コード例 #1
0
ファイル: intraSlot.cpp プロジェクト: bbreck3/HElib
  static void apply(const EncryptedArrayDerived<type>& ea, 
                    std::vector<zzX>& unpackSlotEncoding)
  {
    FHE_NTIMER_START(buildUnpackSlotEncoding);
    RBak bak; bak.save(); ea.restoreContext();  // the NTL context for mod p^r

    long nslots = ea.size(); // how many slots
    long d = ea.getDegree(); // size of each slot

    const Mat<R>& CBi=ea.getNormalBasisMatrixInverse();
    // CBi contains a description of the normal-basis inverse transformation

    std::vector<RX> LM(d);
    for (long i = 0; i < d; i++) // prepare the linear polynomial
      LM[i] = CBi[i][0];

    std::vector<RX> C; 
    ea.buildLinPolyCoeffs(C, LM); // "build" the linear polynomial

    unpackSlotEncoding.resize(d);  // encode the coefficients
    for (long j = 0; j < d; j++) {
      std::vector<RX> v(nslots, C[j]);
      ea.encode(unpackSlotEncoding[j], v);
    }
  }
コード例 #2
0
ファイル: matrix.cpp プロジェクト: Kverma517/HElib
  static void apply(const EncryptedArrayDerived<type>& ea, 
    Ctxt& ctxt, const PlaintextMatrixBaseInterface& mat) 
  {
    assert(&ea == &mat.getEA().getDerived(type()));
    assert(&ea.getContext() == &ctxt.getContext());

    RBak bak; bak.save(); ea.getTab().restoreContext();

    // Get the derived type
    const PlaintextMatrixInterface<type>& mat1 = 
      dynamic_cast< const PlaintextMatrixInterface<type>& >( mat );

    ctxt.cleanUp(); // not sure, but this may be a good idea

    Ctxt res(ctxt.getPubKey(), ctxt.getPtxtSpace()); // fresh encryption of zero

    long nslots = ea.size();
    long d = ea.getDegree();

    RX entry;
    vector<RX> diag;
    diag.resize(nslots);

    // Process the diagonals one at a time
    for (long i = 0; i < nslots; i++) {  // process diagonal i
      bool zDiag = true; // is this a zero diagonal?
      long nzLast = -1;  // index of last non-zero entry on this diagonal

      // Compute constants for each entry on this diagonal
      for (long j = 0; j < nslots; j++) { // process entry j
        bool zEntry = mat1.get(entry, mcMod(j-i, nslots), j); // callback
        assert(zEntry || deg(entry) < d);

        if (!zEntry && IsZero(entry)) zEntry = true; // check for zero

        if (!zEntry) { // non-zero diagonal entry

          zDiag = false; // diagonal is non-zero

          // clear entries between last nonzero entry and this one
          for (long jj = nzLast+1; jj < j; jj++) clear(diag[jj]);
          nzLast = j;

          diag[j] = entry;
        }
      }
      
      if (zDiag) continue; // zero diagonal, continue

      // clear trailing zero entries
      for (long jj = nzLast+1; jj < nslots; jj++) clear(diag[jj]);

      // Now we have the constants for all the diagonal entries, encode the
      // diagonal as a single polynomial with these constants in the slots
      ZZX cpoly;
      ea.encode(cpoly, diag);

      // rotate by i, multiply by the polynomial, then add to the result
      Ctxt shCtxt = ctxt;
      ea.rotate(shCtxt, i); // rotate by i
      shCtxt.multByConstant(cpoly);
      res += shCtxt;
    }
    ctxt = res;
  }
コード例 #3
0
ファイル: matrix.cpp プロジェクト: Kverma517/HElib
  static void apply(const EncryptedArrayDerived<type>& ea, Ctxt& ctxt, 
    const PlaintextBlockMatrixBaseInterface& mat) 
  {
    assert(&ea == &mat.getEA().getDerived(type()));
    assert(&ea.getContext() == &ctxt.getContext());

    const PAlgebra& zMStar = ea.getContext().zMStar;
    long p = zMStar.getP(); 
    long m = zMStar.getM();
    const RXModulus& F = ea.getTab().getPhimXMod();

    RBak bak; bak.save(); ea.getTab().restoreContext();

    const PlaintextBlockMatrixInterface<type>& mat1 = 
      dynamic_cast< const PlaintextBlockMatrixInterface<type>& >( mat );

    ctxt.cleanUp(); // not sure, but this may be a good idea

    long nslots = ea.size();
    long d = ea.getDegree();

    Vec< shared_ptr<Ctxt> > acc;
    acc.SetLength(d);
    for (long k = 0; k < d; k++)
      acc[k] = shared_ptr<Ctxt>(new Ctxt(ZeroCtxtLike, ctxt));

    mat_R entry;
    entry.SetDims(d, d);

    vector<RX> entry1;
    entry1.resize(d);
    
    vector< vector<RX> > diag;
    diag.resize(nslots);
    for (long j = 0; j < nslots; j++) diag[j].resize(d);

    for (long i = 0; i < nslots; i++) { // process diagonal i
      bool zDiag = true;
      long nzLast = -1;

      for (long j = 0; j < nslots; j++) {
        bool zEntry = mat1.get(entry, mcMod(j-i, nslots), j);
        assert(zEntry || (entry.NumRows() == d && entry.NumCols() == d));
        // get(...) returns true if the entry is empty, false otherwise

        if (!zEntry && IsZero(entry)) zEntry=true; // zero is an empty entry too

        if (!zEntry) {    // non-empty entry
          zDiag = false;  // mark diagonal as non-empty

          // clear entries between last nonzero entry and this one
          for (long jj = nzLast+1; jj < j; jj++) {
            for (long k = 0; k < d; k++)
              clear(diag[jj][k]);
          }
          nzLast = j;

          // recode entry as a vector of polynomials
          for (long k = 0; k < d; k++) conv(entry1[k], entry[k]);

          // compute the lin poly coeffs
          ea.buildLinPolyCoeffs(diag[j], entry1);
        }
      }
      if (zDiag) continue; // zero diagonal, continue

      // clear trailing zero entries    
      for (long jj = nzLast+1; jj < nslots; jj++) {
        for (long k = 0; k < d; k++)
          clear(diag[jj][k]);
      }

      // now diag[j] contains the lin poly coeffs

      Ctxt shCtxt = ctxt;
      ea.rotate(shCtxt, i); 
      shCtxt.cleanUp();

      RX cpoly1, cpoly2;
      ZZX cpoly;

      // apply the linearlized polynomial
      for (long k = 0; k < d; k++) {

        // compute the constant
        bool zConst = true;
        vector<RX> cvec;
        cvec.resize(nslots);
        for (long j = 0; j < nslots; j++) {
          cvec[j] = diag[j][k];
          if (!IsZero(cvec[j])) zConst = false;
        }

        if (zConst) continue;

        ea.encode(cpoly, cvec);
        conv(cpoly1, cpoly);

        // apply inverse automorphism to constant
        plaintextAutomorph(cpoly2, cpoly1, PowerMod(p, mcMod(-k, d), m), zMStar, F);
        conv(cpoly, cpoly2);
        Ctxt shCtxt1 = shCtxt;
        shCtxt1.multByConstant(cpoly);
        *acc[k] += shCtxt1;
      }
    }

    Ctxt res(ZeroCtxtLike, ctxt);

    for (long k = 0; k < d; k++) {
      acc[k]->frobeniusAutomorph(k);
      res += *acc[k];
    }

    ctxt = res;
  }