コード例 #1
0
int main(int argc, char **argv)
{
	init_shogun(&print_message, &print_message, &print_message);

	/* create example tree */
	CModelSelectionParameters* tree=create_param_tree();
	tree->print();
	SG_SPRINT("----------------------------------\n");

	/* build combinations of parameter trees */
	DynArray<CParameterCombination*> combinations;
	tree->get_combinations(combinations);

	apply_parameter_tree(combinations);

	/* print and directly delete them all */
	for (index_t i=0; i<combinations.get_num_elements(); ++i)
		combinations[i]->destroy(true, true);

	/* delete example tree (after processing of combinations because CSGObject
	 * (namely the kernel) of the tree is SG_UNREF'ed (and not REF'ed anywhere
	 * else) */
	tree->destroy();

	exit_shogun();

	return 0;
}
コード例 #2
0
void apply_parameter_tree(DynArray<CParameterCombination*>& combinations)
{
	/* create some data */
	float64_t* matrix=new float64_t[6];
	for (index_t i=0; i<6; i++)
		matrix[i]=i;

	/* create three 2-dimensional vectors
	 * to avoid deleting these, REF now and UNREF when finished */
	CSimpleFeatures<float64_t>* features=new CSimpleFeatures<float64_t> ();
	features->set_feature_matrix(matrix, 2, 3);
	SG_REF(features);

	/* create three labels, will be handed to svm and automaticall deleted */
	CLabels* labels=new CLabels(3);
	labels->set_label(0, -1);
	labels->set_label(1, +1);
	labels->set_label(2, -1);

	/* create libsvm with C=10 and train */
	CLibSVM* svm=new CLibSVM();
	svm->set_labels(labels);

	for (index_t i=0; i<combinations.get_num_elements(); ++i)
	{
		SG_SPRINT("applying:\n");
		combinations[i]->print();
		CParameterCombination* current_combination=combinations[i];
		Parameter* current_parameters=svm->m_parameters;
		current_combination->apply_to_parameter(current_parameters);

		/* get kernel to set features, get_kernel SG_REF's the kernel */
		CKernel* kernel=svm->get_kernel();
		kernel->init(features, features);

		svm->train();

		/* classify on training examples */
		for (index_t i=0; i<3; i++)
			SG_SPRINT("output[%d]=%f\n", i, svm->apply(i));

		/* unset features and SG_UNREF kernel */
		kernel->cleanup();
		SG_UNREF(kernel);

		SG_SPRINT("----------------\n\n");
	}

	/* free up memory */
	SG_UNREF(features);
	SG_UNREF(svm);
}
コード例 #3
0
ファイル: BaggingMachine.cpp プロジェクト: hushell/shogun
float64_t CBaggingMachine::get_oob_error(CEvaluation* eval) const
{
	REQUIRE(m_combination_rule != NULL, "Combination rule is not set!");
	REQUIRE(m_bags->get_num_elements() > 0, "BaggingMachine is not trained!");

	SGMatrix<float64_t> output(m_features->get_num_vectors(), m_bags->get_num_elements());
	if (m_labels->get_label_type() == LT_REGRESSION)
		output.zero();
	else
		output.set_const(NAN);

	/* TODO: add parallel support of applying the OOBs
	  only possible when add_subset is thread-safe
	#pragma omp parallel for num_threads(parallel->get_num_threads())
	*/
	for (index_t i = 0; i < m_bags->get_num_elements(); i++)
	{
		CMachine* m = dynamic_cast<CMachine*>(m_bags->get_element(i));
		CDynamicArray<index_t>* current_oob 
			= dynamic_cast<CDynamicArray<index_t>*>(m_oob_indices->get_element(i));

		SGVector<index_t> oob(current_oob->get_array(), current_oob->get_num_elements(), false);
		oob.display_vector();
		m_features->add_subset(oob);

		CLabels* l = m->apply(m_features);
		SGVector<float64_t> lv = l->get_values();

		// assign the values in the matrix (NAN) that are in-bag!
		for (index_t j = 0; j < oob.vlen; j++)
			output(oob[j], i) = lv[j];

		m_features->remove_subset();
		SG_UNREF(current_oob);
		SG_UNREF(m);
		SG_UNREF(l);
	}
	output.display_matrix();

	DynArray<index_t> idx;
	for (index_t i = 0; i < m_features->get_num_vectors(); i++)
	{
		if (m_all_oob_idx[i])
			idx.push_back(i);
	}

	SGVector<float64_t> combined = m_combination_rule->combine(output);
	CLabels* predicted = NULL;
	switch (m_labels->get_label_type())
	{
		case LT_BINARY:
			predicted = new CBinaryLabels(combined);
			break;

		case LT_MULTICLASS:
			predicted = new CMulticlassLabels(combined);
			break;

		case LT_REGRESSION:
			predicted = new CRegressionLabels(combined);
			break;

		default:
			SG_ERROR("Unsupported label type\n");
	}
	
	m_labels->add_subset(SGVector<index_t>(idx.get_array(), idx.get_num_elements(), false));
	float64_t res = eval->evaluate(predicted, m_labels);
	m_labels->remove_subset();

	return res;
}