rc != e; ++rc) {
        const CodeGenRegisterClass &RC = RegisterClasses[rc];
        std::vector<Record*> SRC(NumSubRegIndices);
        for (DenseMap<Record*,Record*>::const_iterator
             i = RC.SubRegClasses.begin(),
             e = RC.SubRegClasses.end(); i != e; ++i) {
          // Build SRC array.
          unsigned idx = RegBank.getSubRegIndexNo(i->first);
          SRC.at(idx-1) = i->second;

          // Find the register class number of i->second for SuperRegClassMap.
          for (unsigned rc2 = 0, e2 = RegisterClasses.size(); rc2 != e2; ++rc2) {
            const CodeGenRegisterClass &RC2 =  RegisterClasses[rc2];
            if (RC2.TheDef == i->second) {
              SuperRegClassMap[rc2].insert(rc);
              break;
            }
          }
        }

        // Give the register class a legal C name if it's anonymous.
        std::string Name = RC.TheDef->getName();

        OS << "  // " << Name
           << " Sub-register Classes...\n"
           << "  static const TargetRegisterClass* const "
           << Name << "SubRegClasses[] = {\n    ";

        for (unsigned idx = 0; idx != NumSubRegIndices; ++idx) {
          if (idx)
            OS << ", ";
          if (SRC[idx])
            OS << "&" << getQualifiedName(SRC[idx]) << "RegClass";
          else
            OS << "0";
        }
        OS << "\n  };\n\n";
      }

      // Emit the super-register classes for each RegisterClass
      for (unsigned rc = 0, e = RegisterClasses.size(); rc != e; ++rc) {
        const CodeGenRegisterClass &RC = RegisterClasses[rc];

        // Give the register class a legal C name if it's anonymous.
        std::string Name = RC.TheDef->getName();

        OS << "  // " << Name
           << " Super-register Classes...\n"
           << "  static const TargetRegisterClass* const "
           << Name << "SuperRegClasses[] = {\n    ";

        bool Empty = true;
        std::map<unsigned, std::set<unsigned> >::iterator I =
          SuperRegClassMap.find(rc);
        if (I != SuperRegClassMap.end()) {
          for (std::set<unsigned>::iterator II = I->second.begin(),
                 EE = I->second.end(); II != EE; ++II) {
            const CodeGenRegisterClass &RC2 = RegisterClasses[*II];
            if (!Empty)
              OS << ", ";
            OS << "&" << getQualifiedName(RC2.TheDef) << "RegClass";
            Empty = false;
          }
        }

        OS << (!Empty ? ", " : "") << "NULL";
        OS << "\n  };\n\n";
      }
    } else {
      // No subregindices in this target
      OS << "  static const TargetRegisterClass* const "
         << "NullRegClasses[] = { NULL };\n\n";
    }

    // Emit the sub-classes array for each RegisterClass
    for (unsigned rc = 0, e = RegisterClasses.size(); rc != e; ++rc) {
      const CodeGenRegisterClass &RC = RegisterClasses[rc];

      // Give the register class a legal C name if it's anonymous.
      std::string Name = RC.TheDef->getName();

      OS << "  // " << Name
         << " Register Class sub-classes...\n"
         << "  static const TargetRegisterClass* const "
         << Name << "Subclasses[] = {\n    ";

      bool Empty = true;
      for (unsigned rc2 = 0, e2 = RegisterClasses.size(); rc2 != e2; ++rc2) {
        const CodeGenRegisterClass &RC2 = RegisterClasses[rc2];

        // Sub-classes are used to determine if a virtual register can be used
        // as an instruction operand, or if it must be copied first.
        if (rc == rc2 || !RC.hasSubClass(&RC2)) continue;

        if (!Empty) OS << ", ";
        OS << "&" << getQualifiedName(RC2.TheDef) << "RegClass";
        Empty = false;

        std::map<unsigned, std::set<unsigned> >::iterator SCMI =
          SuperClassMap.find(rc2);
        if (SCMI == SuperClassMap.end()) {
          SuperClassMap.insert(std::make_pair(rc2, std::set<unsigned>()));
          SCMI = SuperClassMap.find(rc2);
        }
        SCMI->second.insert(rc);
      }

      OS << (!Empty ? ", " : "") << "NULL";
      OS << "\n  };\n\n";
    }

    for (unsigned rc = 0, e = RegisterClasses.size(); rc != e; ++rc) {
      const CodeGenRegisterClass &RC = RegisterClasses[rc];

      // Give the register class a legal C name if it's anonymous.
      std::string Name = RC.TheDef->getName();

      OS << "  // " << Name
         << " Register Class super-classes...\n"
         << "  static const TargetRegisterClass* const "
         << Name << "Superclasses[] = {\n    ";

      bool Empty = true;
      std::map<unsigned, std::set<unsigned> >::iterator I =
        SuperClassMap.find(rc);
      if (I != SuperClassMap.end()) {
        for (std::set<unsigned>::iterator II = I->second.begin(),
               EE = I->second.end(); II != EE; ++II) {
          const CodeGenRegisterClass &RC2 = RegisterClasses[*II];
          if (!Empty) OS << ", ";
          OS << "&" << getQualifiedName(RC2.TheDef) << "RegClass";
          Empty = false;
        }
      }

      OS << (!Empty ? ", " : "") << "NULL";
      OS << "\n  };\n\n";
    }

    // Emit methods.
    for (unsigned i = 0, e = RegisterClasses.size(); i != e; ++i) {
      const CodeGenRegisterClass &RC = RegisterClasses[i];
      OS << RC.getName() << "Class::" << RC.getName()
         << "Class()  : TargetRegisterClass("
         << RC.getName() + "RegClassID" << ", "
         << '\"' << RC.getName() << "\", "
         << RC.getName() + "VTs" << ", "
         << RC.getName() + "Subclasses" << ", "
         << RC.getName() + "Superclasses" << ", "
         << (NumSubRegIndices ? RC.getName() + "Sub" : std::string("Null"))
         << "RegClasses, "
         << (NumSubRegIndices ? RC.getName() + "Super" : std::string("Null"))
         << "RegClasses, "
         << RC.SpillSize/8 << ", "
         << RC.SpillAlignment/8 << ", "
         << RC.CopyCost << ", "
         << RC.Allocatable << ", "
         << RC.getName() << ", " << RC.getName() << " + "
         << RC.getOrder().size()
         << ") {}\n";
      if (!RC.AltOrderSelect.empty()) {
        OS << "\nstatic inline unsigned " << RC.getName()
           << "AltOrderSelect(const MachineFunction &MF) {"
           << RC.AltOrderSelect << "}\n\nArrayRef<unsigned> "
           << RC.getName() << "Class::"
           << "getRawAllocationOrder(const MachineFunction &MF) const {\n";
        for (unsigned oi = 1 , oe = RC.getNumOrders(); oi != oe; ++oi) {
          ArrayRef<Record*> Elems = RC.getOrder(oi);
          OS << "  static const unsigned AltOrder" << oi << "[] = {";
          for (unsigned elem = 0; elem != Elems.size(); ++elem)
            OS << (elem ? ", " : " ") << getQualifiedName(Elems[elem]);
          OS << " };\n";
        }
        OS << "  static const ArrayRef<unsigned> Order[] = {\n"
           << "    ArrayRef<unsigned>(" << RC.getName();
        for (unsigned oi = 1, oe = RC.getNumOrders(); oi != oe; ++oi)
          OS << "),\n    ArrayRef<unsigned>(AltOrder" << oi;
        OS << ")\n  };\n  const unsigned Select = " << RC.getName()
           << "AltOrderSelect(MF);\n  assert(Select < " << RC.getNumOrders()
           << ");\n  return Order[Select];\n}\n";
        }
    }

    OS << "}\n";
  }

  OS << "\nnamespace {\n";
  OS << "  const TargetRegisterClass* const RegisterClasses[] = {\n";
  for (unsigned i = 0, e = RegisterClasses.size(); i != e; ++i)
    OS << "    &" << getQualifiedName(RegisterClasses[i].TheDef)
       << "RegClass,\n";
  OS << "  };\n";

  typedef std::map<Record*, std::vector<int64_t>, LessRecord> DwarfRegNumsMapTy;
  DwarfRegNumsMapTy DwarfRegNums;
  const std::vector<CodeGenRegister*> &Regs = RegBank.getRegisters();

  // Emit an overlap list for all registers.
  for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
    const CodeGenRegister *Reg = Regs[i];
    const CodeGenRegister::Set &O = Overlaps[Reg];
    // Move Reg to the front so TRI::getAliasSet can share the list.
    OS << "  const unsigned " << Reg->getName() << "_Overlaps[] = { "
       << getQualifiedName(Reg->TheDef) << ", ";
    for (CodeGenRegister::Set::const_iterator I = O.begin(), E = O.end();
         I != E; ++I)
      if (*I != Reg)
        OS << getQualifiedName((*I)->TheDef) << ", ";
    OS << "0 };\n";
  }

  // Emit the empty sub-registers list
  OS << "  const unsigned Empty_SubRegsSet[] = { 0 };\n";
  // Loop over all of the registers which have sub-registers, emitting the
  // sub-registers list to memory.
  for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
    const CodeGenRegister &Reg = *Regs[i];
    if (Reg.getSubRegs().empty())
     continue;
    // getSubRegs() orders by SubRegIndex. We want a topological order.
    SetVector<CodeGenRegister*> SR;
    Reg.addSubRegsPreOrder(SR);
    OS << "  const unsigned " << Reg.getName() << "_SubRegsSet[] = { ";
    for (unsigned j = 0, je = SR.size(); j != je; ++j)
      OS << getQualifiedName(SR[j]->TheDef) << ", ";
    OS << "0 };\n";
  }

  // Emit the empty super-registers list
  OS << "  const unsigned Empty_SuperRegsSet[] = { 0 };\n";
  // Loop over all of the registers which have super-registers, emitting the
  // super-registers list to memory.
  for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
    const CodeGenRegister &Reg = *Regs[i];
    const CodeGenRegister::SuperRegList &SR = Reg.getSuperRegs();
    if (SR.empty())
      continue;
    OS << "  const unsigned " << Reg.getName() << "_SuperRegsSet[] = { ";
    for (unsigned j = 0, je = SR.size(); j != je; ++j)
      OS << getQualifiedName(SR[j]->TheDef) << ", ";
    OS << "0 };\n";
  }

  OS<<"\n  const TargetRegisterDesc RegisterDescriptors[] = { // Descriptors\n";
  OS << "    { \"NOREG\",\t0,\t0,\t0,\t0,\t0 },\n";

  // Now that register alias and sub-registers sets have been emitted, emit the
  // register descriptors now.
  for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
    const CodeGenRegister &Reg = *Regs[i];
    OS << "    { \"";
    OS << Reg.getName() << "\",\t" << Reg.getName() << "_Overlaps,\t";
    if (!Reg.getSubRegs().empty())
      OS << Reg.getName() << "_SubRegsSet,\t";
    else
      OS << "Empty_SubRegsSet,\t";
    if (!Reg.getSuperRegs().empty())
      OS << Reg.getName() << "_SuperRegsSet,\t";
    else
      OS << "Empty_SuperRegsSet,\t";
    OS << Reg.CostPerUse << ",\t"
       << int(AllocatableRegs.count(Reg.TheDef)) << " },\n";
  }
  OS << "  };\n";      // End of register descriptors...

  // Calculate the mapping of subregister+index pairs to physical registers.
  // This will also create further anonymous indexes.
  unsigned NamedIndices = RegBank.getNumNamedIndices();

  // Emit SubRegIndex names, skipping 0
  const std::vector<Record*> &SubRegIndices = RegBank.getSubRegIndices();
  OS << "\n  const char *const SubRegIndexTable[] = { \"";
  for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i) {
    OS << SubRegIndices[i]->getName();
    if (i+1 != e)
      OS << "\", \"";
  }
  OS << "\" };\n\n";

  // Emit names of the anonymus subreg indexes.
  if (SubRegIndices.size() > NamedIndices) {
    OS << "  enum {";
    for (unsigned i = NamedIndices, e = SubRegIndices.size(); i != e; ++i) {
      OS << "\n    " << SubRegIndices[i]->getName() << " = " << i+1;
      if (i+1 != e)
        OS << ',';
    }
    OS << "\n  };\n\n";
  }
  OS << "}\n\n";       // End of anonymous namespace...

  std::string ClassName = Target.getName() + "GenRegisterInfo";

  // Emit the subregister + index mapping function based on the information
  // calculated above.
  OS << "unsigned " << ClassName
     << "::getSubReg(unsigned RegNo, unsigned Index) const {\n"
     << "  switch (RegNo) {\n"
     << "  default:\n    return 0;\n";
  for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
    const CodeGenRegister::SubRegMap &SRM = Regs[i]->getSubRegs();
    if (SRM.empty())
      continue;
    OS << "  case " << getQualifiedName(Regs[i]->TheDef) << ":\n";
    OS << "    switch (Index) {\n";
    OS << "    default: return 0;\n";
    for (CodeGenRegister::SubRegMap::const_iterator ii = SRM.begin(),
         ie = SRM.end(); ii != ie; ++ii)
      OS << "    case " << getQualifiedName(ii->first)
         << ": return " << getQualifiedName(ii->second->TheDef) << ";\n";
    OS << "    };\n" << "    break;\n";
  }
  OS << "  };\n";
  OS << "  return 0;\n";
  OS << "}\n\n";

  OS << "unsigned " << ClassName
     << "::getSubRegIndex(unsigned RegNo, unsigned SubRegNo) const {\n"
     << "  switch (RegNo) {\n"
     << "  default:\n    return 0;\n";
   for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
     const CodeGenRegister::SubRegMap &SRM = Regs[i]->getSubRegs();
     if (SRM.empty())
       continue;
    OS << "  case " << getQualifiedName(Regs[i]->TheDef) << ":\n";
    for (CodeGenRegister::SubRegMap::const_iterator ii = SRM.begin(),
         ie = SRM.end(); ii != ie; ++ii)
      OS << "    if (SubRegNo == " << getQualifiedName(ii->second->TheDef)
         << ")  return " << getQualifiedName(ii->first) << ";\n";
    OS << "    return 0;\n";
  }
  OS << "  };\n";
  OS << "  return 0;\n";
  OS << "}\n\n";

  // Emit composeSubRegIndices
  OS << "unsigned " << ClassName
     << "::composeSubRegIndices(unsigned IdxA, unsigned IdxB) const {\n"
     << "  switch (IdxA) {\n"
     << "  default:\n    return IdxB;\n";
  for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i) {
    bool Open = false;
    for (unsigned j = 0; j != e; ++j) {
      if (Record *Comp = RegBank.getCompositeSubRegIndex(SubRegIndices[i],
                                                         SubRegIndices[j])) {
        if (!Open) {
          OS << "  case " << getQualifiedName(SubRegIndices[i])
             << ": switch(IdxB) {\n    default: return IdxB;\n";
          Open = true;
        }
        OS << "    case " << getQualifiedName(SubRegIndices[j])
           << ": return " << getQualifiedName(Comp) << ";\n";
      }
    }
    if (Open)
      OS << "    }\n";
  }
  OS << "  }\n}\n\n";

  // Emit the constructor of the class...
  OS << ClassName << "::" << ClassName
     << "(int CallFrameSetupOpcode, int CallFrameDestroyOpcode)\n"
     << "  : TargetRegisterInfo(RegisterDescriptors, " << Regs.size()+1
     << ", RegisterClasses, RegisterClasses+" << RegisterClasses.size() <<",\n"
     << "                 SubRegIndexTable,\n"
     << "                 CallFrameSetupOpcode, CallFrameDestroyOpcode) {\n"
     << "}\n\n";

  // Collect all information about dwarf register numbers

  // First, just pull all provided information to the map
  unsigned maxLength = 0;
  for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
    Record *Reg = Regs[i]->TheDef;
    std::vector<int64_t> RegNums = Reg->getValueAsListOfInts("DwarfNumbers");
    maxLength = std::max((size_t)maxLength, RegNums.size());
    if (DwarfRegNums.count(Reg))
      errs() << "Warning: DWARF numbers for register " << getQualifiedName(Reg)
             << "specified multiple times\n";
    DwarfRegNums[Reg] = RegNums;
  }

  // Now we know maximal length of number list. Append -1's, where needed
  for (DwarfRegNumsMapTy::iterator
       I = DwarfRegNums.begin(), E = DwarfRegNums.end(); I != E; ++I)
    for (unsigned i = I->second.size(), e = maxLength; i != e; ++i)
      I->second.push_back(-1);

  // Emit reverse information about the dwarf register numbers.
  OS << "int " << ClassName << "::getLLVMRegNumFull(unsigned DwarfRegNum, "
     << "unsigned Flavour) const {\n"
     << "  switch (Flavour) {\n"
     << "  default:\n"
     << "    assert(0 && \"Unknown DWARF flavour\");\n"
     << "    return -1;\n";

  for (unsigned i = 0, e = maxLength; i != e; ++i) {
    OS << "  case " << i << ":\n"
       << "    switch (DwarfRegNum) {\n"
       << "    default:\n"
       << "      assert(0 && \"Invalid DwarfRegNum\");\n"
       << "      return -1;\n";

    for (DwarfRegNumsMapTy::iterator
           I = DwarfRegNums.begin(), E = DwarfRegNums.end(); I != E; ++I) {
      int DwarfRegNo = I->second[i];
      if (DwarfRegNo >= 0)
        OS << "    case " <<  DwarfRegNo << ":\n"
           << "      return " << getQualifiedName(I->first) << ";\n";
    }
    OS << "    };\n";
  }

  OS << "  };\n}\n\n";

  for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
    Record *Reg = Regs[i]->TheDef;
    const RecordVal *V = Reg->getValue("DwarfAlias");
    if (!V || !V->getValue())
      continue;

    DefInit *DI = dynamic_cast<DefInit*>(V->getValue());
    Record *Alias = DI->getDef();
    DwarfRegNums[Reg] = DwarfRegNums[Alias];
  }

  // Emit information about the dwarf register numbers.
  OS << "int " << ClassName << "::getDwarfRegNumFull(unsigned RegNum, "
     << "unsigned Flavour) const {\n"
     << "  switch (Flavour) {\n"
     << "  default:\n"
     << "    assert(0 && \"Unknown DWARF flavour\");\n"
     << "    return -1;\n";

  for (unsigned i = 0, e = maxLength; i != e; ++i) {
    OS << "  case " << i << ":\n"
       << "    switch (RegNum) {\n"
       << "    default:\n"
       << "      assert(0 && \"Invalid RegNum\");\n"
       << "      return -1;\n";

    // Sort by name to get a stable order.


    for (DwarfRegNumsMapTy::iterator
           I = DwarfRegNums.begin(), E = DwarfRegNums.end(); I != E; ++I) {
      int RegNo = I->second[i];
      OS << "    case " << getQualifiedName(I->first) << ":\n"
         << "      return " << RegNo << ";\n";
    }
    OS << "    };\n";
  }

  OS << "  };\n}\n\n";

  OS << "} // End llvm namespace \n";
}
コード例 #9
0
/// EmitLeafMatchCode - Generate matching code for leaf nodes.
void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) {
  assert(N->isLeaf() && "Not a leaf?");

  // Direct match against an integer constant.
  if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) {
    // If this is the root of the dag we're matching, we emit a redundant opcode
    // check to ensure that this gets folded into the normal top-level
    // OpcodeSwitch.
    if (N == Pattern.getSrcPattern()) {
      const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("imm"));
      AddMatcher(new CheckOpcodeMatcher(NI));
    }

    return AddMatcher(new CheckIntegerMatcher(II->getValue()));
  }

  // An UnsetInit represents a named node without any constraints.
  if (isa<UnsetInit>(N->getLeafValue())) {
    assert(N->hasName() && "Unnamed ? leaf");
    return;
  }

  DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
  if (!DI) {
    errs() << "Unknown leaf kind: " << *N << "\n";
    abort();
  }

  Record *LeafRec = DI->getDef();

  // A ValueType leaf node can represent a register when named, or itself when
  // unnamed.
  if (LeafRec->isSubClassOf("ValueType")) {
    // A named ValueType leaf always matches: (add i32:$a, i32:$b).
    if (N->hasName())
      return;
    // An unnamed ValueType as in (sext_inreg GPR:$foo, i8).
    return AddMatcher(new CheckValueTypeMatcher(LeafRec->getName()));
  }

  if (// Handle register references.  Nothing to do here, they always match.
      LeafRec->isSubClassOf("RegisterClass") ||
      LeafRec->isSubClassOf("RegisterOperand") ||
      LeafRec->isSubClassOf("PointerLikeRegClass") ||
      LeafRec->isSubClassOf("SubRegIndex") ||
      // Place holder for SRCVALUE nodes. Nothing to do here.
      LeafRec->getName() == "srcvalue")
    return;

  // If we have a physreg reference like (mul gpr:$src, EAX) then we need to
  // record the register
  if (LeafRec->isSubClassOf("Register")) {
    AddMatcher(new RecordMatcher("physreg input "+LeafRec->getName().str(),
                                 NextRecordedOperandNo));
    PhysRegInputs.push_back(std::make_pair(LeafRec, NextRecordedOperandNo++));
    return;
  }

  if (LeafRec->isSubClassOf("CondCode"))
    return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName()));

  if (LeafRec->isSubClassOf("ComplexPattern")) {
    // We can't model ComplexPattern uses that don't have their name taken yet.
    // The OPC_CheckComplexPattern operation implicitly records the results.
    if (N->getName().empty()) {
      std::string S;
      raw_string_ostream OS(S);
      OS << "We expect complex pattern uses to have names: " << *N;
      PrintFatalError(OS.str());
    }

    // Remember this ComplexPattern so that we can emit it after all the other
    // structural matches are done.
    unsigned InputOperand = VariableMap[N->getName()] - 1;
    MatchedComplexPatterns.push_back(std::make_pair(N, InputOperand));
    return;
  }

  errs() << "Unknown leaf kind: " << *N << "\n";
  abort();
}
コード例 #10
0
/// getValueRecord - Returns the value of this tree node as a record.  For now
/// we only allow DefInit's as our leaf values, so this is used.
Record *TreePatternNode::getValueRecord() const {
  DefInit *DI = dynamic_cast<DefInit*>(getValue());
  assert(DI && "Instruction Selector does not yet support non-def leaves!");
  return DI->getDef();
}
コード例 #11
0
ファイル: FastISelEmitter.cpp プロジェクト: anupam128/llvm
void FastISelMap::collectPatterns(CodeGenDAGPatterns &CGP) {
  const CodeGenTarget &Target = CGP.getTargetInfo();

  // Determine the target's namespace name.
  InstNS = Target.getInstNamespace() + "::";
  assert(InstNS.size() > 2 && "Can't determine target-specific namespace!");

  // Scan through all the patterns and record the simple ones.
  for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(),
       E = CGP.ptm_end(); I != E; ++I) {
    const PatternToMatch &Pattern = *I;

    // For now, just look at Instructions, so that we don't have to worry
    // about emitting multiple instructions for a pattern.
    TreePatternNode *Dst = Pattern.getDstPattern();
    if (Dst->isLeaf()) continue;
    Record *Op = Dst->getOperator();
    if (!Op->isSubClassOf("Instruction"))
      continue;
    CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op);
    if (II.Operands.empty())
      continue;

    // For now, ignore multi-instruction patterns.
    bool MultiInsts = false;
    for (unsigned i = 0, e = Dst->getNumChildren(); i != e; ++i) {
      TreePatternNode *ChildOp = Dst->getChild(i);
      if (ChildOp->isLeaf())
        continue;
      if (ChildOp->getOperator()->isSubClassOf("Instruction")) {
        MultiInsts = true;
        break;
      }
    }
    if (MultiInsts)
      continue;

    // For now, ignore instructions where the first operand is not an
    // output register.
    const CodeGenRegisterClass *DstRC = nullptr;
    std::string SubRegNo;
    if (Op->getName() != "EXTRACT_SUBREG") {
      Record *Op0Rec = II.Operands[0].Rec;
      if (Op0Rec->isSubClassOf("RegisterOperand"))
        Op0Rec = Op0Rec->getValueAsDef("RegClass");
      if (!Op0Rec->isSubClassOf("RegisterClass"))
        continue;
      DstRC = &Target.getRegisterClass(Op0Rec);
      if (!DstRC)
        continue;
    } else {
      // If this isn't a leaf, then continue since the register classes are
      // a bit too complicated for now.
      if (!Dst->getChild(1)->isLeaf()) continue;

      DefInit *SR = dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue());
      if (SR)
        SubRegNo = getQualifiedName(SR->getDef());
      else
        SubRegNo = Dst->getChild(1)->getLeafValue()->getAsString();
    }

    // Inspect the pattern.
    TreePatternNode *InstPatNode = Pattern.getSrcPattern();
    if (!InstPatNode) continue;
    if (InstPatNode->isLeaf()) continue;

    // Ignore multiple result nodes for now.
    if (InstPatNode->getNumTypes() > 1) continue;

    Record *InstPatOp = InstPatNode->getOperator();
    std::string OpcodeName = getOpcodeName(InstPatOp, CGP);
    MVT::SimpleValueType RetVT = MVT::isVoid;
    if (InstPatNode->getNumTypes()) RetVT = InstPatNode->getType(0);
    MVT::SimpleValueType VT = RetVT;
    if (InstPatNode->getNumChildren()) {
      assert(InstPatNode->getChild(0)->getNumTypes() == 1);
      VT = InstPatNode->getChild(0)->getType(0);
    }

    // For now, filter out any instructions with predicates.
    if (!InstPatNode->getPredicateFns().empty())
      continue;

    // Check all the operands.
    OperandsSignature Operands;
    if (!Operands.initialize(InstPatNode, Target, VT, ImmediatePredicates,
                             DstRC))
      continue;

    std::vector<std::string>* PhysRegInputs = new std::vector<std::string>();
    if (InstPatNode->getOperator()->getName() == "imm" ||
        InstPatNode->getOperator()->getName() == "fpimm")
      PhysRegInputs->push_back("");
    else {
      // Compute the PhysRegs used by the given pattern, and check that
      // the mapping from the src to dst patterns is simple.
      bool FoundNonSimplePattern = false;
      unsigned DstIndex = 0;
      for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) {
        std::string PhysReg = PhyRegForNode(InstPatNode->getChild(i), Target);
        if (PhysReg.empty()) {
          if (DstIndex >= Dst->getNumChildren() ||
              Dst->getChild(DstIndex)->getName() !=
              InstPatNode->getChild(i)->getName()) {
            FoundNonSimplePattern = true;
            break;
          }
          ++DstIndex;
        }

        PhysRegInputs->push_back(PhysReg);
      }

      if (Op->getName() != "EXTRACT_SUBREG" && DstIndex < Dst->getNumChildren())
        FoundNonSimplePattern = true;

      if (FoundNonSimplePattern)
        continue;
    }

    // Check if the operands match one of the patterns handled by FastISel.
    std::string ManglingSuffix;
    raw_string_ostream SuffixOS(ManglingSuffix);
    Operands.PrintManglingSuffix(SuffixOS, ImmediatePredicates, true);
    SuffixOS.flush();
    if (!StringSwitch<bool>(ManglingSuffix)
        .Cases("", "r", "rr", "ri", "i", "f", true)
        .Default(false))
      continue;

    // Get the predicate that guards this pattern.
    std::string PredicateCheck = Pattern.getPredicateCheck();

    // Ok, we found a pattern that we can handle. Remember it.
    InstructionMemo Memo = {
      Pattern.getDstPattern()->getOperator()->getName(),
      DstRC,
      SubRegNo,
      PhysRegInputs,
      PredicateCheck
    };
    
    int complexity = Pattern.getPatternComplexity(CGP);

    if (SimplePatternsCheck[Operands][OpcodeName][VT]
         [RetVT].count(PredicateCheck)) {
      PrintFatalError(Pattern.getSrcRecord()->getLoc(),
                    "Duplicate predicate in FastISel table!");
    }
    SimplePatternsCheck[Operands][OpcodeName][VT][RetVT].insert(
            std::make_pair(PredicateCheck, true));

       // Note: Instructions with the same complexity will appear in the order
          // that they are encountered.
    SimplePatterns[Operands][OpcodeName][VT][RetVT].insert(
      std::make_pair(complexity, Memo));

    // If any of the operands were immediates with predicates on them, strip
    // them down to a signature that doesn't have predicates so that we can
    // associate them with the stripped predicate version.
    if (Operands.hasAnyImmediateCodes()) {
      SignaturesWithConstantForms[Operands.getWithoutImmCodes()]
        .push_back(Operands);
    }
  }
}
コード例 #12
0
CodeGenInstAlias::CodeGenInstAlias(Record *R, CodeGenTarget &T) : TheDef(R) {
  AsmString = R->getValueAsString("AsmString");
  Result = R->getValueAsDag("ResultInst");

  // Verify that the root of the result is an instruction.
  DefInit *DI = dynamic_cast<DefInit*>(Result->getOperator());
  if (DI == 0 || !DI->getDef()->isSubClassOf("Instruction"))
    throw TGError(R->getLoc(), "result of inst alias should be an instruction");

  ResultInst = &T.getInstruction(DI->getDef());
  
  // NameClass - If argument names are repeated, we need to verify they have
  // the same class.
  StringMap<Record*> NameClass;
    
  // Decode and validate the arguments of the result.
  unsigned AliasOpNo = 0;
  for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
    // Tied registers don't have an entry in the result dag.
    if (ResultInst->Operands[i].getTiedRegister() != -1)
      continue;

    if (AliasOpNo >= Result->getNumArgs())
      throw TGError(R->getLoc(), "result has " + utostr(Result->getNumArgs()) +
                    " arguments, but " + ResultInst->TheDef->getName() +
                    " instruction expects " +
                    utostr(ResultInst->Operands.size()) + " operands!");
    
    
    Init *Arg = Result->getArg(AliasOpNo);
    Record *ResultOpRec = ResultInst->Operands[i].Rec;

    // Handle explicit registers.
    if (DefInit *ADI = dynamic_cast<DefInit*>(Arg)) {
      if (ADI->getDef()->isSubClassOf("Register")) {
        if (!Result->getArgName(AliasOpNo).empty())
          throw TGError(R->getLoc(), "result fixed register argument must "
                        "not have a name!");
        
        if (!ResultOpRec->isSubClassOf("RegisterClass"))
          throw TGError(R->getLoc(), "result fixed register argument is not "
                        "passed to a RegisterClass operand!");
        
        if (!T.getRegisterClass(ResultOpRec).containsRegister(ADI->getDef()))
          throw TGError(R->getLoc(), "fixed register " +ADI->getDef()->getName()
                        + " is not a member of the " + ResultOpRec->getName() +
                        " register class!");
                                                                              
        // Now that it is validated, add it.
        ResultOperands.push_back(ResultOperand(ADI->getDef()));
        ++AliasOpNo;
        continue;
      }
    }
    
    // If the operand is a record, it must have a name, and the record type must
    // match up with the instruction's argument type.
    if (DefInit *ADI = dynamic_cast<DefInit*>(Arg)) {
      if (Result->getArgName(AliasOpNo).empty())
        throw TGError(R->getLoc(), "result argument #" + utostr(AliasOpNo) +
                      " must have a name!");

      if (ADI->getDef() != ResultOpRec)
        throw TGError(R->getLoc(), "result argument #" + utostr(AliasOpNo) +
                      " declared with class " + ADI->getDef()->getName() +
                      ", instruction operand is class " + 
                      ResultOpRec->getName());
      
      // Verify we don't have something like: (someinst GR16:$foo, GR32:$foo)
      // $foo can exist multiple times in the result list, but it must have the
      // same type.
      Record *&Entry = NameClass[Result->getArgName(AliasOpNo)];
      if (Entry && Entry != ADI->getDef())
        throw TGError(R->getLoc(), "result value $" +
                      Result->getArgName(AliasOpNo) +
                      " is both " + Entry->getName() + " and " +
                      ADI->getDef()->getName() + "!");
      
      // Now that it is validated, add it.
      ResultOperands.push_back(ResultOperand(Result->getArgName(AliasOpNo),
                                             ADI->getDef()));
      ++AliasOpNo;
      continue;
    }
    
    if (IntInit *II = dynamic_cast<IntInit*>(Arg)) {
      // Integer arguments can't have names.
      if (!Result->getArgName(AliasOpNo).empty())
        throw TGError(R->getLoc(), "result argument #" + utostr(AliasOpNo) +
                      " must not have a name!");
      if (ResultInst->Operands[i].MINumOperands != 1 ||
          !ResultOpRec->isSubClassOf("Operand"))
        throw TGError(R->getLoc(), "invalid argument class " + 
                      ResultOpRec->getName() +
                      " for integer result operand!");
      ResultOperands.push_back(ResultOperand(II->getValue()));
      ++AliasOpNo;
      continue;
    }

    throw TGError(R->getLoc(), "result of inst alias has unknown operand type");
  }
  
  if (AliasOpNo != Result->getNumArgs())
    throw TGError(R->getLoc(), "result has " + utostr(Result->getNumArgs()) +
                  " arguments, but " + ResultInst->TheDef->getName() +
                  " instruction expects " + utostr(ResultInst->Operands.size())+
                  " operands!");
}
コード例 #13
0
ファイル: CodeGenRegisters.cpp プロジェクト: CartBlanche/llvm
CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R)
  : TheDef(R), Name(R->getName()), EnumValue(-1) {
  // Rename anonymous register classes.
  if (R->getName().size() > 9 && R->getName()[9] == '.') {
    static unsigned AnonCounter = 0;
    R->setName("AnonRegClass_"+utostr(AnonCounter++));
  }

  std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes");
  for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
    Record *Type = TypeList[i];
    if (!Type->isSubClassOf("ValueType"))
      throw "RegTypes list member '" + Type->getName() +
        "' does not derive from the ValueType class!";
    VTs.push_back(getValueType(Type));
  }
  assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!");

  // Allocation order 0 is the full set. AltOrders provides others.
  const SetTheory::RecVec *Elements = RegBank.getSets().expand(R);
  ListInit *AltOrders = R->getValueAsListInit("AltOrders");
  Orders.resize(1 + AltOrders->size());

  // Default allocation order always contains all registers.
  for (unsigned i = 0, e = Elements->size(); i != e; ++i) {
    Orders[0].push_back((*Elements)[i]);
    Members.insert(RegBank.getReg((*Elements)[i]));
  }

  // Alternative allocation orders may be subsets.
  SetTheory::RecSet Order;
  for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) {
    RegBank.getSets().evaluate(AltOrders->getElement(i), Order);
    Orders[1 + i].append(Order.begin(), Order.end());
    // Verify that all altorder members are regclass members.
    while (!Order.empty()) {
      CodeGenRegister *Reg = RegBank.getReg(Order.back());
      Order.pop_back();
      if (!contains(Reg))
        throw TGError(R->getLoc(), " AltOrder register " + Reg->getName() +
                      " is not a class member");
    }
  }

  // SubRegClasses is a list<dag> containing (RC, subregindex, ...) dags.
  ListInit *SRC = R->getValueAsListInit("SubRegClasses");
  for (ListInit::const_iterator i = SRC->begin(), e = SRC->end(); i != e; ++i) {
    DagInit *DAG = dynamic_cast<DagInit*>(*i);
    if (!DAG) throw "SubRegClasses must contain DAGs";
    DefInit *DAGOp = dynamic_cast<DefInit*>(DAG->getOperator());
    Record *RCRec;
    if (!DAGOp || !(RCRec = DAGOp->getDef())->isSubClassOf("RegisterClass"))
      throw "Operator '" + DAG->getOperator()->getAsString() +
        "' in SubRegClasses is not a RegisterClass";
    // Iterate over args, all SubRegIndex instances.
    for (DagInit::const_arg_iterator ai = DAG->arg_begin(), ae = DAG->arg_end();
         ai != ae; ++ai) {
      DefInit *Idx = dynamic_cast<DefInit*>(*ai);
      Record *IdxRec;
      if (!Idx || !(IdxRec = Idx->getDef())->isSubClassOf("SubRegIndex"))
        throw "Argument '" + (*ai)->getAsString() +
          "' in SubRegClasses is not a SubRegIndex";
      if (!SubRegClasses.insert(std::make_pair(IdxRec, RCRec)).second)
        throw "SubRegIndex '" + IdxRec->getName() + "' mentioned twice";
    }
  }

  // Allow targets to override the size in bits of the RegisterClass.
  unsigned Size = R->getValueAsInt("Size");

  Namespace = R->getValueAsString("Namespace");
  SpillSize = Size ? Size : EVT(VTs[0]).getSizeInBits();
  SpillAlignment = R->getValueAsInt("Alignment");
  CopyCost = R->getValueAsInt("CopyCost");
  Allocatable = R->getValueAsBit("isAllocatable");
  AltOrderSelect = R->getValueAsCode("AltOrderSelect");
}
コード例 #14
0
void
RegisterInfoEmitter::EmitRegMapping(raw_ostream &OS,
                                    const std::vector<CodeGenRegister*> &Regs,
                                    bool isCtor) {

  // Collect all information about dwarf register numbers
  typedef std::map<Record*, std::vector<int64_t>, LessRecord> DwarfRegNumsMapTy;
  DwarfRegNumsMapTy DwarfRegNums;

  // First, just pull all provided information to the map
  unsigned maxLength = 0;
  for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
    Record *Reg = Regs[i]->TheDef;
    std::vector<int64_t> RegNums = Reg->getValueAsListOfInts("DwarfNumbers");
    maxLength = std::max((size_t)maxLength, RegNums.size());
    if (DwarfRegNums.count(Reg))
      errs() << "Warning: DWARF numbers for register " << getQualifiedName(Reg)
             << "specified multiple times\n";
    DwarfRegNums[Reg] = RegNums;
  }

  if (!maxLength)
    return;

  // Now we know maximal length of number list. Append -1's, where needed
  for (DwarfRegNumsMapTy::iterator
       I = DwarfRegNums.begin(), E = DwarfRegNums.end(); I != E; ++I)
    for (unsigned i = I->second.size(), e = maxLength; i != e; ++i)
      I->second.push_back(-1);

  // Emit reverse information about the dwarf register numbers.
  for (unsigned j = 0; j < 2; ++j) {
    OS << "  switch (";
    if (j == 0)
      OS << "DwarfFlavour";
    else
      OS << "EHFlavour";
    OS << ") {\n"
     << "  default:\n"
     << "    assert(0 && \"Unknown DWARF flavour\");\n"
     << "    break;\n";

    for (unsigned i = 0, e = maxLength; i != e; ++i) {
      OS << "  case " << i << ":\n";
      for (DwarfRegNumsMapTy::iterator
             I = DwarfRegNums.begin(), E = DwarfRegNums.end(); I != E; ++I) {
        int DwarfRegNo = I->second[i];
        if (DwarfRegNo < 0)
          continue;
        OS << "    ";
        if (!isCtor)
          OS << "RI->";
        OS << "mapDwarfRegToLLVMReg(" << DwarfRegNo << ", "
           << getQualifiedName(I->first) << ", ";
        if (j == 0)
          OS << "false";
        else
          OS << "true";
        OS << " );\n";
      }
      OS << "    break;\n";
    }
    OS << "  }\n";
  }

  for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
    Record *Reg = Regs[i]->TheDef;
    const RecordVal *V = Reg->getValue("DwarfAlias");
    if (!V || !V->getValue())
      continue;

    DefInit *DI = dynamic_cast<DefInit*>(V->getValue());
    Record *Alias = DI->getDef();
    DwarfRegNums[Reg] = DwarfRegNums[Alias];
  }

  // Emit information about the dwarf register numbers.
  for (unsigned j = 0; j < 2; ++j) {
    OS << "  switch (";
    if (j == 0)
      OS << "DwarfFlavour";
    else
      OS << "EHFlavour";
    OS << ") {\n"
       << "  default:\n"
       << "    assert(0 && \"Unknown DWARF flavour\");\n"
       << "    break;\n";

    for (unsigned i = 0, e = maxLength; i != e; ++i) {
      OS << "  case " << i << ":\n";
      // Sort by name to get a stable order.
      for (DwarfRegNumsMapTy::iterator
             I = DwarfRegNums.begin(), E = DwarfRegNums.end(); I != E; ++I) {
        int RegNo = I->second[i];
        OS << "    ";
        if (!isCtor)
          OS << "RI->";
        OS << "mapLLVMRegToDwarfReg(" << getQualifiedName(I->first) << ", "
           <<  RegNo << ", ";
        if (j == 0)
          OS << "false";
        else
          OS << "true";
        OS << " );\n";
      }
      OS << "    break;\n";
    }
    OS << "  }\n";
  }
}
コード例 #15
0
ファイル: CodeGenInstruction.cpp プロジェクト: Sciumo/llvm
CodeGenInstAlias::CodeGenInstAlias(Record *R, CodeGenTarget &T) : TheDef(R) {
  AsmString = R->getValueAsString("AsmString");
  Result = R->getValueAsDag("ResultInst");

  // Verify that the root of the result is an instruction.
  DefInit *DI = dynamic_cast<DefInit*>(Result->getOperator());
  if (DI == 0 || !DI->getDef()->isSubClassOf("Instruction"))
    throw TGError(R->getLoc(), "result of inst alias should be an instruction");

  ResultInst = &T.getInstruction(DI->getDef());

  // NameClass - If argument names are repeated, we need to verify they have
  // the same class.
  StringMap<Record*> NameClass;
  for (unsigned i = 0, e = Result->getNumArgs(); i != e; ++i) {
    DefInit *ADI = dynamic_cast<DefInit*>(Result->getArg(i));
    if (!ADI || Result->getArgName(i).empty())
      continue;
    // Verify we don't have something like: (someinst GR16:$foo, GR32:$foo)
    // $foo can exist multiple times in the result list, but it must have the
    // same type.
    Record *&Entry = NameClass[Result->getArgName(i)];
    if (Entry && Entry != ADI->getDef())
      throw TGError(R->getLoc(), "result value $" + Result->getArgName(i) +
                    " is both " + Entry->getName() + " and " +
                    ADI->getDef()->getName() + "!");
    Entry = ADI->getDef();
  }

  // Decode and validate the arguments of the result.
  unsigned AliasOpNo = 0;
  for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {

    // Tied registers don't have an entry in the result dag.
    if (ResultInst->Operands[i].getTiedRegister() != -1)
      continue;

    if (AliasOpNo >= Result->getNumArgs())
      throw TGError(R->getLoc(), "not enough arguments for instruction!");

    Record *InstOpRec = ResultInst->Operands[i].Rec;
    unsigned NumSubOps = ResultInst->Operands[i].MINumOperands;
    ResultOperand ResOp(static_cast<int64_t>(0));
    if (tryAliasOpMatch(Result, AliasOpNo, InstOpRec, (NumSubOps > 1),
                        R->getLoc(), T, ResOp)) {
      ResultOperands.push_back(ResOp);
      ResultInstOperandIndex.push_back(std::make_pair(i, -1));
      ++AliasOpNo;
      continue;
    }

    // If the argument did not match the instruction operand, and the operand
    // is composed of multiple suboperands, try matching the suboperands.
    if (NumSubOps > 1) {
      DagInit *MIOI = ResultInst->Operands[i].MIOperandInfo;
      for (unsigned SubOp = 0; SubOp != NumSubOps; ++SubOp) {
        if (AliasOpNo >= Result->getNumArgs())
          throw TGError(R->getLoc(), "not enough arguments for instruction!");
        Record *SubRec = dynamic_cast<DefInit*>(MIOI->getArg(SubOp))->getDef();
        if (tryAliasOpMatch(Result, AliasOpNo, SubRec, false,
                            R->getLoc(), T, ResOp)) {
          ResultOperands.push_back(ResOp);
          ResultInstOperandIndex.push_back(std::make_pair(i, SubOp));
          ++AliasOpNo;
        } else {
          throw TGError(R->getLoc(), "result argument #" + utostr(AliasOpNo) +
                        " does not match instruction operand class " +
                        (SubOp == 0 ? InstOpRec->getName() :SubRec->getName()));
        }
      }
      continue;
    }
    throw TGError(R->getLoc(), "result argument #" + utostr(AliasOpNo) +
                  " does not match instruction operand class " +
                  InstOpRec->getName());
  }

  if (AliasOpNo != Result->getNumArgs())
    throw TGError(R->getLoc(), "too many operands for instruction!");
}
コード例 #16
0
ファイル: CodeGenInstruction.cpp プロジェクト: Sciumo/llvm
/// tryAliasOpMatch - This is a helper function for the CodeGenInstAlias
/// constructor.  It checks if an argument in an InstAlias pattern matches
/// the corresponding operand of the instruction.  It returns true on a
/// successful match, with ResOp set to the result operand to be used.
bool CodeGenInstAlias::tryAliasOpMatch(DagInit *Result, unsigned AliasOpNo,
                                       Record *InstOpRec, bool hasSubOps,
                                       SMLoc Loc, CodeGenTarget &T,
                                       ResultOperand &ResOp) {
  Init *Arg = Result->getArg(AliasOpNo);
  DefInit *ADI = dynamic_cast<DefInit*>(Arg);

  if (ADI && ADI->getDef() == InstOpRec) {
    // If the operand is a record, it must have a name, and the record type
    // must match up with the instruction's argument type.
    if (Result->getArgName(AliasOpNo).empty())
      throw TGError(Loc, "result argument #" + utostr(AliasOpNo) +
                    " must have a name!");
    ResOp = ResultOperand(Result->getArgName(AliasOpNo), ADI->getDef());
    return true;
  }

  // Handle explicit registers.
  if (ADI && ADI->getDef()->isSubClassOf("Register")) {
    if (!InstOpRec->isSubClassOf("RegisterClass"))
      return false;

    if (!T.getRegisterClass(InstOpRec)
        .contains(T.getRegBank().getReg(ADI->getDef())))
      throw TGError(Loc, "fixed register " +ADI->getDef()->getName()
                    + " is not a member of the " + InstOpRec->getName() +
                    " register class!");

    if (!Result->getArgName(AliasOpNo).empty())
      throw TGError(Loc, "result fixed register argument must "
                    "not have a name!");

    ResOp = ResultOperand(ADI->getDef());
    return true;
  }

  // Handle "zero_reg" for optional def operands.
  if (ADI && ADI->getDef()->getName() == "zero_reg") {

    // Check if this is an optional def.
    if (!InstOpRec->isSubClassOf("OptionalDefOperand"))
      throw TGError(Loc, "reg0 used for result that is not an "
                    "OptionalDefOperand!");

    ResOp = ResultOperand(static_cast<Record*>(0));
    return true;
  }

  if (IntInit *II = dynamic_cast<IntInit*>(Arg)) {
    if (hasSubOps || !InstOpRec->isSubClassOf("Operand"))
      return false;
    // Integer arguments can't have names.
    if (!Result->getArgName(AliasOpNo).empty())
      throw TGError(Loc, "result argument #" + utostr(AliasOpNo) +
                    " must not have a name!");
    ResOp = ResultOperand(II->getValue());
    return true;
  }

  return false;
}
コード例 #17
0
void ClangDiagGroupsEmitter::run(raw_ostream &OS) {
  // Compute a mapping from a DiagGroup to all of its parents.
  DiagGroupParentMap DGParentMap(Records);
  
  // Invert the 1-[0/1] mapping of diags to group into a one to many mapping of
  // groups to diags in the group.
  std::map<std::string, GroupInfo> DiagsInGroup;
  
  std::vector<Record*> Diags =
    Records.getAllDerivedDefinitions("Diagnostic");
  for (unsigned i = 0, e = Diags.size(); i != e; ++i) {
    const Record *R = Diags[i];
    DefInit *DI = dynamic_cast<DefInit*>(R->getValueInit("Group"));
    if (DI == 0) continue;
    std::string GroupName = DI->getDef()->getValueAsString("GroupName");
    DiagsInGroup[GroupName].DiagsInGroup.push_back(R);
  }
  
  // Add all DiagGroup's to the DiagsInGroup list to make sure we pick up empty
  // groups (these are warnings that GCC supports that clang never produces).
  std::vector<Record*> DiagGroups
    = Records.getAllDerivedDefinitions("DiagGroup");
  for (unsigned i = 0, e = DiagGroups.size(); i != e; ++i) {
    Record *Group = DiagGroups[i];
    GroupInfo &GI = DiagsInGroup[Group->getValueAsString("GroupName")];
    
    std::vector<Record*> SubGroups = Group->getValueAsListOfDefs("SubGroups");
    for (unsigned j = 0, e = SubGroups.size(); j != e; ++j)
      GI.SubGroups.push_back(SubGroups[j]->getValueAsString("GroupName"));
  }
  
  // Assign unique ID numbers to the groups.
  unsigned IDNo = 0;
  for (std::map<std::string, GroupInfo>::iterator
       I = DiagsInGroup.begin(), E = DiagsInGroup.end(); I != E; ++I, ++IDNo)
    I->second.IDNo = IDNo;
  
  // Walk through the groups emitting an array for each diagnostic of the diags
  // that are mapped to.
  OS << "\n#ifdef GET_DIAG_ARRAYS\n";
  unsigned MaxLen = 0;
  for (std::map<std::string, GroupInfo>::iterator
       I = DiagsInGroup.begin(), E = DiagsInGroup.end(); I != E; ++I) {
    MaxLen = std::max(MaxLen, (unsigned)I->first.size());
    
    std::vector<const Record*> &V = I->second.DiagsInGroup;
    if (!V.empty()) {
      OS << "static const short DiagArray" << I->second.IDNo << "[] = { ";
      for (unsigned i = 0, e = V.size(); i != e; ++i)
        OS << "diag::" << V[i]->getName() << ", ";
      OS << "-1 };\n";
    }
    
    const std::vector<std::string> &SubGroups = I->second.SubGroups;
    if (!SubGroups.empty()) {
      OS << "static const short DiagSubGroup" << I->second.IDNo << "[] = { ";
      for (unsigned i = 0, e = SubGroups.size(); i != e; ++i) {
        std::map<std::string, GroupInfo>::iterator RI =
          DiagsInGroup.find(SubGroups[i]);
        assert(RI != DiagsInGroup.end() && "Referenced without existing?");
        OS << RI->second.IDNo << ", ";
      }
      OS << "-1 };\n";
    }
  }
  OS << "#endif // GET_DIAG_ARRAYS\n\n";
  
  // Emit the table now.
  OS << "\n#ifdef GET_DIAG_TABLE\n";
  for (std::map<std::string, GroupInfo>::iterator
       I = DiagsInGroup.begin(), E = DiagsInGroup.end(); I != E; ++I) {
    // Group option string.
    OS << "  { ";
    OS << I->first.size() << ", ";
    OS << "\"";
    OS.write_escaped(I->first) << "\","
                               << std::string(MaxLen-I->first.size()+1, ' ');
    
    // Diagnostics in the group.
    if (I->second.DiagsInGroup.empty())
      OS << "0, ";
    else
      OS << "DiagArray" << I->second.IDNo << ", ";
    
    // Subgroups.
    if (I->second.SubGroups.empty())
      OS << 0;
    else
      OS << "DiagSubGroup" << I->second.IDNo;
    OS << " },\n";
  }
  OS << "#endif // GET_DIAG_TABLE\n\n";
  
  // Emit the category table next.
  DiagCategoryIDMap CategoriesByID(Records);
  OS << "\n#ifdef GET_CATEGORY_TABLE\n";
  for (DiagCategoryIDMap::iterator I = CategoriesByID.begin(),
       E = CategoriesByID.end(); I != E; ++I)
    OS << "CATEGORY(\"" << *I << "\", " << getDiagCategoryEnum(*I) << ")\n";
  OS << "#endif // GET_CATEGORY_TABLE\n\n";
}
コード例 #18
0
ファイル: CodeGenInstruction.cpp プロジェクト: JuliaLang/llvm
CodeGenInstAlias::CodeGenInstAlias(Record *R, unsigned Variant,
                                   CodeGenTarget &T)
    : TheDef(R) {
    Result = R->getValueAsDag("ResultInst");
    AsmString = R->getValueAsString("AsmString");
    AsmString = CodeGenInstruction::FlattenAsmStringVariants(AsmString, Variant);


    // Verify that the root of the result is an instruction.
    DefInit *DI = dyn_cast<DefInit>(Result->getOperator());
    if (!DI || !DI->getDef()->isSubClassOf("Instruction"))
        PrintFatalError(R->getLoc(),
                        "result of inst alias should be an instruction");

    ResultInst = &T.getInstruction(DI->getDef());

    // NameClass - If argument names are repeated, we need to verify they have
    // the same class.
    StringMap<Record*> NameClass;
    for (unsigned i = 0, e = Result->getNumArgs(); i != e; ++i) {
        DefInit *ADI = dyn_cast<DefInit>(Result->getArg(i));
        if (!ADI || Result->getArgName(i).empty())
            continue;
        // Verify we don't have something like: (someinst GR16:$foo, GR32:$foo)
        // $foo can exist multiple times in the result list, but it must have the
        // same type.
        Record *&Entry = NameClass[Result->getArgName(i)];
        if (Entry && Entry != ADI->getDef())
            PrintFatalError(R->getLoc(), "result value $" + Result->getArgName(i) +
                            " is both " + Entry->getName() + " and " +
                            ADI->getDef()->getName() + "!");
        Entry = ADI->getDef();
    }

    // Decode and validate the arguments of the result.
    unsigned AliasOpNo = 0;
    for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {

        // Tied registers don't have an entry in the result dag unless they're part
        // of a complex operand, in which case we include them anyways, as we
        // don't have any other way to specify the whole operand.
        if (ResultInst->Operands[i].MINumOperands == 1 &&
                ResultInst->Operands[i].getTiedRegister() != -1)
            continue;

        if (AliasOpNo >= Result->getNumArgs())
            PrintFatalError(R->getLoc(), "not enough arguments for instruction!");

        Record *InstOpRec = ResultInst->Operands[i].Rec;
        unsigned NumSubOps = ResultInst->Operands[i].MINumOperands;
        ResultOperand ResOp(static_cast<int64_t>(0));
        if (tryAliasOpMatch(Result, AliasOpNo, InstOpRec, (NumSubOps > 1),
                            R->getLoc(), T, ResOp)) {
            // If this is a simple operand, or a complex operand with a custom match
            // class, then we can match is verbatim.
            if (NumSubOps == 1 ||
                    (InstOpRec->getValue("ParserMatchClass") &&
                     InstOpRec->getValueAsDef("ParserMatchClass")
                     ->getValueAsString("Name") != "Imm")) {
                ResultOperands.push_back(ResOp);
                ResultInstOperandIndex.push_back(std::make_pair(i, -1));
                ++AliasOpNo;

                // Otherwise, we need to match each of the suboperands individually.
            } else {
                DagInit *MIOI = ResultInst->Operands[i].MIOperandInfo;
                for (unsigned SubOp = 0; SubOp != NumSubOps; ++SubOp) {
                    Record *SubRec = cast<DefInit>(MIOI->getArg(SubOp))->getDef();

                    // Take care to instantiate each of the suboperands with the correct
                    // nomenclature: $foo.bar
                    ResultOperands.push_back(
                        ResultOperand(Result->getArgName(AliasOpNo) + "." +
                                      MIOI->getArgName(SubOp), SubRec));
                    ResultInstOperandIndex.push_back(std::make_pair(i, SubOp));
                }
                ++AliasOpNo;
            }
            continue;
        }

        // If the argument did not match the instruction operand, and the operand
        // is composed of multiple suboperands, try matching the suboperands.
        if (NumSubOps > 1) {
            DagInit *MIOI = ResultInst->Operands[i].MIOperandInfo;
            for (unsigned SubOp = 0; SubOp != NumSubOps; ++SubOp) {
                if (AliasOpNo >= Result->getNumArgs())
                    PrintFatalError(R->getLoc(), "not enough arguments for instruction!");
                Record *SubRec = cast<DefInit>(MIOI->getArg(SubOp))->getDef();
                if (tryAliasOpMatch(Result, AliasOpNo, SubRec, false,
                                    R->getLoc(), T, ResOp)) {
                    ResultOperands.push_back(ResOp);
                    ResultInstOperandIndex.push_back(std::make_pair(i, SubOp));
                    ++AliasOpNo;
                } else {
                    PrintFatalError(R->getLoc(), "result argument #" + Twine(AliasOpNo) +
                                    " does not match instruction operand class " +
                                    (SubOp == 0 ? InstOpRec->getName() :SubRec->getName()));
                }
            }
            continue;
        }
        PrintFatalError(R->getLoc(), "result argument #" + Twine(AliasOpNo) +
                        " does not match instruction operand class " +
                        InstOpRec->getName());
    }

    if (AliasOpNo != Result->getNumArgs())
        PrintFatalError(R->getLoc(), "too many operands for instruction!");
}
コード例 #19
0
void FastISelMap::CollectPatterns(CodeGenDAGPatterns &CGP) {
  const CodeGenTarget &Target = CGP.getTargetInfo();

  // Determine the target's namespace name.
  InstNS = Target.getInstNamespace() + "::";
  assert(InstNS.size() > 2 && "Can't determine target-specific namespace!");

  // Scan through all the patterns and record the simple ones.
  for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(),
       E = CGP.ptm_end(); I != E; ++I) {
    const PatternToMatch &Pattern = *I;

    // For now, just look at Instructions, so that we don't have to worry
    // about emitting multiple instructions for a pattern.
    TreePatternNode *Dst = Pattern.getDstPattern();
    if (Dst->isLeaf()) continue;
    Record *Op = Dst->getOperator();
    if (!Op->isSubClassOf("Instruction"))
      continue;
    CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op->getName());
    if (II.OperandList.empty())
      continue;

    // For now, ignore multi-instruction patterns.
    bool MultiInsts = false;
    for (unsigned i = 0, e = Dst->getNumChildren(); i != e; ++i) {
      TreePatternNode *ChildOp = Dst->getChild(i);
      if (ChildOp->isLeaf())
        continue;
      if (ChildOp->getOperator()->isSubClassOf("Instruction")) {
        MultiInsts = true;
        break;
      }
    }
    if (MultiInsts)
      continue;

    // For now, ignore instructions where the first operand is not an
    // output register.
    const CodeGenRegisterClass *DstRC = 0;
    unsigned SubRegNo = ~0;
    if (Op->getName() != "EXTRACT_SUBREG") {
      Record *Op0Rec = II.OperandList[0].Rec;
      if (!Op0Rec->isSubClassOf("RegisterClass"))
        continue;
      DstRC = &Target.getRegisterClass(Op0Rec);
      if (!DstRC)
        continue;
    } else {
      SubRegNo = static_cast<IntInit*>(
                 Dst->getChild(1)->getLeafValue())->getValue();
    }

    // Inspect the pattern.
    TreePatternNode *InstPatNode = Pattern.getSrcPattern();
    if (!InstPatNode) continue;
    if (InstPatNode->isLeaf()) continue;

    Record *InstPatOp = InstPatNode->getOperator();
    std::string OpcodeName = getOpcodeName(InstPatOp, CGP);
    MVT::SimpleValueType RetVT = InstPatNode->getTypeNum(0);
    MVT::SimpleValueType VT = RetVT;
    if (InstPatNode->getNumChildren())
      VT = InstPatNode->getChild(0)->getTypeNum(0);

    // For now, filter out instructions which just set a register to
    // an Operand or an immediate, like MOV32ri.
    if (InstPatOp->isSubClassOf("Operand"))
      continue;

    // For now, filter out any instructions with predicates.
    if (!InstPatNode->getPredicateFns().empty())
      continue;

    // Check all the operands.
    OperandsSignature Operands;
    if (!Operands.initialize(InstPatNode, Target, VT))
      continue;
    
    std::vector<std::string>* PhysRegInputs = new std::vector<std::string>();
    if (!InstPatNode->isLeaf() &&
        (InstPatNode->getOperator()->getName() == "imm" ||
         InstPatNode->getOperator()->getName() == "fpimmm"))
      PhysRegInputs->push_back("");
    else if (!InstPatNode->isLeaf()) {
      for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) {
        TreePatternNode *Op = InstPatNode->getChild(i);
        if (!Op->isLeaf()) {
          PhysRegInputs->push_back("");
          continue;
        }
        
        DefInit *OpDI = dynamic_cast<DefInit*>(Op->getLeafValue());
        Record *OpLeafRec = OpDI->getDef();
        std::string PhysReg;
        if (OpLeafRec->isSubClassOf("Register")) {
          PhysReg += static_cast<StringInit*>(OpLeafRec->getValue( \
                     "Namespace")->getValue())->getValue();
          PhysReg += "::";
          
          std::vector<CodeGenRegister> Regs = Target.getRegisters();
          for (unsigned i = 0; i < Regs.size(); ++i) {
            if (Regs[i].TheDef == OpLeafRec) {
              PhysReg += Regs[i].getName();
              break;
            }
          }
        }
      
        PhysRegInputs->push_back(PhysReg);
      }
    } else
      PhysRegInputs->push_back("");

    // Get the predicate that guards this pattern.
    std::string PredicateCheck = Pattern.getPredicateCheck();

    // Ok, we found a pattern that we can handle. Remember it.
    InstructionMemo Memo = {
      Pattern.getDstPattern()->getOperator()->getName(),
      DstRC,
      SubRegNo,
      PhysRegInputs
    };
    assert(!SimplePatterns[Operands][OpcodeName][VT][RetVT].count(PredicateCheck) &&
           "Duplicate pattern!");
    SimplePatterns[Operands][OpcodeName][VT][RetVT][PredicateCheck] = Memo;
  }
}
コード例 #20
0
ファイル: CodeGenRegisters.cpp プロジェクト: CartBlanche/llvm
const CodeGenRegister::SubRegMap &
CodeGenRegister::getSubRegs(CodeGenRegBank &RegBank) {
  // Only compute this map once.
  if (SubRegsComplete)
    return SubRegs;
  SubRegsComplete = true;

  std::vector<Record*> SubList = TheDef->getValueAsListOfDefs("SubRegs");
  std::vector<Record*> Indices = TheDef->getValueAsListOfDefs("SubRegIndices");
  if (SubList.size() != Indices.size())
    throw TGError(TheDef->getLoc(), "Register " + getName() +
                  " SubRegIndices doesn't match SubRegs");

  // First insert the direct subregs and make sure they are fully indexed.
  for (unsigned i = 0, e = SubList.size(); i != e; ++i) {
    CodeGenRegister *SR = RegBank.getReg(SubList[i]);
    if (!SubRegs.insert(std::make_pair(Indices[i], SR)).second)
      throw TGError(TheDef->getLoc(), "SubRegIndex " + Indices[i]->getName() +
                    " appears twice in Register " + getName());
  }

  // Keep track of inherited subregs and how they can be reached.
  SmallVector<Orphan, 8> Orphans;

  // Clone inherited subregs and place duplicate entries on Orphans.
  // Here the order is important - earlier subregs take precedence.
  for (unsigned i = 0, e = SubList.size(); i != e; ++i) {
    CodeGenRegister *SR = RegBank.getReg(SubList[i]);
    const SubRegMap &Map = SR->getSubRegs(RegBank);

    // Add this as a super-register of SR now all sub-registers are in the list.
    // This creates a topological ordering, the exact order depends on the
    // order getSubRegs is called on all registers.
    SR->SuperRegs.push_back(this);

    for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
         ++SI) {
      if (!SubRegs.insert(*SI).second)
        Orphans.push_back(Orphan(SI->second, Indices[i], SI->first));

      // Noop sub-register indexes are possible, so avoid duplicates.
      if (SI->second != SR)
        SI->second->SuperRegs.push_back(this);
    }
  }

  // Process the composites.
  ListInit *Comps = TheDef->getValueAsListInit("CompositeIndices");
  for (unsigned i = 0, e = Comps->size(); i != e; ++i) {
    DagInit *Pat = dynamic_cast<DagInit*>(Comps->getElement(i));
    if (!Pat)
      throw TGError(TheDef->getLoc(), "Invalid dag '" +
                    Comps->getElement(i)->getAsString() +
                    "' in CompositeIndices");
    DefInit *BaseIdxInit = dynamic_cast<DefInit*>(Pat->getOperator());
    if (!BaseIdxInit || !BaseIdxInit->getDef()->isSubClassOf("SubRegIndex"))
      throw TGError(TheDef->getLoc(), "Invalid SubClassIndex in " +
                    Pat->getAsString());

    // Resolve list of subreg indices into R2.
    CodeGenRegister *R2 = this;
    for (DagInit::const_arg_iterator di = Pat->arg_begin(),
         de = Pat->arg_end(); di != de; ++di) {
      DefInit *IdxInit = dynamic_cast<DefInit*>(*di);
      if (!IdxInit || !IdxInit->getDef()->isSubClassOf("SubRegIndex"))
        throw TGError(TheDef->getLoc(), "Invalid SubClassIndex in " +
                      Pat->getAsString());
      const SubRegMap &R2Subs = R2->getSubRegs(RegBank);
      SubRegMap::const_iterator ni = R2Subs.find(IdxInit->getDef());
      if (ni == R2Subs.end())
        throw TGError(TheDef->getLoc(), "Composite " + Pat->getAsString() +
                      " refers to bad index in " + R2->getName());
      R2 = ni->second;
    }

    // Insert composite index. Allow overriding inherited indices etc.
    SubRegs[BaseIdxInit->getDef()] = R2;

    // R2 is no longer an orphan.
    for (unsigned j = 0, je = Orphans.size(); j != je; ++j)
      if (Orphans[j].SubReg == R2)
          Orphans[j].SubReg = 0;
  }

  // Now Orphans contains the inherited subregisters without a direct index.
  // Create inferred indexes for all missing entries.
  for (unsigned i = 0, e = Orphans.size(); i != e; ++i) {
    Orphan &O = Orphans[i];
    if (!O.SubReg)
      continue;
    SubRegs[RegBank.getCompositeSubRegIndex(O.First, O.Second, true)] =
      O.SubReg;
  }
  return SubRegs;
}
コード例 #21
0
ファイル: CodeInvDAGPatterns.cpp プロジェクト: 8l/fracture
InvTreePatternNode *InvTreePattern::ParseTreePattern(Init *TheInit, StringRef OpName) {
  if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
    Record *R = DI->getDef();

    // On direct reference to a leaf DagNode (SDNode) or a pattern fragment, create
    // a new InvTreePatternNode.
    if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) {
      return ParseTreePattern(DagInit::get(DI, "", 
          std::vector<std::pair<Init*, std::string> >()), OpName);
    }

    // Treat as an input element
    InvTreePatternNode *Res = new InvTreePatternNode(DI);
    if (R->getName() == "node" && OpName.empty()) {
      error("'node' requires an opname to match operand lists!");
    }

    Res->setName(OpName);
    return Res;
   }

  if (IntInit *II = dyn_cast<IntInit>(TheInit)) {
    if (!OpName.empty()) {
      error("Constant int args should not have a name!");
    }
    return new InvTreePatternNode(II);
  }

  if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
    // Convert to IntInit
    Init *II = BI->convertInitializerTo(IntRecTy::get());
    if (II == 0 || !isa<IntInit>(II)) {
      error("Bits values must be integer constants!");
    }
    return ParseTreePattern(II, OpName);
  }

  DagInit *Dag = dyn_cast<DagInit>(TheInit);
  if (!Dag) {
    TheInit->dump();
    error("The Pattern has an unexpected init type.");
  }
  DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
  if (!OpDef) {
    error("Thye Pattern has an unexpected operator type.");
  }
  Record *OpRec = OpDef->getDef();

  if (OpRec->isSubClassOf("ValueType")) {
    // ValueType is the type of a leaf node.
    if (Dag->getNumArgs() != 1) {
      error("Expected 1 argument for a ValueType operator.");
    }
    InvTreePatternNode *New = ParseTreePattern(Dag->getArg(0), Dag->getArgName(0));

    // assert(New->getNumTypes() == 1 && "Unable to handle multiple types!");
    // New->UpdateNodeType(0, getValueType(OpRec), *this);

    if (!OpName.empty()) {
      error("ValueType should not have a name!");
    }
    return New;
  }

  // Verify that this makes sense for an operator
  if (!OpRec->isSubClassOf("PatFrag") && !OpRec->isSubClassOf("SDNode") &&
    !OpRec->isSubClassOf("Instruction") && !OpRec->isSubClassOf("SDNodeXForm") &&
    !OpRec->isSubClassOf("Intrinsic") && OpRec->getName() != "set" &&
    OpRec->getName() != "implicit" && OpRec->getName() != "outs" &&
    OpRec->getName() != "ins" && OpRec->getName() != "null_frag") {
    error("Unrecognized node '" + OpRec->getName() + "'!");
  }

  // Unlike Regular treepatterns, we assume all patterns are "input" patterns
  // in the TableGen context
  if (OpRec->isSubClassOf("Instruction") ||
    OpRec->isSubClassOf("SDNodeXForm")) {
    error("Cannot use '" + OpRec->getName() + "' in the output pattern.");
  }

  std::vector<InvTreePatternNode*> Children;

  // Parse operands
  for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) {
    Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgName(i)));
  }

  if (OpRec->isSubClassOf("Intrinsic")) {
    // Unhandled...
    DEBUG(error("Intrinsics unhandled at this time."););
コード例 #22
0
CodeGenInstruction::CodeGenInstruction(Record *R, const std::string &AsmStr)
  : TheDef(R), AsmString(AsmStr) {
  Name      = R->getValueAsString("Name");
  Namespace = R->getValueAsString("Namespace");

  isReturn     = R->getValueAsBit("isReturn");
  isBranch     = R->getValueAsBit("isBranch");
  isBarrier    = R->getValueAsBit("isBarrier");
  isCall       = R->getValueAsBit("isCall");
  isLoad       = R->getValueAsBit("isLoad");
  isStore      = R->getValueAsBit("isStore");
  bool isTwoAddress = R->getValueAsBit("isTwoAddress");
  isPredicated = false;   // set below.
  isConvertibleToThreeAddress = R->getValueAsBit("isConvertibleToThreeAddress");
  isCommutable = R->getValueAsBit("isCommutable");
  isTerminator = R->getValueAsBit("isTerminator");
  isReMaterializable = R->getValueAsBit("isReMaterializable");
  hasDelaySlot = R->getValueAsBit("hasDelaySlot");
  usesCustomDAGSchedInserter = R->getValueAsBit("usesCustomDAGSchedInserter");
  hasCtrlDep   = R->getValueAsBit("hasCtrlDep");
  noResults    = R->getValueAsBit("noResults");
  hasVariableNumberOfOperands = false;
  
  DagInit *DI;
  try {
    DI = R->getValueAsDag("OperandList");
  } catch (...) {
    // Error getting operand list, just ignore it (sparcv9).
    AsmString.clear();
    OperandList.clear();
    return;
  }

  unsigned MIOperandNo = 0;
  std::set<std::string> OperandNames;
  for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
    DefInit *Arg = dynamic_cast<DefInit*>(DI->getArg(i));
    if (!Arg)
      throw "Illegal operand for the '" + R->getName() + "' instruction!";

    Record *Rec = Arg->getDef();
    std::string PrintMethod = "printOperand";
    unsigned NumOps = 1;
    DagInit *MIOpInfo = 0;
    if (Rec->isSubClassOf("Operand")) {
      PrintMethod = Rec->getValueAsString("PrintMethod");
      MIOpInfo = Rec->getValueAsDag("MIOperandInfo");
      
      // Verify that MIOpInfo has an 'ops' root value.
      if (!dynamic_cast<DefInit*>(MIOpInfo->getOperator()) ||
          dynamic_cast<DefInit*>(MIOpInfo->getOperator())
               ->getDef()->getName() != "ops")
        throw "Bad value for MIOperandInfo in operand '" + Rec->getName() +
              "'\n";

      // If we have MIOpInfo, then we have #operands equal to number of entries
      // in MIOperandInfo.
      if (unsigned NumArgs = MIOpInfo->getNumArgs())
        NumOps = NumArgs;

      isPredicated |= Rec->isSubClassOf("PredicateOperand");
    } else if (Rec->getName() == "variable_ops") {
      hasVariableNumberOfOperands = true;
      continue;
    } else if (!Rec->isSubClassOf("RegisterClass") && 
               Rec->getName() != "ptr_rc")
      throw "Unknown operand class '" + Rec->getName() +
            "' in instruction '" + R->getName() + "' instruction!";

    // Check that the operand has a name and that it's unique.
    if (DI->getArgName(i).empty())
      throw "In instruction '" + R->getName() + "', operand #" + utostr(i) +
        " has no name!";
    if (!OperandNames.insert(DI->getArgName(i)).second)
      throw "In instruction '" + R->getName() + "', operand #" + utostr(i) +
        " has the same name as a previous operand!";
    
    OperandList.push_back(OperandInfo(Rec, DI->getArgName(i), PrintMethod, 
                                      MIOperandNo, NumOps, MIOpInfo));
    MIOperandNo += NumOps;
  }

  // Parse Constraints.
  ParseConstraints(R->getValueAsString("Constraints"), this);
  
  // For backward compatibility: isTwoAddress means operand 1 is tied to
  // operand 0.
  if (isTwoAddress) {
    if (!OperandList[1].Constraints[0].empty())
      throw R->getName() + ": cannot use isTwoAddress property: instruction "
            "already has constraint set!";
    OperandList[1].Constraints[0] = "((0 << 16) | (1 << TOI::TIED_TO))";
  }
  
  // Any operands with unset constraints get 0 as their constraint.
  for (unsigned op = 0, e = OperandList.size(); op != e; ++op)
    for (unsigned j = 0, e = OperandList[op].MINumOperands; j != e; ++j)
      if (OperandList[op].Constraints[j].empty())
        OperandList[op].Constraints[j] = "0";
  
  // Parse the DisableEncoding field.
  std::string DisableEncoding = R->getValueAsString("DisableEncoding");
  while (1) {
    std::string OpName = getToken(DisableEncoding, " ,\t");
    if (OpName.empty()) break;

    // Figure out which operand this is.
    std::pair<unsigned,unsigned> Op = ParseOperandName(OpName, false);

    // Mark the operand as not-to-be encoded.
    if (Op.second >= OperandList[Op.first].DoNotEncode.size())
      OperandList[Op.first].DoNotEncode.resize(Op.second+1);
    OperandList[Op.first].DoNotEncode[Op.second] = true;
  }
}
コード例 #23
0
/// \brief Invert the 1-[0/1] mapping of diags to group into a one to many
/// mapping of groups to diags in the group.
static void groupDiagnostics(const std::vector<Record*> &Diags,
                             const std::vector<Record*> &DiagGroups,
                             std::map<std::string, GroupInfo> &DiagsInGroup) {

  for (unsigned i = 0, e = Diags.size(); i != e; ++i) {
    const Record *R = Diags[i];
    DefInit *DI = dyn_cast<DefInit>(R->getValueInit("Group"));
    if (!DI)
      continue;
    assert(R->getValueAsDef("Class")->getName() != "CLASS_NOTE" &&
           "Note can't be in a DiagGroup");
    std::string GroupName = DI->getDef()->getValueAsString("GroupName");
    DiagsInGroup[GroupName].DiagsInGroup.push_back(R);
  }

  typedef SmallPtrSet<GroupInfo *, 16> GroupSetTy;
  GroupSetTy ImplicitGroups;

  // Add all DiagGroup's to the DiagsInGroup list to make sure we pick up empty
  // groups (these are warnings that GCC supports that clang never produces).
  for (unsigned i = 0, e = DiagGroups.size(); i != e; ++i) {
    Record *Group = DiagGroups[i];
    GroupInfo &GI = DiagsInGroup[Group->getValueAsString("GroupName")];
    if (Group->isAnonymous()) {
      if (GI.DiagsInGroup.size() > 1)
        ImplicitGroups.insert(&GI);
    } else {
      if (GI.ExplicitDef)
        assert(GI.ExplicitDef == Group);
      else
        GI.ExplicitDef = Group;
    }

    std::vector<Record*> SubGroups = Group->getValueAsListOfDefs("SubGroups");
    for (unsigned j = 0, e = SubGroups.size(); j != e; ++j)
      GI.SubGroups.push_back(SubGroups[j]->getValueAsString("GroupName"));
  }

  // Assign unique ID numbers to the groups.
  unsigned IDNo = 0;
  for (std::map<std::string, GroupInfo>::iterator
       I = DiagsInGroup.begin(), E = DiagsInGroup.end(); I != E; ++I, ++IDNo)
    I->second.IDNo = IDNo;

  // Sort the implicit groups, so we can warn about them deterministically.
  SmallVector<GroupInfo *, 16> SortedGroups(ImplicitGroups.begin(),
                                            ImplicitGroups.end());
  for (SmallVectorImpl<GroupInfo *>::iterator I = SortedGroups.begin(),
                                              E = SortedGroups.end();
       I != E; ++I) {
    MutableArrayRef<const Record *> GroupDiags = (*I)->DiagsInGroup;
    std::sort(GroupDiags.begin(), GroupDiags.end(), beforeThanCompare);
  }
  std::sort(SortedGroups.begin(), SortedGroups.end(), beforeThanCompareGroups);

  // Warn about the same group being used anonymously in multiple places.
  for (SmallVectorImpl<GroupInfo *>::const_iterator I = SortedGroups.begin(),
                                                    E = SortedGroups.end();
       I != E; ++I) {
    ArrayRef<const Record *> GroupDiags = (*I)->DiagsInGroup;

    if ((*I)->ExplicitDef) {
      std::string Name = (*I)->ExplicitDef->getValueAsString("GroupName");
      for (ArrayRef<const Record *>::const_iterator DI = GroupDiags.begin(),
                                                    DE = GroupDiags.end();
           DI != DE; ++DI) {
        const DefInit *GroupInit = cast<DefInit>((*DI)->getValueInit("Group"));
        const Record *NextDiagGroup = GroupInit->getDef();
        if (NextDiagGroup == (*I)->ExplicitDef)
          continue;

        SMRange InGroupRange = findSuperClassRange(*DI, "InGroup");
        SmallString<64> Replacement;
        if (InGroupRange.isValid()) {
          Replacement += "InGroup<";
          Replacement += (*I)->ExplicitDef->getName();
          Replacement += ">";
        }
        SMFixIt FixIt(InGroupRange, Replacement.str());

        SrcMgr.PrintMessage(NextDiagGroup->getLoc().front(),
                            SourceMgr::DK_Error,
                            Twine("group '") + Name +
                              "' is referred to anonymously",
                            None,
                            InGroupRange.isValid() ? FixIt
                                                   : ArrayRef<SMFixIt>());
        SrcMgr.PrintMessage((*I)->ExplicitDef->getLoc().front(),
                            SourceMgr::DK_Note, "group defined here");
      }
    } else {
      // If there's no existing named group, we should just warn once and use
      // notes to list all the other cases.
      ArrayRef<const Record *>::const_iterator DI = GroupDiags.begin(),
                                               DE = GroupDiags.end();
      assert(DI != DE && "We only care about groups with multiple uses!");

      const DefInit *GroupInit = cast<DefInit>((*DI)->getValueInit("Group"));
      const Record *NextDiagGroup = GroupInit->getDef();
      std::string Name = NextDiagGroup->getValueAsString("GroupName");

      SMRange InGroupRange = findSuperClassRange(*DI, "InGroup");
      SrcMgr.PrintMessage(NextDiagGroup->getLoc().front(),
                          SourceMgr::DK_Error,
                          Twine("group '") + Name +
                            "' is referred to anonymously",
                          InGroupRange);

      for (++DI; DI != DE; ++DI) {
        GroupInit = cast<DefInit>((*DI)->getValueInit("Group"));
        InGroupRange = findSuperClassRange(*DI, "InGroup");
        SrcMgr.PrintMessage(GroupInit->getDef()->getLoc().front(),
                            SourceMgr::DK_Note, "also referenced here",
                            InGroupRange);
      }
    }
  }
}
コード例 #24
0
ファイル: RegisterInfoEmitter.cpp プロジェクト: romix/llvm
void
RegisterInfoEmitter::EmitRegMappingTables(raw_ostream &OS,
                                       const std::vector<CodeGenRegister*> &Regs,
                                          bool isCtor) {
  // Collect all information about dwarf register numbers
  typedef std::map<Record*, std::vector<int64_t>, LessRecord> DwarfRegNumsMapTy;
  DwarfRegNumsMapTy DwarfRegNums;

  // First, just pull all provided information to the map
  unsigned maxLength = 0;
  for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
    Record *Reg = Regs[i]->TheDef;
    std::vector<int64_t> RegNums = Reg->getValueAsListOfInts("DwarfNumbers");
    maxLength = std::max((size_t)maxLength, RegNums.size());
    if (DwarfRegNums.count(Reg))
      PrintWarning(Reg->getLoc(), Twine("DWARF numbers for register ") +
                   getQualifiedName(Reg) + "specified multiple times");
    DwarfRegNums[Reg] = RegNums;
  }

  if (!maxLength)
    return;

  // Now we know maximal length of number list. Append -1's, where needed
  for (DwarfRegNumsMapTy::iterator
       I = DwarfRegNums.begin(), E = DwarfRegNums.end(); I != E; ++I)
    for (unsigned i = I->second.size(), e = maxLength; i != e; ++i)
      I->second.push_back(-1);

  std::string Namespace = Regs[0]->TheDef->getValueAsString("Namespace");

  OS << "// " << Namespace << " Dwarf<->LLVM register mappings.\n";

  // Emit reverse information about the dwarf register numbers.
  for (unsigned j = 0; j < 2; ++j) {
    for (unsigned i = 0, e = maxLength; i != e; ++i) {
      OS << "extern const MCRegisterInfo::DwarfLLVMRegPair " << Namespace;
      OS << (j == 0 ? "DwarfFlavour" : "EHFlavour");
      OS << i << "Dwarf2L[]";

      if (!isCtor) {
        OS << " = {\n";

        // Store the mapping sorted by the LLVM reg num so lookup can be done
        // with a binary search.
        std::map<uint64_t, Record*> Dwarf2LMap;
        for (DwarfRegNumsMapTy::iterator
               I = DwarfRegNums.begin(), E = DwarfRegNums.end(); I != E; ++I) {
          int DwarfRegNo = I->second[i];
          if (DwarfRegNo < 0)
            continue;
          Dwarf2LMap[DwarfRegNo] = I->first;
        }

        for (std::map<uint64_t, Record*>::iterator
               I = Dwarf2LMap.begin(), E = Dwarf2LMap.end(); I != E; ++I)
          OS << "  { " << I->first << "U, " << getQualifiedName(I->second)
             << " },\n";

        OS << "};\n";
      } else {
        OS << ";\n";
      }

      // We have to store the size in a const global, it's used in multiple
      // places.
      OS << "extern const unsigned " << Namespace
         << (j == 0 ? "DwarfFlavour" : "EHFlavour") << i << "Dwarf2LSize";
      if (!isCtor)
        OS << " = sizeof(" << Namespace
           << (j == 0 ? "DwarfFlavour" : "EHFlavour") << i
           << "Dwarf2L)/sizeof(MCRegisterInfo::DwarfLLVMRegPair);\n\n";
      else
        OS << ";\n\n";
    }
  }

  for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
    Record *Reg = Regs[i]->TheDef;
    const RecordVal *V = Reg->getValue("DwarfAlias");
    if (!V || !V->getValue())
      continue;

    DefInit *DI = dynamic_cast<DefInit*>(V->getValue());
    Record *Alias = DI->getDef();
    DwarfRegNums[Reg] = DwarfRegNums[Alias];
  }

  // Emit information about the dwarf register numbers.
  for (unsigned j = 0; j < 2; ++j) {
    for (unsigned i = 0, e = maxLength; i != e; ++i) {
      OS << "extern const MCRegisterInfo::DwarfLLVMRegPair " << Namespace;
      OS << (j == 0 ? "DwarfFlavour" : "EHFlavour");
      OS << i << "L2Dwarf[]";
      if (!isCtor) {
        OS << " = {\n";
        // Store the mapping sorted by the Dwarf reg num so lookup can be done
        // with a binary search.
        for (DwarfRegNumsMapTy::iterator
               I = DwarfRegNums.begin(), E = DwarfRegNums.end(); I != E; ++I) {
          int RegNo = I->second[i];
          if (RegNo == -1) // -1 is the default value, don't emit a mapping.
            continue;

          OS << "  { " << getQualifiedName(I->first) << ", " << RegNo
             << "U },\n";
        }
        OS << "};\n";
      } else {
        OS << ";\n";
      }

      // We have to store the size in a const global, it's used in multiple
      // places.
      OS << "extern const unsigned " << Namespace
         << (j == 0 ? "DwarfFlavour" : "EHFlavour") << i << "L2DwarfSize";
      if (!isCtor)
        OS << " = sizeof(" << Namespace
           << (j == 0 ? "DwarfFlavour" : "EHFlavour") << i
           << "L2Dwarf)/sizeof(MCRegisterInfo::DwarfLLVMRegPair);\n\n";
      else
        OS << ";\n\n";
    }
  }
}
コード例 #25
0
CodeGenInstruction::CodeGenInstruction(Record *R, const std::string &AsmStr)
  : TheDef(R), AsmString(AsmStr) {
  Namespace = R->getValueAsString("Namespace");

  isReturn     = R->getValueAsBit("isReturn");
  isBranch     = R->getValueAsBit("isBranch");
  isIndirectBranch = R->getValueAsBit("isIndirectBranch");
  isBarrier    = R->getValueAsBit("isBarrier");
  isCall       = R->getValueAsBit("isCall");
  canFoldAsLoad = R->getValueAsBit("canFoldAsLoad");
  mayLoad      = R->getValueAsBit("mayLoad");
  mayStore     = R->getValueAsBit("mayStore");
  bool isTwoAddress = R->getValueAsBit("isTwoAddress");
  isPredicable = R->getValueAsBit("isPredicable");
  isConvertibleToThreeAddress = R->getValueAsBit("isConvertibleToThreeAddress");
  isCommutable = R->getValueAsBit("isCommutable");
  isTerminator = R->getValueAsBit("isTerminator");
  isReMaterializable = R->getValueAsBit("isReMaterializable");
  hasDelaySlot = R->getValueAsBit("hasDelaySlot");
  usesCustomInserter = R->getValueAsBit("usesCustomInserter");
  hasCtrlDep   = R->getValueAsBit("hasCtrlDep");
  isNotDuplicable = R->getValueAsBit("isNotDuplicable");
  hasSideEffects = R->getValueAsBit("hasSideEffects");
  neverHasSideEffects = R->getValueAsBit("neverHasSideEffects");
  isAsCheapAsAMove = R->getValueAsBit("isAsCheapAsAMove");
  hasExtraSrcRegAllocReq = R->getValueAsBit("hasExtraSrcRegAllocReq");
  hasExtraDefRegAllocReq = R->getValueAsBit("hasExtraDefRegAllocReq");
  hasOptionalDef = false;
  isVariadic = false;
  ImplicitDefs = R->getValueAsListOfDefs("Defs");
  ImplicitUses = R->getValueAsListOfDefs("Uses");

  if (neverHasSideEffects + hasSideEffects > 1)
    throw R->getName() + ": multiple conflicting side-effect flags set!";

  DagInit *OutDI = R->getValueAsDag("OutOperandList");

  if (DefInit *Init = dynamic_cast<DefInit*>(OutDI->getOperator())) {
    if (Init->getDef()->getName() != "outs")
      throw R->getName() + ": invalid def name for output list: use 'outs'";
  } else
    throw R->getName() + ": invalid output list: use 'outs'";
    
  NumDefs = OutDI->getNumArgs();
    
  DagInit *InDI = R->getValueAsDag("InOperandList");
  if (DefInit *Init = dynamic_cast<DefInit*>(InDI->getOperator())) {
    if (Init->getDef()->getName() != "ins")
      throw R->getName() + ": invalid def name for input list: use 'ins'";
  } else
    throw R->getName() + ": invalid input list: use 'ins'";
    
  unsigned MIOperandNo = 0;
  std::set<std::string> OperandNames;
  for (unsigned i = 0, e = InDI->getNumArgs()+OutDI->getNumArgs(); i != e; ++i){
    Init *ArgInit;
    std::string ArgName;
    if (i < NumDefs) {
      ArgInit = OutDI->getArg(i);
      ArgName = OutDI->getArgName(i);
    } else {
      ArgInit = InDI->getArg(i-NumDefs);
      ArgName = InDI->getArgName(i-NumDefs);
    }
    
    DefInit *Arg = dynamic_cast<DefInit*>(ArgInit);
    if (!Arg)
      throw "Illegal operand for the '" + R->getName() + "' instruction!";

    Record *Rec = Arg->getDef();
    std::string PrintMethod = "printOperand";
    unsigned NumOps = 1;
    DagInit *MIOpInfo = 0;
    if (Rec->isSubClassOf("Operand")) {
      PrintMethod = Rec->getValueAsString("PrintMethod");
      MIOpInfo = Rec->getValueAsDag("MIOperandInfo");

      // Verify that MIOpInfo has an 'ops' root value.
      if (!dynamic_cast<DefInit*>(MIOpInfo->getOperator()) ||
          dynamic_cast<DefInit*>(MIOpInfo->getOperator())
               ->getDef()->getName() != "ops")
        throw "Bad value for MIOperandInfo in operand '" + Rec->getName() +
              "'\n";

      // If we have MIOpInfo, then we have #operands equal to number of entries
      // in MIOperandInfo.
      if (unsigned NumArgs = MIOpInfo->getNumArgs())
        NumOps = NumArgs;

      if (Rec->isSubClassOf("PredicateOperand"))
        isPredicable = true;
      else if (Rec->isSubClassOf("OptionalDefOperand"))
        hasOptionalDef = true;
    } else if (Rec->getName() == "variable_ops") {
      isVariadic = true;
      continue;
    } else if (!Rec->isSubClassOf("RegisterClass") &&
               Rec->getName() != "ptr_rc" && Rec->getName() != "unknown")
      throw "Unknown operand class '" + Rec->getName() +
            "' in '" + R->getName() + "' instruction!";

    // Check that the operand has a name and that it's unique.
    if (ArgName.empty())
      throw "In instruction '" + R->getName() + "', operand #" + utostr(i) +
        " has no name!";
    if (!OperandNames.insert(ArgName).second)
      throw "In instruction '" + R->getName() + "', operand #" + utostr(i) +
        " has the same name as a previous operand!";

    OperandList.push_back(OperandInfo(Rec, ArgName, PrintMethod,
                                      MIOperandNo, NumOps, MIOpInfo));
    MIOperandNo += NumOps;
  }

  // Parse Constraints.
  ParseConstraints(R->getValueAsString("Constraints"), this);

  // For backward compatibility: isTwoAddress means operand 1 is tied to
  // operand 0.
  if (isTwoAddress) {
    if (!OperandList[1].Constraints[0].isNone())
      throw R->getName() + ": cannot use isTwoAddress property: instruction "
            "already has constraint set!";
    OperandList[1].Constraints[0] =
      CodeGenInstruction::ConstraintInfo::getTied(0);
  }

  // Parse the DisableEncoding field.
  std::string DisableEncoding = R->getValueAsString("DisableEncoding");
  while (1) {
    std::string OpName;
    tie(OpName, DisableEncoding) = getToken(DisableEncoding, " ,\t");
    if (OpName.empty()) break;

    // Figure out which operand this is.
    std::pair<unsigned,unsigned> Op = ParseOperandName(OpName, false);

    // Mark the operand as not-to-be encoded.
    if (Op.second >= OperandList[Op.first].DoNotEncode.size())
      OperandList[Op.first].DoNotEncode.resize(Op.second+1);
    OperandList[Op.first].DoNotEncode[Op.second] = true;
  }
}
コード例 #26
0
/// EmitLeafMatchCode - Generate matching code for leaf nodes.
void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) {
  assert(N->isLeaf() && "Not a leaf?");

  // Direct match against an integer constant.
  if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) {
    // If this is the root of the dag we're matching, we emit a redundant opcode
    // check to ensure that this gets folded into the normal top-level
    // OpcodeSwitch.
    if (N == Pattern.getSrcPattern()) {
      const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("imm"));
      AddMatcher(new CheckOpcodeMatcher(NI));
    }

    return AddMatcher(new CheckIntegerMatcher(II->getValue()));
  }

  DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue());
  if (DI == 0) {
    errs() << "Unknown leaf kind: " << *DI << "\n";
    abort();
  }

  Record *LeafRec = DI->getDef();
  if (// Handle register references.  Nothing to do here, they always match.
      LeafRec->isSubClassOf("RegisterClass") ||
      LeafRec->isSubClassOf("PointerLikeRegClass") ||
      LeafRec->isSubClassOf("SubRegIndex") ||
      // Place holder for SRCVALUE nodes. Nothing to do here.
      LeafRec->getName() == "srcvalue")
    return;

  // If we have a physreg reference like (mul gpr:$src, EAX) then we need to
  // record the register
  if (LeafRec->isSubClassOf("Register")) {
    AddMatcher(new RecordMatcher("physreg input "+LeafRec->getName(),
                                 NextRecordedOperandNo));
    PhysRegInputs.push_back(std::make_pair(LeafRec, NextRecordedOperandNo++));
    return;
  }

  if (LeafRec->isSubClassOf("ValueType"))
    return AddMatcher(new CheckValueTypeMatcher(LeafRec->getName()));

  if (LeafRec->isSubClassOf("CondCode"))
    return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName()));

  if (LeafRec->isSubClassOf("ComplexPattern")) {
    // We can't model ComplexPattern uses that don't have their name taken yet.
    // The OPC_CheckComplexPattern operation implicitly records the results.
    if (N->getName().empty()) {
      errs() << "We expect complex pattern uses to have names: " << *N << "\n";
      exit(1);
    }

    // Remember this ComplexPattern so that we can emit it after all the other
    // structural matches are done.
    MatchedComplexPatterns.push_back(std::make_pair(N, 0));
    return;
  }

  errs() << "Unknown leaf kind: " << *N << "\n";
  abort();
}
コード例 #27
0
// Calculate all subregindices for Reg. Loopy subregs cause infinite recursion.
RegisterMaps::SubRegMap &RegisterMaps::inferSubRegIndices(Record *Reg) {
  SubRegMap &SRM = SubReg[Reg];
  if (!SRM.empty())
    return SRM;
  std::vector<Record*> SubRegs = Reg->getValueAsListOfDefs("SubRegs");
  std::vector<Record*> Indices = Reg->getValueAsListOfDefs("SubRegIndices");
  if (SubRegs.size() != Indices.size())
    throw "Register " + Reg->getName() + " SubRegIndices doesn't match SubRegs";

  // First insert the direct subregs and make sure they are fully indexed.
  for (unsigned i = 0, e = SubRegs.size(); i != e; ++i) {
    if (!SRM.insert(std::make_pair(Indices[i], SubRegs[i])).second)
      throw "SubRegIndex " + Indices[i]->getName()
        + " appears twice in Register " + Reg->getName();
    inferSubRegIndices(SubRegs[i]);
  }

  // Keep track of inherited subregs and how they can be reached.
  // Register -> (SubRegIndex, SubRegIndex)
  typedef std::map<Record*, std::pair<Record*,Record*>, LessRecord> OrphanMap;
  OrphanMap Orphans;

  // Clone inherited subregs. Here the order is important - earlier subregs take
  // precedence.
  for (unsigned i = 0, e = SubRegs.size(); i != e; ++i) {
    SubRegMap &M = SubReg[SubRegs[i]];
    for (SubRegMap::iterator si = M.begin(), se = M.end(); si != se; ++si)
      if (!SRM.insert(*si).second)
        Orphans[si->second] = std::make_pair(Indices[i], si->first);
  }

  // Finally process the composites.
  ListInit *Comps = Reg->getValueAsListInit("CompositeIndices");
  for (unsigned i = 0, e = Comps->size(); i != e; ++i) {
    DagInit *Pat = dynamic_cast<DagInit*>(Comps->getElement(i));
    if (!Pat)
      throw "Invalid dag '" + Comps->getElement(i)->getAsString()
        + "' in CompositeIndices";
    DefInit *BaseIdxInit = dynamic_cast<DefInit*>(Pat->getOperator());
    if (!BaseIdxInit || !BaseIdxInit->getDef()->isSubClassOf("SubRegIndex"))
      throw "Invalid SubClassIndex in " + Pat->getAsString();

    // Resolve list of subreg indices into R2.
    Record *R2 = Reg;
    for (DagInit::const_arg_iterator di = Pat->arg_begin(),
         de = Pat->arg_end(); di != de; ++di) {
      DefInit *IdxInit = dynamic_cast<DefInit*>(*di);
      if (!IdxInit || !IdxInit->getDef()->isSubClassOf("SubRegIndex"))
        throw "Invalid SubClassIndex in " + Pat->getAsString();
      SubRegMap::const_iterator ni = SubReg[R2].find(IdxInit->getDef());
      if (ni == SubReg[R2].end())
        throw "Composite " + Pat->getAsString() + " refers to bad index in "
          + R2->getName();
      R2 = ni->second;
    }

    // Insert composite index. Allow overriding inherited indices etc.
    SRM[BaseIdxInit->getDef()] = R2;

    // R2 is now directly addressable, no longer an orphan.
    Orphans.erase(R2);
  }

  // Now, Orphans contains the inherited subregisters without a direct index.
  if (!Orphans.empty()) {
    errs() << "Error: Register " << getQualifiedName(Reg)
           << " inherited subregisters without an index:\n";
    for (OrphanMap::iterator i = Orphans.begin(), e = Orphans.end(); i != e;
         ++i) {
      errs() << "  " << getQualifiedName(i->first)
             << " = " << i->second.first->getName()
             << ", " << i->second.second->getName() << "\n";
    }
    abort();
  }
  return SRM;
}
コード例 #28
0
void PseudoLoweringEmitter::evaluateExpansion(Record *Rec) {
  DEBUG(dbgs() << "Pseudo definition: " << Rec->getName() << "\n");

  // Validate that the result pattern has the corrent number and types
  // of arguments for the instruction it references.
  DagInit *Dag = Rec->getValueAsDag("ResultInst");
  assert(Dag && "Missing result instruction in pseudo expansion!");
  DEBUG(dbgs() << "  Result: " << *Dag << "\n");

  DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
  if (!OpDef)
    PrintFatalError(Rec->getLoc(), Rec->getName() +
                  " has unexpected operator type!");
  Record *Operator = OpDef->getDef();
  if (!Operator->isSubClassOf("Instruction"))
    PrintFatalError(Rec->getLoc(), "Pseudo result '" + Operator->getName() +
                    "' is not an instruction!");

  CodeGenInstruction Insn(Operator);

  if (Insn.isCodeGenOnly || Insn.isPseudo)
    PrintFatalError(Rec->getLoc(), "Pseudo result '" + Operator->getName() +
                    "' cannot be another pseudo instruction!");

  if (Insn.Operands.size() != Dag->getNumArgs())
    PrintFatalError(Rec->getLoc(), "Pseudo result '" + Operator->getName() +
                    "' operand count mismatch");

  unsigned NumMIOperands = 0;
  for (unsigned i = 0, e = Insn.Operands.size(); i != e; ++i)
    NumMIOperands += Insn.Operands[i].MINumOperands;
  IndexedMap<OpData> OperandMap;
  OperandMap.grow(NumMIOperands);

  addDagOperandMapping(Rec, Dag, Insn, OperandMap, 0);

  // If there are more operands that weren't in the DAG, they have to
  // be operands that have default values, or we have an error. Currently,
  // Operands that are a sublass of OperandWithDefaultOp have default values.


  // Validate that each result pattern argument has a matching (by name)
  // argument in the source instruction, in either the (outs) or (ins) list.
  // Also check that the type of the arguments match.
  //
  // Record the mapping of the source to result arguments for use by
  // the lowering emitter.
  CodeGenInstruction SourceInsn(Rec);
  StringMap<unsigned> SourceOperands;
  for (unsigned i = 0, e = SourceInsn.Operands.size(); i != e; ++i)
    SourceOperands[SourceInsn.Operands[i].Name] = i;

  DEBUG(dbgs() << "  Operand mapping:\n");
  for (unsigned i = 0, e = Insn.Operands.size(); i != e; ++i) {
    // We've already handled constant values. Just map instruction operands
    // here.
    if (OperandMap[Insn.Operands[i].MIOperandNo].Kind != OpData::Operand)
      continue;
    StringMap<unsigned>::iterator SourceOp =
      SourceOperands.find(Dag->getArgName(i));
    if (SourceOp == SourceOperands.end())
      PrintFatalError(Rec->getLoc(),
                      "Pseudo output operand '" + Dag->getArgName(i) +
                      "' has no matching source operand.");
    // Map the source operand to the destination operand index for each
    // MachineInstr operand.
    for (unsigned I = 0, E = Insn.Operands[i].MINumOperands; I != E; ++I)
      OperandMap[Insn.Operands[i].MIOperandNo + I].Data.Operand =
        SourceOp->getValue();

    DEBUG(dbgs() << "    " << SourceOp->getValue() << " ==> " << i << "\n");
  }

  Expansions.push_back(PseudoExpansion(SourceInsn, Insn, OperandMap));
}
コード例 #29
0
ファイル: CodeGenRegisters.cpp プロジェクト: Blei/llvm-dcpu16
const CodeGenRegister::SubRegMap &
CodeGenRegister::getSubRegs(CodeGenRegBank &RegBank) {
  // Only compute this map once.
  if (SubRegsComplete)
    return SubRegs;
  SubRegsComplete = true;

  std::vector<Record*> SubList = TheDef->getValueAsListOfDefs("SubRegs");
  std::vector<Record*> IdxList = TheDef->getValueAsListOfDefs("SubRegIndices");
  if (SubList.size() != IdxList.size())
    throw TGError(TheDef->getLoc(), "Register " + getName() +
                  " SubRegIndices doesn't match SubRegs");

  // First insert the direct subregs and make sure they are fully indexed.
  SmallVector<CodeGenSubRegIndex*, 8> Indices;
  for (unsigned i = 0, e = SubList.size(); i != e; ++i) {
    CodeGenRegister *SR = RegBank.getReg(SubList[i]);
    CodeGenSubRegIndex *Idx = RegBank.getSubRegIdx(IdxList[i]);
    Indices.push_back(Idx);
    if (!SubRegs.insert(std::make_pair(Idx, SR)).second)
      throw TGError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() +
                    " appears twice in Register " + getName());
  }

  // Keep track of inherited subregs and how they can be reached.
  SmallPtrSet<CodeGenRegister*, 8> Orphans;

  // Clone inherited subregs and place duplicate entries in Orphans.
  // Here the order is important - earlier subregs take precedence.
  for (unsigned i = 0, e = SubList.size(); i != e; ++i) {
    CodeGenRegister *SR = RegBank.getReg(SubList[i]);
    const SubRegMap &Map = SR->getSubRegs(RegBank);

    // Add this as a super-register of SR now all sub-registers are in the list.
    // This creates a topological ordering, the exact order depends on the
    // order getSubRegs is called on all registers.
    SR->SuperRegs.push_back(this);

    for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
         ++SI) {
      if (!SubRegs.insert(*SI).second)
        Orphans.insert(SI->second);

      // Noop sub-register indexes are possible, so avoid duplicates.
      if (SI->second != SR)
        SI->second->SuperRegs.push_back(this);
    }
  }

  // Expand any composed subreg indices.
  // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a
  // qsub_1 subreg, add a dsub_2 subreg.  Keep growing Indices and process
  // expanded subreg indices recursively.
  for (unsigned i = 0; i != Indices.size(); ++i) {
    CodeGenSubRegIndex *Idx = Indices[i];
    const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites();
    CodeGenRegister *SR = SubRegs[Idx];
    const SubRegMap &Map = SR->getSubRegs(RegBank);

    // Look at the possible compositions of Idx.
    // They may not all be supported by SR.
    for (CodeGenSubRegIndex::CompMap::const_iterator I = Comps.begin(),
           E = Comps.end(); I != E; ++I) {
      SubRegMap::const_iterator SRI = Map.find(I->first);
      if (SRI == Map.end())
        continue; // Idx + I->first doesn't exist in SR.
      // Add I->second as a name for the subreg SRI->second, assuming it is
      // orphaned, and the name isn't already used for something else.
      if (SubRegs.count(I->second) || !Orphans.erase(SRI->second))
        continue;
      // We found a new name for the orphaned sub-register.
      SubRegs.insert(std::make_pair(I->second, SRI->second));
      Indices.push_back(I->second);
    }
  }

  // Process the composites.
  ListInit *Comps = TheDef->getValueAsListInit("CompositeIndices");
  for (unsigned i = 0, e = Comps->size(); i != e; ++i) {
    DagInit *Pat = dynamic_cast<DagInit*>(Comps->getElement(i));
    if (!Pat)
      throw TGError(TheDef->getLoc(), "Invalid dag '" +
                    Comps->getElement(i)->getAsString() +
                    "' in CompositeIndices");
    DefInit *BaseIdxInit = dynamic_cast<DefInit*>(Pat->getOperator());
    if (!BaseIdxInit || !BaseIdxInit->getDef()->isSubClassOf("SubRegIndex"))
      throw TGError(TheDef->getLoc(), "Invalid SubClassIndex in " +
                    Pat->getAsString());
    CodeGenSubRegIndex *BaseIdx = RegBank.getSubRegIdx(BaseIdxInit->getDef());

    // Resolve list of subreg indices into R2.
    CodeGenRegister *R2 = this;
    for (DagInit::const_arg_iterator di = Pat->arg_begin(),
         de = Pat->arg_end(); di != de; ++di) {
      DefInit *IdxInit = dynamic_cast<DefInit*>(*di);
      if (!IdxInit || !IdxInit->getDef()->isSubClassOf("SubRegIndex"))
        throw TGError(TheDef->getLoc(), "Invalid SubClassIndex in " +
                      Pat->getAsString());
      CodeGenSubRegIndex *Idx = RegBank.getSubRegIdx(IdxInit->getDef());
      const SubRegMap &R2Subs = R2->getSubRegs(RegBank);
      SubRegMap::const_iterator ni = R2Subs.find(Idx);
      if (ni == R2Subs.end())
        throw TGError(TheDef->getLoc(), "Composite " + Pat->getAsString() +
                      " refers to bad index in " + R2->getName());
      R2 = ni->second;
    }

    // Insert composite index. Allow overriding inherited indices etc.
    SubRegs[BaseIdx] = R2;

    // R2 is no longer an orphan.
    Orphans.erase(R2);
  }

  // Now Orphans contains the inherited subregisters without a direct index.
  // Create inferred indexes for all missing entries.
  // Work backwards in the Indices vector in order to compose subregs bottom-up.
  // Consider this subreg sequence:
  //
  //   qsub_1 -> dsub_0 -> ssub_0
  //
  // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register
  // can be reached in two different ways:
  //
  //   qsub_1 -> ssub_0
  //   dsub_2 -> ssub_0
  //
  // We pick the latter composition because another register may have [dsub_0,
  // dsub_1, dsub_2] subregs without neccessarily having a qsub_1 subreg.  The
  // dsub_2 -> ssub_0 composition can be shared.
  while (!Indices.empty() && !Orphans.empty()) {
    CodeGenSubRegIndex *Idx = Indices.pop_back_val();
    CodeGenRegister *SR = SubRegs[Idx];
    const SubRegMap &Map = SR->getSubRegs(RegBank);
    for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
         ++SI)
      if (Orphans.erase(SI->second))
        SubRegs[RegBank.getCompositeSubRegIndex(Idx, SI->first)] = SI->second;
  }

  // Initialize RegUnitList. A register with no subregisters creates its own
  // unit. Otherwise, it inherits all its subregister's units. Because
  // getSubRegs is called recursively, this processes the register hierarchy in
  // postorder.
  //
  // TODO: We currently assume all register units correspond to a named "leaf"
  // register. We should also unify register units for ad-hoc register
  // aliases. This can be done by iteratively merging units for aliasing
  // registers using a worklist.
  assert(RegUnits.empty() && "Should only initialize RegUnits once");
  if (SubRegs.empty()) {
    RegUnits.push_back(RegBank.newRegUnit());
  }
  else {
    for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
         I != E; ++I) {
      // Strangely a register may have itself as a subreg (self-cycle) e.g. XMM.
      CodeGenRegister *SR = I->second;
      if (SR == this) {
        if (RegUnits.empty())
          RegUnits.push_back(RegBank.newRegUnit());
        continue;
      }
      // Merge the subregister's units into this register's RegUnits.
      mergeRegUnits(RegUnits, SR->RegUnits);
    }
  }
  return SubRegs;
}