void LOCA::Epetra::CompactWYOp::applyCompactWY(const Epetra_MultiVector& x, Epetra_MultiVector& result_x, Epetra_MultiVector& result_p) const { // Compute Y_x^T*x result_p.Multiply('T', 'N', 1.0, *Y_x, x, 0.0); // Compute T*(Y_x^T*x) dblas.TRMM(Teuchos::LEFT_SIDE, Teuchos::UPPER_TRI, Teuchos::NO_TRANS, Teuchos::NON_UNIT_DIAG, result_p.MyLength(), result_p.NumVectors(), 1.0, T.Values(), T.MyLength(), result_p.Values(), result_p.MyLength()); // Compute x = x + Y_x*T*(Y_x^T*x) result_x = x; result_x.Multiply('N', 'N', 1.0, *Y_x, result_p, 1.0); // Compute result_p = Y_p*T*(Y_x^T*x) dblas.TRMM(Teuchos::LEFT_SIDE, Teuchos::LOWER_TRI, Teuchos::NO_TRANS, Teuchos::UNIT_DIAG, result_p.MyLength(), result_p.NumVectors(), 1.0, Y_p.Values(), Y_p.MyLength(), result_p.Values(), result_p.MyLength()); }
Epetra_OskiMultiVector::Epetra_OskiMultiVector(const Epetra_MultiVector& Source) : Epetra_MultiVector(Source), Epetra_View_(&Source), Copy_Created_(false) { double* A; double** Aptr; int LDA; int* LDAptr; LDAptr = new int[1]; Aptr = new double*[1]; if(Source.ConstantStride() || (Source.NumVectors() == 1)) { if(Source.ExtractView(Aptr, LDAptr)) std::cerr << "Extract view failed\n"; else Oski_View_ = oski_CreateMultiVecView(*Aptr, Source.MyLength(), Source.NumVectors(), LAYOUT_COLMAJ, *LDAptr); } else { Copy_Created_ = true; LDA = Source.MyLength(); A = new double[LDA*Source.NumVectors()]; if(Source.ExtractCopy(A, LDA)) std::cerr << "Extract copy failed\n"; else Oski_View_ = oski_CreateMultiVecView(A, Source.MyLength(), Source.NumVectors(), LAYOUT_COLMAJ, LDA); } delete [] LDAptr; delete [] Aptr; }
int writeMultiVector(FILE * handle, const Epetra_MultiVector & A, bool mmFormat) { int ierr = 0; int length = A.GlobalLength(); int numVectors = A.NumVectors(); const Epetra_Comm & comm = A.Map().Comm(); if (comm.MyPID()!=0) { if (A.MyLength()!=0) ierr = -1; } else { if (length!=A.MyLength()) ierr = -1; for (int j=0; j<numVectors; j++) { for (int i=0; i<length; i++) { double val = A[j][i]; if (mmFormat) fprintf(handle, "%22.16e\n", val); else fprintf(handle, "%22.16e ", val); } if (!mmFormat) fprintf(handle, "%s", "\n"); } } int ierrGlobal; comm.MinAll(&ierr, &ierrGlobal, 1); // If any processor has -1, all return -1 return(ierrGlobal); }
//======================================================= int EpetraExt_HypreIJMatrix::Multiply(bool TransA, const Epetra_MultiVector& X, Epetra_MultiVector& Y) const { //printf("Proc[%d], Row start: %d, Row End: %d\n", Comm().MyPID(), MyRowStart_, MyRowEnd_); bool SameVectors = false; int NumVectors = X.NumVectors(); if (NumVectors != Y.NumVectors()) return -1; // X and Y must have same number of vectors if(X.Pointers() == Y.Pointers()){ SameVectors = true; } for(int VecNum = 0; VecNum < NumVectors; VecNum++) { //Get values for current vector in multivector. double * x_values; double * y_values; EPETRA_CHK_ERR((*X(VecNum)).ExtractView(&x_values)); double *x_temp = x_local->data; double *y_temp = y_local->data; if(!SameVectors){ EPETRA_CHK_ERR((*Y(VecNum)).ExtractView(&y_values)); } else { y_values = new double[X.MyLength()]; } y_local->data = y_values; EPETRA_CHK_ERR(HYPRE_ParVectorSetConstantValues(par_y,0.0)); // Temporarily make a pointer to data in Hypre for end // Replace data in Hypre vectors with epetra values x_local->data = x_values; // Do actual computation. if(TransA) { // Use transpose of A in multiply EPETRA_CHK_ERR(HYPRE_ParCSRMatrixMatvecT(1.0, ParMatrix_, par_x, 1.0, par_y)); } else { EPETRA_CHK_ERR(HYPRE_ParCSRMatrixMatvec(1.0, ParMatrix_, par_x, 1.0, par_y)); } if(SameVectors){ int NumEntries = Y.MyLength(); std::vector<double> new_values; new_values.resize(NumEntries); std::vector<int> new_indices; new_indices.resize(NumEntries); for(int i = 0; i < NumEntries; i++){ new_values[i] = y_values[i]; new_indices[i] = i; } EPETRA_CHK_ERR((*Y(VecNum)).ReplaceMyValues(NumEntries, &new_values[0], &new_indices[0])); delete[] y_values; } x_local->data = x_temp; y_local->data = y_temp; } double flops = (double) NumVectors * (double) NumGlobalNonzeros(); UpdateFlops(flops); return 0; } //Multiply()
//============================================================================== int Ifpack_Hypre::Multiply(bool TransA, const Epetra_MultiVector& X, Epetra_MultiVector& Y) const{ if(IsInitialized() == false){ IFPACK_CHK_ERR(-1); } bool SameVectors = false; int NumVectors = X.NumVectors(); if (NumVectors != Y.NumVectors()) IFPACK_CHK_ERR(-1); // X and Y must have same number of vectors if(X.Pointers() == Y.Pointers()){ SameVectors = true; } for(int VecNum = 0; VecNum < NumVectors; VecNum++) { //Get values for current vector in multivector. double * XValues; double * YValues; IFPACK_CHK_ERR((*X(VecNum)).ExtractView(&XValues)); double *XTemp = XLocal_->data; double *YTemp = YLocal_->data; if(!SameVectors){ IFPACK_CHK_ERR((*Y(VecNum)).ExtractView(&YValues)); } else { YValues = new double[X.MyLength()]; } YLocal_->data = YValues; IFPACK_CHK_ERR(HYPRE_ParVectorSetConstantValues(ParY_,0.0)); // Temporarily make a pointer to data in Hypre for end // Replace data in Hypre vectors with epetra values XLocal_->data = XValues; // Do actual computation. if(TransA) { // Use transpose of A in multiply IFPACK_CHK_ERR(HYPRE_ParCSRMatrixMatvecT(1.0, ParMatrix_, ParX_, 1.0, ParY_)); } else { IFPACK_CHK_ERR(HYPRE_ParCSRMatrixMatvec(1.0, ParMatrix_, ParX_, 1.0, ParY_)); } if(SameVectors){ int NumEntries = Y.MyLength(); std::vector<double> new_values; new_values.resize(NumEntries); std::vector<int> new_indices; new_indices.resize(NumEntries); for(int i = 0; i < NumEntries; i++){ new_values[i] = YValues[i]; new_indices[i] = i; } IFPACK_CHK_ERR((*Y(VecNum)).ReplaceMyValues(NumEntries, &new_values[0], &new_indices[0])); delete[] YValues; } XLocal_->data = XTemp; YLocal_->data = YTemp; } return 0; } //Multiply()
int Epetra_PETScAIJMatrix::Multiply(bool TransA, const Epetra_MultiVector& X, Epetra_MultiVector& Y) const { (void)TransA; int NumVectors = X.NumVectors(); if (NumVectors!=Y.NumVectors()) EPETRA_CHK_ERR(-1); // X and Y must have same number of vectors double ** xptrs; double ** yptrs; X.ExtractView(&xptrs); Y.ExtractView(&yptrs); if (RowMatrixImporter()!=0) { if (ImportVector_!=0) { if (ImportVector_->NumVectors()!=NumVectors) { delete ImportVector_; ImportVector_= 0;} } if (ImportVector_==0) ImportVector_ = new Epetra_MultiVector(RowMatrixColMap(),NumVectors); ImportVector_->Import(X, *RowMatrixImporter(), Insert); ImportVector_->ExtractView(&xptrs); } double *vals=0; int length; Vec petscX, petscY; int ierr; for (int i=0; i<NumVectors; i++) { # ifdef HAVE_MPI ierr=VecCreateMPIWithArray(Comm_->Comm(),X.MyLength(),X.GlobalLength(),xptrs[i],&petscX); CHKERRQ(ierr); ierr=VecCreateMPIWithArray(Comm_->Comm(),Y.MyLength(),Y.GlobalLength(),yptrs[i],&petscY); CHKERRQ(ierr); # else //FIXME untested ierr=VecCreateSeqWithArray(Comm_->Comm(),X.MyLength(),X.GlobalLength(),xptrs[i],&petscX); CHKERRQ(ierr); ierr=VecCreateSeqWithArray(Comm_->Comm(),Y.MyLength(),Y.GlobalLength(),yptrs[i],&petscY); CHKERRQ(ierr); # endif ierr = MatMult(Amat_,petscX,petscY);CHKERRQ(ierr); ierr = VecGetArray(petscY,&vals);CHKERRQ(ierr); ierr = VecGetLocalSize(petscY,&length);CHKERRQ(ierr); for (int j=0; j<length; j++) yptrs[i][j] = vals[j]; ierr = VecRestoreArray(petscY,&vals);CHKERRQ(ierr); } VecDestroy(petscX); VecDestroy(petscY); double flops = NumGlobalNonzeros(); flops *= 2.0; flops *= (double) NumVectors; UpdateFlops(flops); return(0); } //Multiply()
void operator () (const Epetra_MultiVector &x, Epetra_MultiVector &y) { int myCols = y.MyLength(); for (int j=0; j < x.NumVectors(); ++j) { for (int i=0; i < myCols; ++i) (*y(j))[i] = (i+1)*v*(*x(j))[i]; // NOTE: square operator! } };
// application of the tridiagonal operator int Apply( const Epetra_MultiVector & X, Epetra_MultiVector & Y ) const { int Length = X.MyLength(); // maybe some error checks on MultiVector Lenghts // for the future... for( int vec=0 ; vec<X.NumVectors() ; ++vec ) { // one-dimensional problems here if( Length == 1 ) { Y[vec][0] = diag_ * X[vec][0]; break; } // more general case (Lenght >= 2) // first row Y[vec][0] = diag_ * X[vec][0] + diag_plus_one_ * X[vec][1]; // intermediate rows for( int i=1 ; i<Length-1 ; ++i ) { Y[vec][i] = diag_ * X[vec][i] + diag_plus_one_ * X[vec][i+1] + diag_minus_one_ * X[vec][i-1]; } // final row Y[vec][Length-1] = diag_ * X[vec][Length-1] + diag_minus_one_ * X[vec][Length-2]; } return true; }
static void UpdateComponent( spaceT const& Xh, Epetra_MultiVector& sol, Epetra_MultiVector& comp ) { Epetra_Map componentMap ( epetraMap( Xh->template functionSpace<index>()->map() ) ); Epetra_Map globalMap ( epetraMap( Xh->map() ) ); int shift = Xh->nDofStart( index ); int Length = comp.MyLength(); for ( int i=0; i < Length; i++ ) { int compGlobalID = componentMap.GID( i ); if ( compGlobalID >= 0 ) { int compLocalID = componentMap.LID( compGlobalID ); int localID = globalMap.LID( compGlobalID+shift ); // int globalID = globalMap.GID(localID); DVLOG(2) << "Copy entry component[" << compLocalID << "] to sol[" << localID << "]=" << sol[0][localID] << "]\n"; sol[0][localID] = comp[0][compLocalID] ; DVLOG(2) << comp[0][compLocalID] << "\n"; } } }
int EpetraSamplingOperator::Apply(const Epetra_MultiVector &X, Epetra_MultiVector &Y) const { TEUCHOS_ASSERT(map_.PointSameAs(X.Map()) && map_.PointSameAs(Y.Map())); TEUCHOS_ASSERT(X.NumVectors() == Y.NumVectors()); Y.PutScalar(0.0); for (int iVec = 0; iVec < X.NumVectors(); ++iVec) { const ArrayView<const double> sourceVec(X[iVec], X.MyLength()); const ArrayView<double> targetVec(Y[iVec], Y.MyLength()); for (Array<GlobalIndex>::const_iterator it = sampleLIDs_.begin(), it_end = sampleLIDs_.end(); it != it_end; ++it) { targetVec[*it] = sourceVec[*it]; } } return 0; }
int DoCopyMultiVector(double** matlabApr, const Epetra_MultiVector& A) { int ierr = 0; int length = A.GlobalLength(); int numVectors = A.NumVectors(); const Epetra_Comm & comm = A.Map().Comm(); if (comm.MyPID()!=0) { if (A.MyLength()!=0) ierr = -1; } else { if (length!=A.MyLength()) ierr = -1; double* matlabAvalues = *matlabApr; double* Aptr = A.Values(); memcpy((void *)matlabAvalues, (void *)Aptr, sizeof(*Aptr) * length * numVectors); *matlabApr += length; } int ierrGlobal; comm.MinAll(&ierr, &ierrGlobal, 1); // If any processor has -1, all return -1 return(ierrGlobal); }
void Stokhos::EpetraMultiVectorOrthogPoly:: computeStandardDeviation(Epetra_MultiVector& v) const { const Teuchos::Array<double>& nrm2 = this->basis_->norm_squared(); v.PutScalar(0.0); for (int i=1; i<this->size(); i++) v.Multiply(nrm2[i], *coeff_[i], *coeff_[i], 1.0); for (int j=0; j<v.NumVectors(); j++) for (int i=0; i<v.MyLength(); i++) v[j][i] = std::sqrt(v[j][i]); }
// ============================================================================ int Ifpack_DiagPreconditioner::ApplyInverse(const Epetra_MultiVector& X, Epetra_MultiVector& Y) const { if (X.NumVectors() != Y.NumVectors()) IFPACK_CHK_ERR(-1); for (int v = 0; v < X.NumVectors(); ++v) for (int i = 0; i < X.MyLength(); ++i) Y[v][i] = diag_[i] * X[v][i]; ///Y.ReciprocalMultiply(1.0, diag_, X, 0.0); return(0); }
// Convert a Epetra_MultiVector with assumed block structure dictated by the // vector space into a Thyra::MultiVectorBase object. // const Teuchos::RCP<const Thyra::MultiVectorBase<double> > blockEpetraToThyra(const Epetra_MultiVector & e,const Teuchos::RCP<const Thyra::VectorSpaceBase<double> > & vs) void blockEpetraToThyra(const Epetra_MultiVector & epetraX,const Teuchos::Ptr<Thyra::MultiVectorBase<double> > & thyraX) { TEUCHOS_ASSERT(thyraX->range()->dim()==epetraX.GlobalLength()); // extract local information from the Epetra_MultiVector int leadingDim=0,numVectors=0,localDim=0; double * epetraData=0; epetraX.ExtractView(&epetraData,&leadingDim); numVectors = epetraX.NumVectors(); blockEpetraToThyra(numVectors,epetraData,leadingDim,thyraX.ptr(),localDim); TEUCHOS_ASSERT(localDim==epetraX.MyLength()); }
int InitMVValues( const Epetra_MultiVector& newb, Epetra_MultiVector* b ) { int length = newb.MyLength(); int numVecs = newb.NumVectors(); const Epetra_Vector *tempnewvec; Epetra_Vector *tempvec = 0; for (int i=0; i<numVecs; ++i) { tempnewvec = newb(i); tempvec = (*b)(i); for (int j=0; j<length; ++j) (*tempvec)[j] = (*tempnewvec)[j]; } return 0; }
int checkMultiVectors( Epetra_MultiVector & X, Epetra_MultiVector & Y, string message = "", bool verbose = false) { int numVectors = X.NumVectors(); int length = Y.MyLength(); int badvalue = 0; int globalbadvalue = 0; for (int j=0; j<numVectors; j++) for (int i=0; i< length; i++) if (checkValues(X[j][i], Y[j][i])==1) badvalue = 1; X.Map().Comm().MaxAll(&badvalue, &globalbadvalue, 1); if (verbose) { if (globalbadvalue==0) cout << message << " check OK." << endl; else cout << "********* " << message << " check failed.********** " << endl; } return(globalbadvalue); }
//============================================================================== int Komplex_LinearProblem::ExtractSolution(Epetra_MultiVector & Xr, Epetra_MultiVector & Xi) { int NumMyRows = Xr.MyLength(); // Process X and B values for (int j=0; j<Xr.NumVectors(); j++) { double *localKX = &((*KomplexLHS_)[j][0]); double *localXr = &(Xr[j][0]); double *localXi = &(Xi[j][0]); for (int i=0; i< NumMyRows; i++) { localXr[i] = localKX[2*i]; localXi[i] = localKX[2*i+1]; } } return(0); }
// ============================================================================ void EpetraExt::XMLWriter:: Write(const std::string& Label, const Epetra_MultiVector& MultiVector) { TEUCHOS_TEST_FOR_EXCEPTION(IsOpen_ == false, std::logic_error, "No file has been opened"); int Length = MultiVector.GlobalLength(); int NumVectors = MultiVector.NumVectors(); if (Comm_.MyPID() == 0) { std::ofstream of(FileName_.c_str(), std::ios::app); of << "<MultiVector Label=\"" << Label << "\" Length=\"" << Length << '"' << " NumVectors=\"" << NumVectors << '"' << " Type=\"double\">" << std::endl; } for (int iproc = 0; iproc < Comm_.NumProc(); iproc++) { if (iproc == Comm_.MyPID()) { std::ofstream of(FileName_.c_str(), std::ios::app); of.precision(15); for (int i = 0; i < MultiVector.MyLength(); ++i) { for (int j = 0; j < NumVectors; ++j) of << std::setiosflags(std::ios::scientific) << MultiVector[j][i] << " "; of << std::endl; } of.close(); } Comm_.Barrier(); } if (Comm_.MyPID() == 0) { std::ofstream of(FileName_.c_str(), std::ios::app); of << "</MultiVector>" << std::endl; of.close(); } }
int ARPACKm3::reSolve(int numEigen, Epetra_MultiVector &Q, double *lambda, int startingEV) { // Computes eigenvalues and the corresponding eigenvectors // of the generalized eigenvalue problem // // K X = M X Lambda // // using ARPACK (mode 3). // // The convergence test is provided by ARPACK. // // Note that if M is not specified, then K X = X Lambda is solved. // (using the mode for generalized eigenvalue problem). // // Input variables: // // numEigen (integer) = Number of eigenmodes requested // // Q (Epetra_MultiVector) = Initial search space // The number of columns of Q defines the size of search space (=NCV). // The rows of X are distributed across processors. // As a rule of thumb in ARPACK User's guide, NCV >= 2*numEigen. // At exit, the first numEigen locations contain the eigenvectors requested. // // lambda (array of doubles) = Converged eigenvalues // The length of this array is equal to the number of columns in Q. // At exit, the first numEigen locations contain the eigenvalues requested. // // startingEV (integer) = Number of eigenmodes already stored in Q // A linear combination of these vectors is made to define the starting // vector, placed in resid. // // Return information on status of computation // // info >= 0 >> Number of converged eigenpairs at the end of computation // // // Failure due to input arguments // // info = - 1 >> The stiffness matrix K has not been specified. // info = - 2 >> The maps for the matrix K and the matrix M differ. // info = - 3 >> The maps for the matrix K and the preconditioner P differ. // info = - 4 >> The maps for the vectors and the matrix K differ. // info = - 5 >> Q is too small for the number of eigenvalues requested. // info = - 6 >> Q is too small for the computation parameters. // // info = - 8 >> numEigen must be smaller than the dimension of the matrix. // // info = - 30 >> MEMORY // // See ARPACK documentation for the meaning of INFO if (numEigen <= startingEV) { return numEigen; } int info = myVerify.inputArguments(numEigen, K, M, 0, Q, minimumSpaceDimension(numEigen)); if (info < 0) return info; int myPid = MyComm.MyPID(); int localSize = Q.MyLength(); int NCV = Q.NumVectors(); int knownEV = 0; if (NCV > Q.GlobalLength()) { if (numEigen >= Q.GlobalLength()) { cerr << endl; cerr << " !! The number of requested eigenvalues must be smaller than the dimension"; cerr << " of the matrix !!\n"; cerr << endl; return -8; } NCV = Q.GlobalLength(); } int localVerbose = verbose*(myPid == 0); // Define data for ARPACK highMem = (highMem > currentSize()) ? highMem : currentSize(); int ido = 0; int lwI = 22 + NCV; int *wI = new (nothrow) int[lwI]; if (wI == 0) { return -30; } memRequested += sizeof(int)*lwI/(1024.0*1024.0); int *iparam = wI; int *ipntr = wI + 11; int *select = wI + 22; int lworkl = NCV*(NCV+8); int lwD = lworkl + 4*localSize; double *wD = new (nothrow) double[lwD]; if (wD == 0) { delete[] wI; return -30; } memRequested += sizeof(double)*(4*localSize+lworkl)/(1024.0*1024.0); double *pointer = wD; double *workl = pointer; pointer = pointer + lworkl; double *resid = pointer; pointer = pointer + localSize; double *workd = pointer; double *v = Q.Values(); highMem = (highMem > currentSize()) ? highMem : currentSize(); double sigma = 0.0; if (startingEV > 0) { // Define the initial starting vector memset(resid, 0, localSize*sizeof(double)); for (int jj = 0; jj < startingEV; ++jj) for (int ii = 0; ii < localSize; ++ii) resid[ii] += v[ii + jj*localSize]; info = 1; } iparam[1-1] = 1; iparam[3-1] = maxIterEigenSolve; iparam[7-1] = 3; // The fourth parameter forces to use the convergence test provided by ARPACK. // This requires a customization of ARPACK (provided by R. Lehoucq). iparam[4-1] = 0; Epetra_Vector v1(View, Q.Map(), workd); Epetra_Vector v2(View, Q.Map(), workd + localSize); Epetra_Vector v3(View, Q.Map(), workd + 2*localSize); double *vTmp = new (nothrow) double[localSize]; if (vTmp == 0) { delete[] wI; delete[] wD; return -30; } memRequested += sizeof(double)*localSize/(1024.0*1024.0); highMem = (highMem > currentSize()) ? highMem : currentSize(); if (localVerbose > 0) { cout << endl; cout << " *|* Problem: "; if (M) cout << "K*Q = M*Q D "; else cout << "K*Q = Q D "; cout << endl; cout << " *|* Algorithm = ARPACK (mode 3)" << endl; cout << " *|* Number of requested eigenvalues = " << numEigen << endl; cout.precision(2); cout.setf(ios::scientific, ios::floatfield); cout << " *|* Tolerance for convergence = " << tolEigenSolve << endl; if (startingEV > 0) cout << " *|* User-defined starting vector (Combination of " << startingEV << " vectors)\n"; cout << "\n -- Start iterations -- \n"; } #ifdef EPETRA_MPI Epetra_MpiComm *MPIComm = dynamic_cast<Epetra_MpiComm *>(const_cast<Epetra_Comm*>(&MyComm)); #endif timeOuterLoop -= MyWatch.WallTime(); while (ido != 99) { highMem = (highMem > currentSize()) ? highMem : currentSize(); #ifdef EPETRA_MPI if (MPIComm) callFortran.PSAUPD(MPIComm->Comm(), &ido, 'G', localSize, which, numEigen, tolEigenSolve, resid, NCV, v, localSize, iparam, ipntr, workd, workl, lworkl, &info, localVerbose); else callFortran.SAUPD(&ido, 'G', localSize, which, numEigen, tolEigenSolve, resid, NCV, v, localSize, iparam, ipntr, workd, workl, lworkl, &info, localVerbose); #else callFortran.SAUPD(&ido, 'G', localSize, which, numEigen, tolEigenSolve, resid, NCV, v, localSize, iparam, ipntr, workd, workl, lworkl, &info, localVerbose); #endif if (ido == -1) { // Apply the mass matrix v3.ResetView(workd + ipntr[0] - 1); v1.ResetView(vTmp); timeMassOp -= MyWatch.WallTime(); if (M) M->Apply(v3, v1); else memcpy(v1.Values(), v3.Values(), localSize*sizeof(double)); timeMassOp += MyWatch.WallTime(); massOp += 1; // Solve the stiffness problem v2.ResetView(workd + ipntr[1] - 1); timeStifOp -= MyWatch.WallTime(); K->ApplyInverse(v1, v2); timeStifOp += MyWatch.WallTime(); stifOp += 1; continue; } // if (ido == -1) if (ido == 1) { // Solve the stiffness problem v1.ResetView(workd + ipntr[2] - 1); v2.ResetView(workd + ipntr[1] - 1); timeStifOp -= MyWatch.WallTime(); K->ApplyInverse(v1, v2); timeStifOp += MyWatch.WallTime(); stifOp += 1; continue; } // if (ido == 1) if (ido == 2) { // Apply the mass matrix v1.ResetView(workd + ipntr[0] - 1); v2.ResetView(workd + ipntr[1] - 1); timeMassOp -= MyWatch.WallTime(); if (M) M->Apply(v1, v2); else memcpy(v2.Values(), v1.Values(), localSize*sizeof(double)); timeMassOp += MyWatch.WallTime(); massOp += 1; continue; } // if (ido == 2) } // while (ido != 99) timeOuterLoop += MyWatch.WallTime(); highMem = (highMem > currentSize()) ? highMem : currentSize(); if (info < 0) { if (myPid == 0) { cerr << endl; cerr << " Error with DSAUPD, info = " << info << endl; cerr << endl; } } else { // Compute the eigenvectors timePostProce -= MyWatch.WallTime(); #ifdef EPETRA_MPI if (MPIComm) callFortran.PSEUPD(MPIComm->Comm(), 1, 'A', select, lambda, v, localSize, sigma, 'G', localSize, which, numEigen, tolEigenSolve, resid, NCV, v, localSize, iparam, ipntr, workd, workl, lworkl, &info); else callFortran.SEUPD(1, 'A', select, lambda, v, localSize, sigma, 'G', localSize, which, numEigen, tolEigenSolve, resid, NCV, v, localSize, iparam, ipntr, workd, workl, lworkl, &info); #else callFortran.SEUPD(1, 'A', select, lambda, v, localSize, sigma, 'G', localSize, which, numEigen, tolEigenSolve, resid, NCV, v, localSize, iparam, ipntr, workd, workl, lworkl, &info); #endif timePostProce += MyWatch.WallTime(); highMem = (highMem > currentSize()) ? highMem : currentSize(); // Treat the error if (info != 0) { if (myPid == 0) { cerr << endl; cerr << " Error with DSEUPD, info = " << info << endl; cerr << endl; } } } // if (info < 0) if (info == 0) { outerIter = iparam[3-1]; knownEV = iparam[5-1]; orthoOp = iparam[11-1]; } delete[] wI; delete[] wD; delete[] vTmp; return (info == 0) ? knownEV : info; }
int BuildMultiVectorTests (Epetra_MultiVector & C, const double alpha, Epetra_MultiVector& A, Epetra_MultiVector& sqrtA, Epetra_MultiVector& B, Epetra_MultiVector& C_alphaA, Epetra_MultiVector& C_alphaAplusB, Epetra_MultiVector& C_plusB, double* const dotvec_AB, double* const norm1_A, double* const norm2_sqrtA, double* const norminf_A, double* const normw_A, Epetra_MultiVector& Weights, double* const minval_A, double* const maxval_A, double* const meanval_A ) { // For given values alpha and a (possibly zero) filled // Epetra_MultiVector (the this object), allocated double * arguments dotvec_AB, // norm1_A, and norm2_A, and allocated Epetra_MultiVectors A, sqrtA, // B, C_alpha, C_alphaAplusB and C_plusB, this method will generate values for // Epetra_MultiVectors A, B and all of the additional arguments on // the list above such that, if A, B and (this) are used with the methods in // this class, the results should match the results generated by this routine. // Specifically, the results in dotvec_AB should match those from a call to // A.dotProd (B,dotvec). Similarly for other routines. int i,j; double fi, fj; // Used for casting loop variables to floats // Define some useful constants int A_nrows = A.MyLength(); int A_ncols = A.NumVectors(); int sqrtA_nrows = sqrtA.MyLength(); int sqrtA_ncols = sqrtA.NumVectors(); int B_nrows = B.MyLength(); int B_ncols = B.NumVectors(); double **Ap = 0; double **sqrtAp = 0; double **Bp = 0; double **Cp = 0; double **C_alphaAp = 0; double **C_alphaAplusBp = 0; double **C_plusBp = 0; double **Weightsp = 0; A.ExtractView(&Ap); sqrtA.ExtractView(&sqrtAp); B.ExtractView(&Bp); C.ExtractView(&Cp); C_alphaA.ExtractView(&C_alphaAp); C_alphaAplusB.ExtractView(&C_alphaAplusBp); C_plusB.ExtractView(&C_plusBp); Weights.ExtractView(&Weightsp); bool A_is_local = (A.MyLength() == A.GlobalLength()); bool B_is_local = (B.MyLength() == B.GlobalLength()); bool C_is_local = (C.MyLength() == C.GlobalLength()); int A_IndexBase = A.Map().IndexBase(); int B_IndexBase = B.Map().IndexBase(); // Build two new maps that we can use for defining global equation indices below Epetra_Map * A_Map = new Epetra_Map(-1, A_nrows, A_IndexBase, A.Map().Comm()); Epetra_Map * B_Map = new Epetra_Map(-1, B_nrows, B_IndexBase, B.Map().Comm()); int* A_MyGlobalElements = new int[A_nrows]; A_Map->MyGlobalElements(A_MyGlobalElements); int* B_MyGlobalElements = new int[B_nrows]; B_Map->MyGlobalElements(B_MyGlobalElements); // Check for compatible dimensions if (C.MyLength() != A_nrows || A_nrows != B_nrows || C.NumVectors() != A_ncols || A_ncols != B_ncols || sqrtA_nrows != A_nrows || sqrtA_ncols != A_ncols || C.MyLength() != C_alphaA.MyLength() || C.NumVectors() != C_alphaA.NumVectors() || C.MyLength() != C_alphaAplusB.MyLength() || C.NumVectors() != C_alphaAplusB.NumVectors() || C.MyLength() != C_plusB.MyLength() || C.NumVectors() != C_plusB.NumVectors() ) return(-2); // Return error bool Case1 = ( A_is_local && B_is_local && C_is_local); // Case 1 bool Case2 = (!A_is_local && !B_is_local && !C_is_local);// Case 2 // Test for meaningful cases if (!(Case1 || Case2)) return(-3); // Meaningless case /* Fill A and B with values as follows: If A_is_local is false: A(i,j) = A_MyGlobalElements[i]*j, i=1,...,numLocalEquations, j=1,...,NumVectors else A(i,j) = i*j, i=1,...,numLocalEquations, j=1,...,NumVectors If B_is_local is false: B(i,j) = 1/(A_MyGlobalElements[i]*j), i=1,...,numLocalEquations, j=1,...,NumVectors else B(i,j) = 1/(i*j), i=1,...,numLocalEquations, j=1,...,NumVectors In addition, scale each entry by GlobalLength for A and 1/GlobalLength for B--keeps the magnitude of entries in check */ //Define scale factor double sf = A.GlobalLength(); double sfinv = 1.0/sf; // Define A if (A_is_local) { for (j = 0; j <A_ncols ; j++) { for (i = 0; i<A_nrows; i++) { fi = i+1; // Get float version of i and j, offset by 1. fj = j+1; Ap[j][i] = (fi*sfinv)*fj; sqrtAp[j][i] = std::sqrt(Ap[j][i]); } } } else { for (j = 0; j <A_ncols ; j++) { for (i = 0; i<A_nrows; i++) { fi = A_MyGlobalElements[i]+1; // Get float version of i and j, offset by 1. fj = j+1; Ap[j][i] = (fi*sfinv)*fj; sqrtAp[j][i] = std::sqrt(Ap[j][i]); } } } // Define B depending on TransB and B_is_local if (B_is_local) { for (j = 0; j <B_ncols ; j++) { for (i = 0; i<B_nrows; i++) { fi = i+1; // Get float version of i and j, offset by 1. fj = j+1; Bp[j][i] = 1.0/((fi*sfinv)*fj); } } } else { for (j = 0; j <B_ncols ; j++) { for (i = 0; i<B_nrows; i++) { fi = B_MyGlobalElements[i]+1; // Get float version of i and j, offset by 1. fj = j+1; Bp[j][i] = 1.0/((fi*sfinv)*fj); } } } // Generate C_alphaA = alpha * A for (j = 0; j <A_ncols ; j++) for (i = 0; i<A_nrows; i++) C_alphaAp[j][i] = alpha * Ap[j][i]; // Generate C_alphaA = alpha * A + B for (j = 0; j <A_ncols ; j++) for (i = 0; i<A_nrows; i++) C_alphaAplusBp[j][i] = alpha * Ap[j][i] + Bp[j][i]; // Generate C_plusB = this + B for (j = 0; j <A_ncols ; j++) for (i = 0; i<A_nrows; i++) C_plusBp[j][i] = Cp[j][i] + Bp[j][i]; // Generate dotvec_AB. Because B(i,j) = 1/A(i,j), dotvec[i] = C.GlobalLength() for (i=0; i< A.NumVectors(); i++) dotvec_AB[i] = C.GlobalLength(); // For the next two results we want to be careful how we do arithmetic // to avoid very large numbers. // We are computing sfinv*(C.GlobalLength()*(C.GlobalLength()+1)/2) double result = C.GlobalLength(); result *= sfinv; result /= 2.0; result *= (double)(C.GlobalLength()+1); // Generate norm1_A. Can use formula for sum of first n integers. for (i=0; i< A.NumVectors(); i++) // m1_A[i] = (i+1)*C.GlobalLength()*(C.GlobalLength()+1)/2; norm1_A[i] = result * ((double) (i+1)); // Generate norm2_sqrtA. Can use formula for sum of first n integers. for (i=0; i< A.NumVectors(); i++) // norm2_sqrtA[i] = std::sqrt((double) ((i+1)*C.GlobalLength()*(C.GlobalLength()+1)/2)); norm2_sqrtA[i] = std::sqrt(result * ((double) (i+1))); // Generate norminf_A, minval_A, maxval_A, meanval_A. for (i=0; i< A.NumVectors(); i++) { norminf_A[i] = (double) (i+1); minval_A[i] = (double) (i+1)/ (double) A.GlobalLength(); maxval_A[i] = (double) (i+1); meanval_A[i] = norm1_A[i]/((double) (A.GlobalLength())); } // Define weights and expected weighted norm for (i=0; i< A.NumVectors(); i++) { double ip1 = (double) i+1; normw_A[i] = ip1; for (j=0; j<A_nrows; j++) Weightsp[i][j] = Ap[i][j]/ip1; } delete A_Map; delete B_Map; delete [] A_MyGlobalElements; delete [] B_MyGlobalElements; return(0); }
int BuildMatrixTests (Epetra_MultiVector & C, const char TransA, const char TransB, const double alpha, Epetra_MultiVector& A, Epetra_MultiVector& B, const double beta, Epetra_MultiVector& C_GEMM ) { // For given values of TransA, TransB, alpha and beta, a (possibly // zero) filled Epetra_MultiVector C, and allocated // Epetra_MultiVectors A, B and C_GEMM this routine will generate values for // Epetra_MultiVectors A, B and C_GEMM such that, if A, B and (this) are // used with GEMM in this class, the results should match the results // generated by this routine. // Test for Strided multivectors (required for GEMM ops) if (!A.ConstantStride() || !B.ConstantStride() || !C_GEMM.ConstantStride() || !C.ConstantStride()) return(-1); // Error int i, j; double fi, fj; // Used for casting loop variables to floats // Get a view of the MultiVectors double *Ap = 0; double *Bp = 0; double *Cp = 0; double *C_GEMMp = 0; int A_nrows = A.MyLength(); int A_ncols = A.NumVectors(); int B_nrows = B.MyLength(); int B_ncols = B.NumVectors(); int C_nrows = C.MyLength(); int C_ncols = C.NumVectors(); int A_Stride = 0; int B_Stride = 0; int C_Stride = 0; int C_GEMM_Stride = 0; A.ExtractView(&Ap, &A_Stride); B.ExtractView(&Bp, &B_Stride); C.ExtractView(&Cp, &C_Stride); C_GEMM.ExtractView(&C_GEMMp, &C_GEMM_Stride); // Define some useful constants int opA_ncols = (TransA=='N') ? A.NumVectors() : A.MyLength(); int opB_nrows = (TransB=='N') ? B.MyLength() : B.NumVectors(); int C_global_inner_dim = (TransA=='N') ? A.NumVectors() : A.GlobalLength(); bool A_is_local = (!A.DistributedGlobal()); bool B_is_local = (!B.DistributedGlobal()); bool C_is_local = (!C.DistributedGlobal()); int A_IndexBase = A.Map().IndexBase(); int B_IndexBase = B.Map().IndexBase(); // Build two new maps that we can use for defining global equation indices below Epetra_Map * A_Map = new Epetra_Map(-1, A_nrows, A_IndexBase, A.Map().Comm()); Epetra_Map * B_Map = new Epetra_Map(-1, B_nrows, B_IndexBase, B.Map().Comm()); int* A_MyGlobalElements = new int[A_nrows]; A_Map->MyGlobalElements(A_MyGlobalElements); int* B_MyGlobalElements = new int[B_nrows]; B_Map->MyGlobalElements(B_MyGlobalElements); // Check for compatible dimensions if (C.MyLength() != C_nrows || opA_ncols != opB_nrows || C.NumVectors() != C_ncols || C.MyLength() != C_GEMM.MyLength() || C.NumVectors() != C_GEMM.NumVectors() ) { delete A_Map; delete B_Map; delete [] A_MyGlobalElements; delete [] B_MyGlobalElements; return(-2); // Return error } bool Case1 = ( A_is_local && B_is_local && C_is_local); // Case 1 above bool Case2 = (!A_is_local && !B_is_local && C_is_local && TransA=='T' );// Case 2 bool Case3 = (!A_is_local && B_is_local && !C_is_local && TransA=='N');// Case 3 // Test for meaningful cases if (!(Case1 || Case2 || Case3)) { delete A_Map; delete B_Map; delete [] A_MyGlobalElements; delete [] B_MyGlobalElements; return(-3); // Meaningless case } /* Fill A, B and C with values as follows: If A_is_local is false: A(i,j) = A_MyGlobalElements[i]*j, i=1,...,numLocalEquations, j=1,...,NumVectors else A(i,j) = i*j, i=1,...,numLocalEquations, j=1,...,NumVectors If B_is_local is false: B(i,j) = 1/(A_MyGlobalElements[i]*j), i=1,...,numLocalEquations, j=1,...,NumVectors else B(i,j) = 1/(i*j), i=1,...,numLocalEquations, j=1,...,NumVectors In addition, scale each entry by GlobalLength for A and 1/GlobalLength for B--keeps the magnitude of entries in check C_GEMM will depend on A_is_local and B_is_local. Three cases: 1) A_is_local true and B_is_local true: C_GEMM will be local replicated and equal to A*B = i*NumVectors/j 2) A_is_local false and B_is_local false C_GEMM will be local replicated = A(trans)*B(i,j) = i*numGlobalEquations/j 3) A_is_local false B_is_local true C_GEMM will distributed global and equals A*B = A_MyGlobalElements[i]*NumVectors/j */ // Define a scalar to keep magnitude of entries reasonable double sf = C_global_inner_dim; double sfinv = 1.0/sf; // Define A depending on A_is_local if (A_is_local) { for (j = 0; j <A_ncols ; j++) for (i = 0; i<A_nrows; i++) { fi = i+1; // Get float version of i and j, offset by 1. fj = j+1; Ap[i + A_Stride*j] = (fi*sfinv)*fj; } } else { for (j = 0; j <A_ncols ; j++) for (i = 0; i<A_nrows; i++) { fi = A_MyGlobalElements[i]+1; // Get float version of i and j, offset by 1. fj = j+1; Ap[i + A_Stride*j] = (fi*sfinv)*fj; } } // Define B depending on TransB and B_is_local if (B_is_local) { for (j = 0; j <B_ncols ; j++) for (i = 0; i<B_nrows; i++) { fi = i+1; // Get float version of i and j, offset by 1. fj = j+1; Bp[i + B_Stride*j] = 1.0/((fi*sfinv)*fj); } } else { for (j = 0; j <B_ncols ; j++) for (i = 0; i<B_nrows; i++) { fi = B_MyGlobalElements[i]+1; // Get float version of i and j, offset by 1. fj = j+1; Bp[i + B_Stride*j] = 1.0/((fi*sfinv)*fj); } } // Define C_GEMM depending on A_is_local and B_is_local. C_GEMM is also a // function of alpha, beta, TransA, TransB: // C_GEMM = alpha*A(TransA)*B(TransB) + beta*C_GEMM if (Case1) { for (j = 0; j <C_ncols ; j++) for (i = 0; i<C_nrows; i++) { // Get float version of i and j, offset by 1. fi = (i+1)*C_global_inner_dim; fj = j+1; C_GEMMp[i + C_GEMM_Stride*j] = alpha * (fi/fj) + beta * Cp[i + C_Stride*j]; } } else if (Case2) { for (j = 0; j <C_ncols ; j++) for (i = 0; i<C_nrows; i++) { // Get float version of i and j, offset by 1. fi = (i+1)*C_global_inner_dim; fj = j+1; C_GEMMp[i + C_GEMM_Stride*j] = alpha * (fi/fj) + beta * Cp[i + C_Stride*j]; } } else { for (j = 0; j <C_ncols ; j++) for (i = 0; i<C_nrows; i++) { // Get float version of i and j. fi = (A_MyGlobalElements[i]+1)*C_global_inner_dim; fj = j+1; C_GEMMp[i + C_GEMM_Stride*j] = alpha * (fi/fj) + beta * Cp[i + C_Stride*j]; } } delete A_Map; delete B_Map; delete [] A_MyGlobalElements; delete [] B_MyGlobalElements; return(0); }
//============================================================================== int Ifpack_Hypre::ApplyInverse(const Epetra_MultiVector& X, Epetra_MultiVector& Y) const{ if(IsComputed() == false){ IFPACK_CHK_ERR(-1); } // These are hypre requirements // hypre needs A, X, and Y to have the same contiguous distribution // NOTE: Maps are only considered to be contiguous if they were generated using a // particular constructor. Otherwise, LinearMap() will not detect whether they are // actually contiguous. if(!X.Map().LinearMap() || !Y.Map().LinearMap()) { std::cerr << "ERROR: X and Y must have contiguous maps.\n"; IFPACK_CHK_ERR(-1); } if(!X.Map().PointSameAs(*MySimpleMap_) || !Y.Map().PointSameAs(*MySimpleMap_)) { std::cerr << "ERROR: X, Y, and A must have the same distribution.\n"; IFPACK_CHK_ERR(-1); } Time_.ResetStartTime(); bool SameVectors = false; int NumVectors = X.NumVectors(); if (NumVectors != Y.NumVectors()) IFPACK_CHK_ERR(-1); // X and Y must have same number of vectors if(X.Pointers() == Y.Pointers()){ SameVectors = true; } for(int VecNum = 0; VecNum < NumVectors; VecNum++) { //Get values for current vector in multivector. // FIXME amk Nov 23, 2015: This will not work for funky data layouts double * XValues; IFPACK_CHK_ERR((*X(VecNum)).ExtractView(&XValues)); double * YValues; if(!SameVectors){ IFPACK_CHK_ERR((*Y(VecNum)).ExtractView(&YValues)); } else { YValues = new double[X.MyLength()]; } // Temporarily make a pointer to data in Hypre for end double *XTemp = XLocal_->data; // Replace data in Hypre vectors with epetra values XLocal_->data = XValues; double *YTemp = YLocal_->data; YLocal_->data = YValues; IFPACK_CHK_ERR(HYPRE_ParVectorSetConstantValues(ParY_, 0.0)); if(SolveOrPrec_ == Solver){ // Use the solver methods IFPACK_CHK_ERR(SolverSolvePtr_(Solver_, ParMatrix_, ParX_, ParY_)); } else { // Apply the preconditioner IFPACK_CHK_ERR(PrecondSolvePtr_(Preconditioner_, ParMatrix_, ParX_, ParY_)); } if(SameVectors){ int NumEntries = Y.MyLength(); std::vector<double> new_values; new_values.resize(NumEntries); std::vector<int> new_indices; new_indices.resize(NumEntries); for(int i = 0; i < NumEntries; i++){ new_values[i] = YValues[i]; new_indices[i] = i; } IFPACK_CHK_ERR((*Y(VecNum)).ReplaceMyValues(NumEntries, &new_values[0], &new_indices[0])); delete[] YValues; } XLocal_->data = XTemp; YLocal_->data = YTemp; } NumApplyInverse_ = NumApplyInverse_ + 1; ApplyInverseTime_ = ApplyInverseTime_ + Time_.ElapsedTime(); return 0; } //ApplyInverse()
int ModifiedARPACKm3::reSolve(int numEigen, Epetra_MultiVector &Q, double *lambda, int startingEV, const Epetra_MultiVector *orthoVec) { // Computes the smallest eigenvalues and the corresponding eigenvectors // of the generalized eigenvalue problem // // K X = M X Lambda // // using ModifiedARPACK (mode 3). // // The convergence test is performed outisde of ARPACK // // || Kx - Mx lambda || < tol*lambda // // The norm ||.|| can be specified by the user through the array normWeight. // By default, the L2 Euclidean norm is used. // // Note that if M is not specified, then K X = X Lambda is solved. // (using the mode for generalized eigenvalue problem). // // Input variables: // // numEigen (integer) = Number of eigenmodes requested // // Q (Epetra_MultiVector) = Initial search space // The number of columns of Q defines the size of search space (=NCV). // The rows of X are distributed across processors. // As a rule of thumb in ARPACK User's guide, NCV >= 2*numEigen. // At exit, the first numEigen locations contain the eigenvectors requested. // // lambda (array of doubles) = Converged eigenvalues // The length of this array is equal to the number of columns in Q. // At exit, the first numEigen locations contain the eigenvalues requested. // // startingEV (integer) = Number of eigenmodes already stored in Q // A linear combination of these vectors is made to define the starting // vector, placed in resid. // // orthoVec (Pointer to Epetra_MultiVector) = Space to be orthogonal to // The computation is performed in the orthogonal of the space spanned // by the columns vectors in orthoVec. // // Return information on status of computation // // info >= 0 >> Number of converged eigenpairs at the end of computation // // // Failure due to input arguments // // info = - 1 >> The stiffness matrix K has not been specified. // info = - 2 >> The maps for the matrix K and the matrix M differ. // info = - 3 >> The maps for the matrix K and the preconditioner P differ. // info = - 4 >> The maps for the vectors and the matrix K differ. // info = - 5 >> Q is too small for the number of eigenvalues requested. // info = - 6 >> Q is too small for the computation parameters. // // info = - 8 >> numEigen must be smaller than the dimension of the matrix. // // info = - 30 >> MEMORY // // See ARPACK documentation for the meaning of INFO if (numEigen <= startingEV) { return numEigen; } int info = myVerify.inputArguments(numEigen, K, M, 0, Q, minimumSpaceDimension(numEigen)); if (info < 0) return info; int myPid = MyComm.MyPID(); int localSize = Q.MyLength(); int NCV = Q.NumVectors(); int knownEV = 0; if (NCV > Q.GlobalLength()) { if (numEigen >= Q.GlobalLength()) { cerr << endl; cerr << " !! The number of requested eigenvalues must be smaller than the dimension"; cerr << " of the matrix !!\n"; cerr << endl; return -8; } NCV = Q.GlobalLength(); } // Get the weight for approximating the M-inverse norm Epetra_Vector *vectWeight = 0; if (normWeight) { vectWeight = new Epetra_Vector(View, Q.Map(), normWeight); } int localVerbose = verbose*(myPid == 0); // Define data for ARPACK // // UH (10/17/03) Note that workl is also used // * to store the eigenvectors of the tridiagonal matrix // * as a workspace for DSTEQR // * as a workspace for recovering the global eigenvectors highMem = (highMem > currentSize()) ? highMem : currentSize(); int ido = 0; int lwI = 22; int *wI = new (nothrow) int[lwI]; if (wI == 0) { if (vectWeight) delete vectWeight; return -30; } memRequested += sizeof(int)*lwI/(1024.0*1024.0); int *iparam = wI; int *ipntr = wI + 11; int lworkl = NCV*(NCV+8); int lwD = lworkl + 4*localSize; double *wD = new (nothrow) double[lwD]; if (wD == 0) { if (vectWeight) delete vectWeight; delete[] wI; return -30; } memRequested += sizeof(double)*(4*localSize+lworkl)/(1024.0*1024.0); double *pointer = wD; double *workl = pointer; pointer = pointer + lworkl; double *resid = pointer; pointer = pointer + localSize; double *workd = pointer; double *v = Q.Values(); highMem = (highMem > currentSize()) ? highMem : currentSize(); if (startingEV > 0) { // Define the initial starting vector memset(resid, 0, localSize*sizeof(double)); for (int jj = 0; jj < startingEV; ++jj) for (int ii = 0; ii < localSize; ++ii) resid[ii] += v[ii + jj*localSize]; info = 1; } iparam[1-1] = 1; iparam[3-1] = maxIterEigenSolve; iparam[7-1] = 3; // The fourth parameter forces to use the convergence test provided by ARPACK. // This requires a customization of ARPACK (provided by R. Lehoucq). iparam[4-1] = 1; Epetra_Vector v1(View, Q.Map(), workd); Epetra_Vector v2(View, Q.Map(), workd + localSize); Epetra_Vector v3(View, Q.Map(), workd + 2*localSize); // Define further storage for the new residual check // Use a block of vectors to compute the residuals more quickly. // Note that workd could be used if memory becomes an issue. int loopZ = (NCV > 10) ? 10 : NCV; int lwD2 = localSize + 2*NCV-1 + NCV; lwD2 += (M) ? 3*loopZ*localSize : 2*loopZ*localSize; double *wD2 = new (nothrow) double[lwD2]; if (wD2 == 0) { if (vectWeight) delete vectWeight; delete[] wI; delete[] wD; return -30; } memRequested += sizeof(double)*lwD2/(1024.0*1024.0); pointer = wD2; // vTmp is used when ido = -1 double *vTmp = pointer; pointer = pointer + localSize; // dd and ee stores the tridiagonal matrix. // Note that DSTEQR destroys the contents of the input arrays. double *dd = pointer; pointer = pointer + NCV; double *ee = pointer; pointer = pointer + NCV-1; double *vz = pointer; pointer = pointer + loopZ*localSize; Epetra_MultiVector approxEV(View, Q.Map(), vz, localSize, loopZ); double *kvz = pointer; pointer = pointer + loopZ*localSize; Epetra_MultiVector KapproxEV(View, Q.Map(), kvz, localSize, loopZ); double *mvz = (M) ? pointer : vz; pointer = (M) ? pointer + loopZ*localSize : pointer; Epetra_MultiVector MapproxEV(View, Q.Map(), mvz, localSize, loopZ); double *normR = pointer; // zz contains the eigenvectors of the tridiagonal matrix. // workt is a workspace for DSTEQR. // Note that zz and workt will use parts of workl. double *zz, *workt; highMem = (highMem > currentSize()) ? highMem : currentSize(); // Define an array to store the residuals history if (localVerbose > 2) { resHistory = new (nothrow) double[maxIterEigenSolve*NCV]; if (resHistory == 0) { if (vectWeight) delete vectWeight; delete[] wI; delete[] wD; delete[] wD2; return -30; } historyCount = 0; } highMem = (highMem > currentSize()) ? highMem : currentSize(); if (localVerbose > 0) { cout << endl; cout << " *|* Problem: "; if (M) cout << "K*Q = M*Q D "; else cout << "K*Q = Q D "; cout << endl; cout << " *|* Algorithm = ARPACK (Mode 3, modified such that user checks convergence)" << endl; cout << " *|* Number of requested eigenvalues = " << numEigen << endl; cout.precision(2); cout.setf(ios::scientific, ios::floatfield); cout << " *|* Tolerance for convergence = " << tolEigenSolve << endl; if (startingEV > 0) cout << " *|* User-defined starting vector (Combination of " << startingEV << " vectors)\n"; cout << " *|* Norm used for convergence: "; if (normWeight) cout << "weighted L2-norm with user-provided weights" << endl; else cout << "L^2-norm" << endl; if (orthoVec) cout << " *|* Size of orthogonal subspace = " << orthoVec->NumVectors() << endl; cout << "\n -- Start iterations -- \n"; } #ifdef EPETRA_MPI Epetra_MpiComm *MPIComm = dynamic_cast<Epetra_MpiComm *>(const_cast<Epetra_Comm*>(&MyComm)); #endif timeOuterLoop -= MyWatch.WallTime(); while (ido != 99) { highMem = (highMem > currentSize()) ? highMem : currentSize(); #ifdef EPETRA_MPI if (MPIComm) callFortran.PSAUPD(MPIComm->Comm(), &ido, 'G', localSize, "LM", numEigen, tolEigenSolve, resid, NCV, v, localSize, iparam, ipntr, workd, workl, lworkl, &info, 0); else callFortran.SAUPD(&ido, 'G', localSize, "LM", numEigen, tolEigenSolve, resid, NCV, v, localSize, iparam, ipntr, workd, workl, lworkl, &info, 0); #else callFortran.SAUPD(&ido, 'G', localSize, "LM", numEigen, tolEigenSolve, resid, NCV, v, localSize, iparam, ipntr, workd, workl, lworkl, &info, 0); #endif if (ido == -1) { // Apply the mass matrix v3.ResetView(workd + ipntr[0] - 1); v1.ResetView(vTmp); timeMassOp -= MyWatch.WallTime(); if (M) M->Apply(v3, v1); else memcpy(v1.Values(), v3.Values(), localSize*sizeof(double)); timeMassOp += MyWatch.WallTime(); massOp += 1; if ((orthoVec) && (verbose > 3)) { // Check the orthogonality double maxDot = myVerify.errorOrthogonality(orthoVec, &v1, 0); if (myPid == 0) { cout << " Maximum Euclidean dot product against orthogonal space (Before Solve) = "; cout << maxDot << endl; } } // Solve the stiffness problem v2.ResetView(workd + ipntr[1] - 1); timeStifOp -= MyWatch.WallTime(); K->ApplyInverse(v1, v2); timeStifOp += MyWatch.WallTime(); stifOp += 1; // Project the solution vector if needed // Note: Use mvz as workspace if (orthoVec) { Epetra_Vector Mv2(View, v2.Map(), mvz); if (M) M->Apply(v2, Mv2); else memcpy(Mv2.Values(), v2.Values(), localSize*sizeof(double)); modalTool.massOrthonormalize(v2, Mv2, M, *orthoVec, 1, 1); } if ((orthoVec) && (verbose > 3)) { // Check the orthogonality double maxDot = myVerify.errorOrthogonality(orthoVec, &v2, M); if (myPid == 0) { cout << " Maximum M-dot product against orthogonal space (After Solve) = "; cout << maxDot << endl; } } continue; } // if (ido == -1) if (ido == 1) { // Solve the stiffness problem v1.ResetView(workd + ipntr[2] - 1); v2.ResetView(workd + ipntr[1] - 1); if ((orthoVec) && (verbose > 3)) { // Check the orthogonality double maxDot = myVerify.errorOrthogonality(orthoVec, &v1, 0); if (myPid == 0) { cout << " Maximum Euclidean dot product against orthogonal space (Before Solve) = "; cout << maxDot << endl; } } timeStifOp -= MyWatch.WallTime(); K->ApplyInverse(v1, v2); timeStifOp += MyWatch.WallTime(); stifOp += 1; // Project the solution vector if needed // Note: Use mvz as workspace if (orthoVec) { Epetra_Vector Mv2(View, v2.Map(), mvz); if (M) M->Apply(v2, Mv2); else memcpy(Mv2.Values(), v2.Values(), localSize*sizeof(double)); modalTool.massOrthonormalize(v2, Mv2, M, *orthoVec, 1, 1); } if ((orthoVec) && (verbose > 3)) { // Check the orthogonality double maxDot = myVerify.errorOrthogonality(orthoVec, &v2, M); if (myPid == 0) { cout << " Maximum M-dot product against orthogonal space (After Solve) = "; cout << maxDot << endl; } } continue; } // if (ido == 1) if (ido == 2) { // Apply the mass matrix v1.ResetView(workd + ipntr[0] - 1); v2.ResetView(workd + ipntr[1] - 1); timeMassOp -= MyWatch.WallTime(); if (M) M->Apply(v1, v2); else memcpy(v2.Values(), v1.Values(), localSize*sizeof(double)); timeMassOp += MyWatch.WallTime(); massOp += 1; continue; } // if (ido == 2) if (ido == 4) { timeResidual -= MyWatch.WallTime(); // Copy the main diagonal of T memcpy(dd, workl + NCV + ipntr[4] - 1, NCV*sizeof(double)); // Copy the lower diagonal of T memcpy(ee, workl + ipntr[4], (NCV-1)*sizeof(double)); // Compute the eigenpairs of the tridiagonal matrix zz = workl + 4*NCV; workt = workl + 4*NCV + NCV*NCV; callFortran.STEQR('I', NCV, dd, ee, zz, NCV, workt, &info); if (info != 0) { if (localVerbose > 0) { cerr << endl; cerr << " Error with DSTEQR, info = " << info << endl; cerr << endl; } break; } // dd contains the eigenvalues in ascending order // Check the residual of the proposed eigenvectors of (K, M) int ii, jz; iparam[4] = 0; for (jz = 0; jz < NCV; jz += loopZ) { int colZ = (jz + loopZ < NCV) ? loopZ : NCV - jz; callBLAS.GEMM('N', 'N', localSize, colZ, NCV, 1.0, v, localSize, zz + jz*NCV, NCV, 0.0, vz, localSize); // Form the residuals if (M) M->Apply(approxEV, MapproxEV); K->Apply(approxEV, KapproxEV); for (ii = 0; ii < colZ; ++ii) { callBLAS.AXPY(localSize, -1.0/dd[ii+jz], MapproxEV.Values() + ii*localSize, KapproxEV.Values() + ii*localSize); } // Compute the norms of the residuals if (vectWeight) { KapproxEV.NormWeighted(*vectWeight, normR + jz); } else { KapproxEV.Norm2(normR + jz); } // Scale the norms of residuals with the eigenvalues for (ii = 0; ii < colZ; ++ii) { normR[ii+jz] = normR[ii+jz]*dd[ii+jz]; } // Put the number of converged pairs in iparam[5-1] for (ii=0; ii<colZ; ++ii) { if (normR[ii+jz] < tolEigenSolve) iparam[4] += 1; } } timeResidual += MyWatch.WallTime(); numResidual += NCV; outerIter += 1; if (localVerbose > 0) { cout << " Iteration " << outerIter; cout << " - Number of converged eigenvalues " << iparam[4] << endl; } if (localVerbose > 2) { memcpy(resHistory + historyCount, normR, NCV*sizeof(double)); historyCount += NCV; } if (localVerbose > 1) { cout.precision(2); cout.setf(ios::scientific, ios::floatfield); for (ii=0; ii < NCV; ++ii) { cout << " Iteration " << outerIter; cout << " - Scaled Norm of Residual " << ii << " = " << normR[ii] << endl; } cout << endl; cout.precision(2); for (ii = 0; ii < NCV; ++ii) { cout << " Iteration " << outerIter << " - Ritz eigenvalue " << ii; cout.setf((fabs(dd[ii]) > 100) ? ios::scientific : ios::fixed, ios::floatfield); cout << " = " << 1.0/dd[ii] << endl; } cout << endl; } } // if (ido == 4) } // while (ido != 99) timeOuterLoop += MyWatch.WallTime(); highMem = (highMem > currentSize()) ? highMem : currentSize(); if (info < 0) { if (myPid == 0) { cerr << endl; cerr << " Error with DSAUPD, info = " << info << endl; cerr << endl; } } else { // Get the eigenvalues timePostProce -= MyWatch.WallTime(); int ii, jj; double *pointer = workl + 4*NCV + NCV*NCV; for (ii=0; ii < localSize; ii += 3) { int nRow = (ii + 3 < localSize) ? 3 : localSize - ii; for (jj=0; jj<NCV; ++jj) memcpy(pointer + jj*nRow, v + ii + jj*localSize, nRow*sizeof(double)); callBLAS.GEMM('N', 'N', nRow, NCV, NCV, 1.0, pointer, nRow, zz, NCV, 0.0, Q.Values() + ii, localSize); } // Put the converged eigenpairs at the beginning knownEV = 0; for (ii=0; ii < NCV; ++ii) { if (normR[ii] < tolEigenSolve) { lambda[knownEV] = 1.0/dd[ii]; memcpy(Q.Values()+knownEV*localSize, Q.Values()+ii*localSize, localSize*sizeof(double)); knownEV += 1; if (knownEV == Q.NumVectors()) break; } } // Sort the eigenpairs if (knownEV > 0) { mySort.sortScalars_Vectors(knownEV, lambda, Q.Values(), localSize); } timePostProce += MyWatch.WallTime(); } // if (info < 0) if (info == 0) { orthoOp = iparam[11-1]; } delete[] wI; delete[] wD; delete[] wD2; if (vectWeight) delete vectWeight; return (info == 0) ? knownEV : info; }
int BlockDACG::reSolve(int numEigen, Epetra_MultiVector &Q, double *lambda, int startingEV) { // Computes the smallest eigenvalues and the corresponding eigenvectors // of the generalized eigenvalue problem // // K X = M X Lambda // // using a Block Deflation Accelerated Conjugate Gradient algorithm. // // Note that if M is not specified, then K X = X Lambda is solved. // // Ref: P. Arbenz & R. Lehoucq, "A comparison of algorithms for modal analysis in the // absence of a sparse direct method", SNL, Technical Report SAND2003-1028J // With the notations of this report, the coefficient beta is defined as // diag( H^T_{k} G_{k} ) / diag( H^T_{k-1} G_{k-1} ) // // Input variables: // // numEigen (integer) = Number of eigenmodes requested // // Q (Epetra_MultiVector) = Converged eigenvectors // The number of columns of Q must be equal to numEigen + blockSize. // The rows of Q are distributed across processors. // At exit, the first numEigen columns contain the eigenvectors requested. // // lambda (array of doubles) = Converged eigenvalues // At input, it must be of size numEigen + blockSize. // At exit, the first numEigen locations contain the eigenvalues requested. // // startingEV (integer) = Number of existing converged eigenmodes // // Return information on status of computation // // info >= 0 >> Number of converged eigenpairs at the end of computation // // // Failure due to input arguments // // info = - 1 >> The stiffness matrix K has not been specified. // info = - 2 >> The maps for the matrix K and the matrix M differ. // info = - 3 >> The maps for the matrix K and the preconditioner P differ. // info = - 4 >> The maps for the vectors and the matrix K differ. // info = - 5 >> Q is too small for the number of eigenvalues requested. // info = - 6 >> Q is too small for the computation parameters. // // info = - 10 >> Failure during the mass orthonormalization // // info = - 20 >> Error in LAPACK during the local eigensolve // // info = - 30 >> MEMORY // // Check the input parameters if (numEigen <= startingEV) { return startingEV; } int info = myVerify.inputArguments(numEigen, K, M, Prec, Q, numEigen + blockSize); if (info < 0) return info; int myPid = MyComm.MyPID(); // Get the weight for approximating the M-inverse norm Epetra_Vector *vectWeight = 0; if (normWeight) { vectWeight = new Epetra_Vector(View, Q.Map(), normWeight); } int knownEV = startingEV; int localVerbose = verbose*(myPid==0); // Define local block vectors // // MX = Working vectors (storing M*X if M is specified, else pointing to X) // KX = Working vectors (storing K*X) // // R = Residuals // // H = Preconditioned residuals // // P = Search directions // MP = Working vectors (storing M*P if M is specified, else pointing to P) // KP = Working vectors (storing K*P) int xr = Q.MyLength(); Epetra_MultiVector X(View, Q, numEigen, blockSize); X.Random(); int tmp; tmp = (M == 0) ? 5*blockSize*xr : 7*blockSize*xr; double *work1 = new (nothrow) double[tmp]; if (work1 == 0) { if (vectWeight) delete vectWeight; info = -30; return info; } memRequested += sizeof(double)*tmp/(1024.0*1024.0); highMem = (highMem > currentSize()) ? highMem : currentSize(); double *tmpD = work1; Epetra_MultiVector KX(View, Q.Map(), tmpD, xr, blockSize); tmpD = tmpD + xr*blockSize; Epetra_MultiVector MX(View, Q.Map(), (M) ? tmpD : X.Values(), xr, blockSize); tmpD = (M) ? tmpD + xr*blockSize : tmpD; Epetra_MultiVector R(View, Q.Map(), tmpD, xr, blockSize); tmpD = tmpD + xr*blockSize; Epetra_MultiVector H(View, Q.Map(), tmpD, xr, blockSize); tmpD = tmpD + xr*blockSize; Epetra_MultiVector P(View, Q.Map(), tmpD, xr, blockSize); tmpD = tmpD + xr*blockSize; Epetra_MultiVector KP(View, Q.Map(), tmpD, xr, blockSize); tmpD = tmpD + xr*blockSize; Epetra_MultiVector MP(View, Q.Map(), (M) ? tmpD : P.Values(), xr, blockSize); // Define arrays // // theta = Store the local eigenvalues (size: 2*blockSize) // normR = Store the norm of residuals (size: blockSize) // // oldHtR = Store the previous H_i^T*R_i (size: blockSize) // currentHtR = Store the current H_i^T*R_i (size: blockSize) // // MM = Local mass matrix (size: 2*blockSize x 2*blockSize) // KK = Local stiffness matrix (size: 2*blockSize x 2*blockSize) // // S = Local eigenvectors (size: 2*blockSize x 2*blockSize) int lwork2; lwork2 = 5*blockSize + 12*blockSize*blockSize; double *work2 = new (nothrow) double[lwork2]; if (work2 == 0) { if (vectWeight) delete vectWeight; delete[] work1; info = -30; return info; } highMem = (highMem > currentSize()) ? highMem : currentSize(); tmpD = work2; double *theta = tmpD; tmpD = tmpD + 2*blockSize; double *normR = tmpD; tmpD = tmpD + blockSize; double *oldHtR = tmpD; tmpD = tmpD + blockSize; double *currentHtR = tmpD; tmpD = tmpD + blockSize; memset(currentHtR, 0, blockSize*sizeof(double)); double *MM = tmpD; tmpD = tmpD + 4*blockSize*blockSize; double *KK = tmpD; tmpD = tmpD + 4*blockSize*blockSize; double *S = tmpD; memRequested += sizeof(double)*lwork2/(1024.0*1024.0); // Define an array to store the residuals history if (localVerbose > 2) { resHistory = new (nothrow) double[maxIterEigenSolve*blockSize]; if (resHistory == 0) { if (vectWeight) delete vectWeight; delete[] work1; delete[] work2; info = -30; return info; } historyCount = 0; } // Miscellaneous definitions bool reStart = false; numRestart = 0; int localSize; int twoBlocks = 2*blockSize; int nFound = blockSize; int i, j; if (localVerbose > 0) { cout << endl; cout << " *|* Problem: "; if (M) cout << "K*Q = M*Q D "; else cout << "K*Q = Q D "; if (Prec) cout << " with preconditioner"; cout << endl; cout << " *|* Algorithm = DACG (block version)" << endl; cout << " *|* Size of blocks = " << blockSize << endl; cout << " *|* Number of requested eigenvalues = " << numEigen << endl; cout.precision(2); cout.setf(ios::scientific, ios::floatfield); cout << " *|* Tolerance for convergence = " << tolEigenSolve << endl; cout << " *|* Norm used for convergence: "; if (normWeight) cout << "weighted L2-norm with user-provided weights" << endl; else cout << "L^2-norm" << endl; if (startingEV > 0) cout << " *|* Input converged eigenvectors = " << startingEV << endl; cout << "\n -- Start iterations -- \n"; } timeOuterLoop -= MyWatch.WallTime(); for (outerIter = 1; outerIter <= maxIterEigenSolve; ++outerIter) { highMem = (highMem > currentSize()) ? highMem : currentSize(); if ((outerIter == 1) || (reStart == true)) { reStart = false; localSize = blockSize; if (nFound > 0) { Epetra_MultiVector X2(View, X, blockSize-nFound, nFound); Epetra_MultiVector MX2(View, MX, blockSize-nFound, nFound); Epetra_MultiVector KX2(View, KX, blockSize-nFound, nFound); // Apply the mass matrix to X timeMassOp -= MyWatch.WallTime(); if (M) M->Apply(X2, MX2); timeMassOp += MyWatch.WallTime(); massOp += nFound; if (knownEV > 0) { // Orthonormalize X against the known eigenvectors with Gram-Schmidt // Note: Use R as a temporary work space Epetra_MultiVector copyQ(View, Q, 0, knownEV); timeOrtho -= MyWatch.WallTime(); info = modalTool.massOrthonormalize(X, MX, M, copyQ, nFound, 0, R.Values()); timeOrtho += MyWatch.WallTime(); // Exit the code if the orthogonalization did not succeed if (info < 0) { info = -10; delete[] work1; delete[] work2; if (vectWeight) delete vectWeight; return info; } } // Apply the stiffness matrix to X timeStifOp -= MyWatch.WallTime(); K->Apply(X2, KX2); timeStifOp += MyWatch.WallTime(); stifOp += nFound; } // if (nFound > 0) } // if ((outerIter == 1) || (reStart == true)) else { // Apply the preconditioner on the residuals if (Prec != 0) { timePrecOp -= MyWatch.WallTime(); Prec->ApplyInverse(R, H); timePrecOp += MyWatch.WallTime(); precOp += blockSize; } else { memcpy(H.Values(), R.Values(), xr*blockSize*sizeof(double)); } // Compute the product H^T*R timeSearchP -= MyWatch.WallTime(); memcpy(oldHtR, currentHtR, blockSize*sizeof(double)); H.Dot(R, currentHtR); // Define the new search directions if (localSize == blockSize) { P.Scale(-1.0, H); localSize = twoBlocks; } // if (localSize == blockSize) else { bool hasZeroDot = false; for (j = 0; j < blockSize; ++j) { if (oldHtR[j] == 0.0) { hasZeroDot = true; break; } callBLAS.SCAL(xr, currentHtR[j]/oldHtR[j], P.Values() + j*xr); } if (hasZeroDot == true) { // Restart the computation when there is a null dot product if (localVerbose > 0) { cout << endl; cout << " !! Null dot product -- Restart the search space !!\n"; cout << endl; } if (blockSize == 1) { X.Random(); nFound = blockSize; } else { Epetra_MultiVector Xinit(View, X, j, blockSize-j); Xinit.Random(); nFound = blockSize - j; } // if (blockSize == 1) reStart = true; numRestart += 1; info = 0; continue; } callBLAS.AXPY(xr*blockSize, -1.0, H.Values(), P.Values()); } // if (localSize == blockSize) timeSearchP += MyWatch.WallTime(); // Apply the mass matrix on P timeMassOp -= MyWatch.WallTime(); if (M) M->Apply(P, MP); timeMassOp += MyWatch.WallTime(); massOp += blockSize; if (knownEV > 0) { // Orthogonalize P against the known eigenvectors // Note: Use R as a temporary work space Epetra_MultiVector copyQ(View, Q, 0, knownEV); timeOrtho -= MyWatch.WallTime(); modalTool.massOrthonormalize(P, MP, M, copyQ, blockSize, 1, R.Values()); timeOrtho += MyWatch.WallTime(); } // Apply the stiffness matrix to P timeStifOp -= MyWatch.WallTime(); K->Apply(P, KP); timeStifOp += MyWatch.WallTime(); stifOp += blockSize; } // if ((outerIter == 1) || (reStart == true)) // Form "local" mass and stiffness matrices // Note: Use S as a temporary workspace timeLocalProj -= MyWatch.WallTime(); modalTool.localProjection(blockSize, blockSize, xr, X.Values(), xr, KX.Values(), xr, KK, localSize, S); modalTool.localProjection(blockSize, blockSize, xr, X.Values(), xr, MX.Values(), xr, MM, localSize, S); if (localSize > blockSize) { modalTool.localProjection(blockSize, blockSize, xr, X.Values(), xr, KP.Values(), xr, KK + blockSize*localSize, localSize, S); modalTool.localProjection(blockSize, blockSize, xr, P.Values(), xr, KP.Values(), xr, KK + blockSize*localSize + blockSize, localSize, S); modalTool.localProjection(blockSize, blockSize, xr, X.Values(), xr, MP.Values(), xr, MM + blockSize*localSize, localSize, S); modalTool.localProjection(blockSize, blockSize, xr, P.Values(), xr, MP.Values(), xr, MM + blockSize*localSize + blockSize, localSize, S); } // if (localSize > blockSize) timeLocalProj += MyWatch.WallTime(); // Perform a spectral decomposition timeLocalSolve -= MyWatch.WallTime(); int nevLocal = localSize; info = modalTool.directSolver(localSize, KK, localSize, MM, localSize, nevLocal, S, localSize, theta, localVerbose, (blockSize == 1) ? 1: 0); timeLocalSolve += MyWatch.WallTime(); if (info < 0) { // Stop when spectral decomposition has a critical failure break; } // Check for restarting if ((theta[0] < 0.0) || (nevLocal < blockSize)) { if (localVerbose > 0) { cout << " Iteration " << outerIter; cout << "- Failure for spectral decomposition - RESTART with new random search\n"; } if (blockSize == 1) { X.Random(); nFound = blockSize; } else { Epetra_MultiVector Xinit(View, X, 1, blockSize-1); Xinit.Random(); nFound = blockSize - 1; } // if (blockSize == 1) reStart = true; numRestart += 1; info = 0; continue; } // if ((theta[0] < 0.0) || (nevLocal < blockSize)) if ((localSize == twoBlocks) && (nevLocal == blockSize)) { for (j = 0; j < nevLocal; ++j) memcpy(S + j*blockSize, S + j*twoBlocks, blockSize*sizeof(double)); localSize = blockSize; } // Check the direction of eigenvectors // Note: This sign check is important for convergence for (j = 0; j < nevLocal; ++j) { double coeff = S[j + j*localSize]; if (coeff < 0.0) callBLAS.SCAL(localSize, -1.0, S + j*localSize); } // Compute the residuals timeResidual -= MyWatch.WallTime(); callBLAS.GEMM('N', 'N', xr, blockSize, blockSize, 1.0, KX.Values(), xr, S, localSize, 0.0, R.Values(), xr); if (localSize == twoBlocks) { callBLAS.GEMM('N', 'N', xr, blockSize, blockSize, 1.0, KP.Values(), xr, S + blockSize, localSize, 1.0, R.Values(), xr); } for (j = 0; j < blockSize; ++j) callBLAS.SCAL(localSize, theta[j], S + j*localSize); callBLAS.GEMM('N', 'N', xr, blockSize, blockSize, -1.0, MX.Values(), xr, S, localSize, 1.0, R.Values(), xr); if (localSize == twoBlocks) { callBLAS.GEMM('N', 'N', xr, blockSize, blockSize, -1.0, MP.Values(), xr, S + blockSize, localSize, 1.0, R.Values(), xr); } for (j = 0; j < blockSize; ++j) callBLAS.SCAL(localSize, 1.0/theta[j], S + j*localSize); timeResidual += MyWatch.WallTime(); // Compute the norms of the residuals timeNorm -= MyWatch.WallTime(); if (vectWeight) R.NormWeighted(*vectWeight, normR); else R.Norm2(normR); // Scale the norms of residuals with the eigenvalues // Count the converged eigenvectors nFound = 0; for (j = 0; j < blockSize; ++j) { normR[j] = (theta[j] == 0.0) ? normR[j] : normR[j]/theta[j]; if (normR[j] < tolEigenSolve) nFound += 1; } timeNorm += MyWatch.WallTime(); // Store the residual history if (localVerbose > 2) { memcpy(resHistory + historyCount*blockSize, normR, blockSize*sizeof(double)); historyCount += 1; } // Print information on current iteration if (localVerbose > 0) { cout << " Iteration " << outerIter << " - Number of converged eigenvectors "; cout << knownEV + nFound << endl; } if (localVerbose > 1) { cout << endl; cout.precision(2); cout.setf(ios::scientific, ios::floatfield); for (i=0; i<blockSize; ++i) { cout << " Iteration " << outerIter << " - Scaled Norm of Residual " << i; cout << " = " << normR[i] << endl; } cout << endl; cout.precision(2); for (i=0; i<blockSize; ++i) { cout << " Iteration " << outerIter << " - Ritz eigenvalue " << i; cout.setf((fabs(theta[i]) < 0.01) ? ios::scientific : ios::fixed, ios::floatfield); cout << " = " << theta[i] << endl; } cout << endl; } if (nFound == 0) { // Update the spaces // Note: Use H as a temporary work space timeLocalUpdate -= MyWatch.WallTime(); memcpy(H.Values(), X.Values(), xr*blockSize*sizeof(double)); callBLAS.GEMM('N', 'N', xr, blockSize, blockSize, 1.0, H.Values(), xr, S, localSize, 0.0, X.Values(), xr); memcpy(H.Values(), KX.Values(), xr*blockSize*sizeof(double)); callBLAS.GEMM('N', 'N', xr, blockSize, blockSize, 1.0, H.Values(), xr, S, localSize, 0.0, KX.Values(), xr); if (M) { memcpy(H.Values(), MX.Values(), xr*blockSize*sizeof(double)); callBLAS.GEMM('N', 'N', xr, blockSize, blockSize, 1.0, H.Values(), xr, S, localSize, 0.0, MX.Values(), xr); } if (localSize == twoBlocks) { callBLAS.GEMM('N', 'N', xr, blockSize, blockSize, 1.0, P.Values(), xr, S + blockSize, localSize, 1.0, X.Values(), xr); callBLAS.GEMM('N', 'N', xr, blockSize, blockSize, 1.0, KP.Values(), xr, S + blockSize, localSize, 1.0, KX.Values(), xr); if (M) { callBLAS.GEMM('N', 'N', xr, blockSize, blockSize, 1.0, MP.Values(), xr, S + blockSize, localSize, 1.0, MX.Values(), xr); } } // if (localSize == twoBlocks) timeLocalUpdate += MyWatch.WallTime(); // When required, monitor some orthogonalities if (verbose > 2) { if (knownEV == 0) { accuracyCheck(&X, &MX, &R, 0, (localSize>blockSize) ? &P : 0); } else { Epetra_MultiVector copyQ(View, Q, 0, knownEV); accuracyCheck(&X, &MX, &R, ©Q, (localSize>blockSize) ? &P : 0); } } // if (verbose > 2) continue; } // if (nFound == 0) // Order the Ritz eigenvectors by putting the converged vectors at the beginning int firstIndex = blockSize; for (j = 0; j < blockSize; ++j) { if (normR[j] >= tolEigenSolve) { firstIndex = j; break; } } // for (j = 0; j < blockSize; ++j) while (firstIndex < nFound) { for (j = firstIndex; j < blockSize; ++j) { if (normR[j] < tolEigenSolve) { // Swap the j-th and firstIndex-th position callFortran.SWAP(localSize, S + j*localSize, 1, S + firstIndex*localSize, 1); callFortran.SWAP(1, theta + j, 1, theta + firstIndex, 1); callFortran.SWAP(1, normR + j, 1, normR + firstIndex, 1); break; } } // for (j = firstIndex; j < blockSize; ++j) for (j = 0; j < blockSize; ++j) { if (normR[j] >= tolEigenSolve) { firstIndex = j; break; } } // for (j = 0; j < blockSize; ++j) } // while (firstIndex < nFound) // Copy the converged eigenvalues memcpy(lambda + knownEV, theta, nFound*sizeof(double)); // Convergence test if (knownEV + nFound >= numEigen) { callBLAS.GEMM('N', 'N', xr, nFound, blockSize, 1.0, X.Values(), xr, S, localSize, 0.0, R.Values(), xr); if (localSize > blockSize) { callBLAS.GEMM('N', 'N', xr, nFound, blockSize, 1.0, P.Values(), xr, S + blockSize, localSize, 1.0, R.Values(), xr); } memcpy(Q.Values() + knownEV*xr, R.Values(), nFound*xr*sizeof(double)); knownEV += nFound; if (localVerbose == 1) { cout << endl; cout.precision(2); cout.setf(ios::scientific, ios::floatfield); for (i=0; i<blockSize; ++i) { cout << " Iteration " << outerIter << " - Scaled Norm of Residual " << i; cout << " = " << normR[i] << endl; } cout << endl; } break; } // Store the converged eigenvalues and eigenvectors callBLAS.GEMM('N', 'N', xr, nFound, blockSize, 1.0, X.Values(), xr, S, localSize, 0.0, Q.Values() + knownEV*xr, xr); if (localSize == twoBlocks) { callBLAS.GEMM('N', 'N', xr, nFound, blockSize, 1.0, P.Values(), xr, S + blockSize, localSize, 1.0, Q.Values() + knownEV*xr, xr); } knownEV += nFound; // Define the restarting vectors timeRestart -= MyWatch.WallTime(); int leftOver = (nevLocal < blockSize + nFound) ? nevLocal - nFound : blockSize; double *Snew = S + nFound*localSize; memcpy(H.Values(), X.Values(), blockSize*xr*sizeof(double)); callBLAS.GEMM('N', 'N', xr, leftOver, blockSize, 1.0, H.Values(), xr, Snew, localSize, 0.0, X.Values(), xr); memcpy(H.Values(), KX.Values(), blockSize*xr*sizeof(double)); callBLAS.GEMM('N', 'N', xr, leftOver, blockSize, 1.0, H.Values(), xr, Snew, localSize, 0.0, KX.Values(), xr); if (M) { memcpy(H.Values(), MX.Values(), blockSize*xr*sizeof(double)); callBLAS.GEMM('N', 'N', xr, leftOver, blockSize, 1.0, H.Values(), xr, Snew, localSize, 0.0, MX.Values(), xr); } if (localSize == twoBlocks) { callBLAS.GEMM('N', 'N', xr, leftOver, blockSize, 1.0, P.Values(), xr, Snew+blockSize, localSize, 1.0, X.Values(), xr); callBLAS.GEMM('N', 'N', xr, leftOver, blockSize, 1.0, KP.Values(), xr, Snew+blockSize, localSize, 1.0, KX.Values(), xr); if (M) { callBLAS.GEMM('N', 'N', xr, leftOver, blockSize, 1.0, MP.Values(), xr, Snew+blockSize, localSize, 1.0, MX.Values(), xr); } } // if (localSize == twoBlocks) if (nevLocal < blockSize + nFound) { // Put new random vectors at the end of the block Epetra_MultiVector Xtmp(View, X, leftOver, blockSize - leftOver); Xtmp.Random(); } else { nFound = 0; } // if (nevLocal < blockSize + nFound) reStart = true; timeRestart += MyWatch.WallTime(); } // for (outerIter = 1; outerIter <= maxIterEigenSolve; ++outerIter) timeOuterLoop += MyWatch.WallTime(); highMem = (highMem > currentSize()) ? highMem : currentSize(); // Clean memory delete[] work1; delete[] work2; if (vectWeight) delete vectWeight; // Sort the eigenpairs timePostProce -= MyWatch.WallTime(); if ((info == 0) && (knownEV > 0)) { mySort.sortScalars_Vectors(knownEV, lambda, Q.Values(), Q.MyLength()); } timePostProce += MyWatch.WallTime(); return (info == 0) ? knownEV : info; }
int BlockPCGSolver::Solve(const Epetra_MultiVector &X, Epetra_MultiVector &Y, int blkSize) const { int xrow = X.MyLength(); int xcol = X.NumVectors(); int ycol = Y.NumVectors(); int info = 0; int localVerbose = verbose*(MyComm.MyPID() == 0); double *valX = X.Values(); int NB = 3 + callLAPACK.ILAENV(1, "hetrd", "u", blkSize); int lworkD = (blkSize > NB) ? blkSize*blkSize : NB*blkSize; int wSize = 4*blkSize*xrow + 3*blkSize + 2*blkSize*blkSize + lworkD; bool useY = true; if (ycol % blkSize != 0) { // Allocate an extra block to store the solutions wSize += blkSize*xrow; useY = false; } if (lWorkSpace < wSize) { delete[] workSpace; workSpace = new (std::nothrow) double[wSize]; if (workSpace == 0) { info = -1; return info; } lWorkSpace = wSize; } // if (lWorkSpace < wSize) double *pointer = workSpace; // Array to store the matrix PtKP double *PtKP = pointer; pointer = pointer + blkSize*blkSize; // Array to store coefficient matrices double *coeff = pointer; pointer = pointer + blkSize*blkSize; // Workspace array double *workD = pointer; pointer = pointer + lworkD; // Array to store the eigenvalues of P^t K P double *da = pointer; pointer = pointer + blkSize; // Array to store the norms of right hand sides double *initNorm = pointer; pointer = pointer + blkSize; // Array to store the norms of residuals double *resNorm = pointer; pointer = pointer + blkSize; // Array to store the residuals double *valR = pointer; pointer = pointer + xrow*blkSize; Epetra_MultiVector R(View, X.Map(), valR, xrow, blkSize); // Array to store the preconditioned residuals double *valZ = pointer; pointer = pointer + xrow*blkSize; Epetra_MultiVector Z(View, X.Map(), valZ, xrow, blkSize); // Array to store the search directions double *valP = pointer; pointer = pointer + xrow*blkSize; Epetra_MultiVector P(View, X.Map(), valP, xrow, blkSize); // Array to store the image of the search directions double *valKP = pointer; pointer = pointer + xrow*blkSize; Epetra_MultiVector KP(View, X.Map(), valKP, xrow, blkSize); // Pointer to store the solutions double *valSOL = (useY == true) ? Y.Values() : pointer; int iRHS; for (iRHS = 0; iRHS < xcol; iRHS += blkSize) { int numVec = (iRHS + blkSize < xcol) ? blkSize : xcol - iRHS; // Set the initial residuals to the right hand sides if (numVec < blkSize) { R.Random(); } memcpy(valR, valX + iRHS*xrow, numVec*xrow*sizeof(double)); // Set the initial guess to zero valSOL = (useY == true) ? Y.Values() + iRHS*xrow : valSOL; Epetra_MultiVector SOL(View, X.Map(), valSOL, xrow, blkSize); SOL.PutScalar(0.0); int ii = 0; int iter = 0; int nFound = 0; R.Norm2(initNorm); if (localVerbose > 1) { std::cout << std::endl; std::cout << " Vectors " << iRHS << " to " << iRHS + numVec - 1 << std::endl; if (localVerbose > 2) { std::fprintf(stderr,"\n"); for (ii = 0; ii < numVec; ++ii) { std::cout << " ... Initial Residual Norm " << ii << " = " << initNorm[ii] << std::endl; } std::cout << std::endl; } } // Iteration loop for (iter = 1; iter <= iterMax; ++iter) { // Apply the preconditioner if (Prec) Prec->ApplyInverse(R, Z); else Z = R; // Define the new search directions if (iter == 1) { P = Z; } else { // Compute P^t K Z callBLAS.GEMM(Teuchos::TRANS, Teuchos::NO_TRANS, blkSize, blkSize, xrow, 1.0, KP.Values(), xrow, Z.Values(), xrow, 0.0, workD, blkSize); MyComm.SumAll(workD, coeff, blkSize*blkSize); // Compute the coefficient (P^t K P)^{-1} P^t K Z callBLAS.GEMM(Teuchos::TRANS, Teuchos::NO_TRANS, blkSize, blkSize, blkSize, 1.0, PtKP, blkSize, coeff, blkSize, 0.0, workD, blkSize); for (ii = 0; ii < blkSize; ++ii) callBLAS.SCAL(blkSize, da[ii], workD + ii, blkSize); callBLAS.GEMM(Teuchos::NO_TRANS, Teuchos::NO_TRANS, blkSize, blkSize, blkSize, 1.0, PtKP, blkSize, workD, blkSize, 0.0, coeff, blkSize); // Update the search directions // Note: Use KP as a workspace memcpy(KP.Values(), P.Values(), xrow*blkSize*sizeof(double)); callBLAS.GEMM(Teuchos::NO_TRANS, Teuchos::NO_TRANS, xrow, blkSize, blkSize, 1.0, KP.Values(), xrow, coeff, blkSize, 0.0, P.Values(), xrow); P.Update(1.0, Z, -1.0); } // if (iter == 1) K->Apply(P, KP); // Compute P^t K P callBLAS.GEMM(Teuchos::TRANS, Teuchos::NO_TRANS, blkSize, blkSize, xrow, 1.0, P.Values(), xrow, KP.Values(), xrow, 0.0, workD, blkSize); MyComm.SumAll(workD, PtKP, blkSize*blkSize); // Eigenvalue decomposition of P^t K P callLAPACK.SYEV('V', 'U', blkSize, PtKP, blkSize, da, workD, lworkD, &info); if (info) { // Break the loop as spectral decomposition failed break; } // if (info) // Compute the pseudo-inverse of the eigenvalues for (ii = 0; ii < blkSize; ++ii) { TEUCHOS_TEST_FOR_EXCEPTION(da[ii] < 0.0, std::runtime_error, "Negative " "eigenvalue for P^T K P: da[" << ii << "] = " << da[ii] << "."); da[ii] = (da[ii] == 0.0) ? 0.0 : 1.0/da[ii]; } // for (ii = 0; ii < blkSize; ++ii) // Compute P^t R callBLAS.GEMM(Teuchos::TRANS, Teuchos::NO_TRANS, blkSize, blkSize, xrow, 1.0, P.Values(), xrow, R.Values(), xrow, 0.0, workD, blkSize); MyComm.SumAll(workD, coeff, blkSize*blkSize); // Compute the coefficient (P^t K P)^{-1} P^t R callBLAS.GEMM(Teuchos::TRANS, Teuchos::NO_TRANS, blkSize, blkSize, blkSize, 1.0, PtKP, blkSize, coeff, blkSize, 0.0, workD, blkSize); for (ii = 0; ii < blkSize; ++ii) callBLAS.SCAL(blkSize, da[ii], workD + ii, blkSize); callBLAS.GEMM(Teuchos::NO_TRANS, Teuchos::NO_TRANS, blkSize, blkSize, blkSize, 1.0, PtKP, blkSize, workD, blkSize, 0.0, coeff, blkSize); // Update the solutions callBLAS.GEMM(Teuchos::NO_TRANS, Teuchos::NO_TRANS, xrow, blkSize, blkSize, 1.0, P.Values(), xrow, coeff, blkSize, 1.0, valSOL, xrow); // Update the residuals callBLAS.GEMM(Teuchos::NO_TRANS, Teuchos::NO_TRANS, xrow, blkSize, blkSize, -1.0, KP.Values(), xrow, coeff, blkSize, 1.0, R.Values(), xrow); // Check convergence R.Norm2(resNorm); nFound = 0; for (ii = 0; ii < numVec; ++ii) { if (resNorm[ii] <= tolCG*initNorm[ii]) nFound += 1; } if (localVerbose > 1) { std::cout << " Vectors " << iRHS << " to " << iRHS + numVec - 1; std::cout << " -- Iteration " << iter << " -- " << nFound << " converged vectors\n"; if (localVerbose > 2) { std::cout << std::endl; for (ii = 0; ii < numVec; ++ii) { std::cout << " ... "; std::cout.width(5); std::cout << ii << " ... Residual = "; std::cout.precision(2); std::cout.setf(std::ios::scientific, std::ios::floatfield); std::cout << resNorm[ii] << " ... Right Hand Side = " << initNorm[ii] << std::endl; } std::cout << std::endl; } } if (nFound == numVec) { break; } } // for (iter = 1; iter <= maxIter; ++iter) if (useY == false) { // Copy the solutions back into Y memcpy(Y.Values() + xrow*iRHS, valSOL, numVec*xrow*sizeof(double)); } numSolve += nFound; if (nFound == numVec) { minIter = (iter < minIter) ? iter : minIter; maxIter = (iter > maxIter) ? iter : maxIter; sumIter += iter; } } // for (iRHS = 0; iRHS < xcol; iRHS += blkSize) return info; }
int BlockPCGSolver::Solve(const Epetra_MultiVector &X, Epetra_MultiVector &Y) const { int info = 0; int localVerbose = verbose*(MyComm.MyPID() == 0); int xr = X.MyLength(); int wSize = 3*xr; if (lWorkSpace < wSize) { if (workSpace) delete[] workSpace; workSpace = new (std::nothrow) double[wSize]; if (workSpace == 0) { info = -1; return info; } lWorkSpace = wSize; } // if (lWorkSpace < wSize) double *pointer = workSpace; Epetra_Vector r(View, X.Map(), pointer); pointer = pointer + xr; Epetra_Vector p(View, X.Map(), pointer); pointer = pointer + xr; // Note: Kp and z uses the same memory space Epetra_Vector Kp(View, X.Map(), pointer); Epetra_Vector z(View, X.Map(), pointer); double tmp; double initNorm = 0.0, rNorm = 0.0, newRZ = 0.0, oldRZ = 0.0, alpha = 0.0; double tolSquare = tolCG*tolCG; memcpy(r.Values(), X.Values(), xr*sizeof(double)); tmp = callBLAS.DOT(xr, r.Values(), 1, r.Values(), 1); MyComm.SumAll(&tmp, &initNorm, 1); Y.PutScalar(0.0); if (localVerbose > 1) { std::cout << std::endl; std::cout << " --- PCG Iterations --- " << std::endl; } int iter; for (iter = 1; iter <= iterMax; ++iter) { if (Prec) { Prec->ApplyInverse(r, z); } else { memcpy(z.Values(), r.Values(), xr*sizeof(double)); } if (iter == 1) { tmp = callBLAS.DOT(xr, r.Values(), 1, z.Values(), 1); MyComm.SumAll(&tmp, &newRZ, 1); memcpy(p.Values(), z.Values(), xr*sizeof(double)); } else { oldRZ = newRZ; tmp = callBLAS.DOT(xr, r.Values(), 1, z.Values(), 1); MyComm.SumAll(&tmp, &newRZ, 1); p.Update(1.0, z, newRZ/oldRZ); } K->Apply(p, Kp); tmp = callBLAS.DOT(xr, p.Values(), 1, Kp.Values(), 1); MyComm.SumAll(&tmp, &alpha, 1); alpha = newRZ/alpha; TEUCHOS_TEST_FOR_EXCEPTION(alpha <= 0.0, std::runtime_error, " !!! Non-positive value for p^TKp (" << alpha << ") !!!"); callBLAS.AXPY(xr, alpha, p.Values(), 1, Y.Values(), 1); alpha *= -1.0; callBLAS.AXPY(xr, alpha, Kp.Values(), 1, r.Values(), 1); // Check convergence tmp = callBLAS.DOT(xr, r.Values(), 1, r.Values(), 1); MyComm.SumAll(&tmp, &rNorm, 1); if (localVerbose > 1) { std::cout << " Iter. " << iter; std::cout.precision(4); std::cout.setf(std::ios::scientific, std::ios::floatfield); std::cout << " Residual reduction " << std::sqrt(rNorm/initNorm) << std::endl; } if (rNorm <= tolSquare*initNorm) break; } // for (iter = 1; iter <= iterMax; ++iter) if (localVerbose == 1) { std::cout << std::endl; std::cout << " --- End of PCG solve ---" << std::endl; std::cout << " Iter. " << iter; std::cout.precision(4); std::cout.setf(std::ios::scientific, std::ios::floatfield); std::cout << " Residual reduction " << std::sqrt(rNorm/initNorm) << std::endl; std::cout << std::endl; } if (localVerbose > 1) { std::cout << std::endl; } numSolve += 1; minIter = (iter < minIter) ? iter : minIter; maxIter = (iter > maxIter) ? iter : maxIter; sumIter += iter; return info; }
int Davidson::reSolve(int numEigen, Epetra_MultiVector &Q, double *lambda, int startingEV) { // Computes the smallest eigenvalues and the corresponding eigenvectors // of the generalized eigenvalue problem // // K X = M X Lambda // // using a generalized Davidson algorithm // // Note that if M is not specified, then K X = X Lambda is solved. // // Input variables: // // numEigen (integer) = Number of eigenmodes requested // // Q (Epetra_MultiVector) = Converged eigenvectors // The number of columns of Q must be at least numEigen + blockSize. // The rows of Q are distributed across processors. // At exit, the first numEigen columns contain the eigenvectors requested. // // lambda (array of doubles) = Converged eigenvalues // At input, it must be of size numEigen + blockSize. // At exit, the first numEigen locations contain the eigenvalues requested. // // startingEV (integer) = Number of existing converged eigenvectors // We assume that the user has check the eigenvectors and // their M-orthonormality. // // Return information on status of computation // // info >= 0 >> Number of converged eigenpairs at the end of computation // // // Failure due to input arguments // // info = - 1 >> The stiffness matrix K has not been specified. // info = - 2 >> The maps for the matrix K and the matrix M differ. // info = - 3 >> The maps for the matrix K and the preconditioner P differ. // info = - 4 >> The maps for the vectors and the matrix K differ. // info = - 5 >> Q is too small for the number of eigenvalues requested. // info = - 6 >> Q is too small for the computation parameters. // // info = - 8 >> The number of blocks is too small for the number of eigenvalues. // // info = - 10 >> Failure during the mass orthonormalization // // info = - 30 >> MEMORY // // Check the input parameters if (numEigen <= startingEV) { return startingEV; } int info = myVerify.inputArguments(numEigen, K, M, Prec, Q, minimumSpaceDimension(numEigen)); if (info < 0) return info; int myPid = MyComm.MyPID(); if (numBlock*blockSize < numEigen) { if (myPid == 0) { cerr << endl; cerr << " !!! The space dimension (# of blocks x size of blocks) must be greater than "; cerr << " the number of eigenvalues !!!\n"; cerr << " Number of blocks = " << numBlock << endl; cerr << " Size of blocks = " << blockSize << endl; cerr << " Number of eigenvalues = " << numEigen << endl; cerr << endl; } return -8; } // Get the weight for approximating the M-inverse norm Epetra_Vector *vectWeight = 0; if (normWeight) { vectWeight = new Epetra_Vector(View, Q.Map(), normWeight); } int knownEV = startingEV; int localVerbose = verbose*(myPid==0); // Define local block vectors // // MX = Working vectors (storing M*X if M is specified, else pointing to X) // KX = Working vectors (storing K*X) // // R = Residuals int xr = Q.MyLength(); int dimSearch = blockSize*numBlock; Epetra_MultiVector X(View, Q, 0, dimSearch + blockSize); if (knownEV > 0) { Epetra_MultiVector copyX(View, Q, knownEV, blockSize); copyX.Random(); } else { X.Random(); } int tmp; tmp = (M == 0) ? 2*blockSize*xr : 3*blockSize*xr; double *work1 = new (nothrow) double[tmp]; if (work1 == 0) { if (vectWeight) delete vectWeight; info = -30; return info; } memRequested += sizeof(double)*tmp/(1024.0*1024.0); highMem = (highMem > currentSize()) ? highMem : currentSize(); double *tmpD = work1; Epetra_MultiVector KX(View, Q.Map(), tmpD, xr, blockSize); tmpD = tmpD + xr*blockSize; Epetra_MultiVector MX(View, Q.Map(), (M) ? tmpD : X.Values(), xr, blockSize); tmpD = (M) ? tmpD + xr*blockSize : tmpD; Epetra_MultiVector R(View, Q.Map(), tmpD, xr, blockSize); // Define arrays // // theta = Store the local eigenvalues (size: dimSearch) // normR = Store the norm of residuals (size: blockSize) // // KK = Local stiffness matrix (size: dimSearch x dimSearch) // // S = Local eigenvectors (size: dimSearch x dimSearch) // // tmpKK = Local workspace (size: blockSize x blockSize) int lwork2 = blockSize + dimSearch + 2*dimSearch*dimSearch + blockSize*blockSize; double *work2 = new (nothrow) double[lwork2]; if (work2 == 0) { if (vectWeight) delete vectWeight; delete[] work1; info = -30; return info; } memRequested += sizeof(double)*lwork2/(1024.0*1024.0); highMem = (highMem > currentSize()) ? highMem : currentSize(); tmpD = work2; double *theta = tmpD; tmpD = tmpD + dimSearch; double *normR = tmpD; tmpD = tmpD + blockSize; double *KK = tmpD; tmpD = tmpD + dimSearch*dimSearch; memset(KK, 0, dimSearch*dimSearch*sizeof(double)); double *S = tmpD; tmpD = tmpD + dimSearch*dimSearch; double *tmpKK = tmpD; // Define an array to store the residuals history if (localVerbose > 2) { resHistory = new (nothrow) double[maxIterEigenSolve*blockSize]; spaceSizeHistory = new (nothrow) int[maxIterEigenSolve]; if ((resHistory == 0) || (spaceSizeHistory == 0)) { if (vectWeight) delete vectWeight; delete[] work1; delete[] work2; info = -30; return info; } historyCount = 0; } // Miscellaneous definitions bool reStart = false; numRestart = 0; bool criticalExit = false; int bStart = 0; int offSet = 0; numBlock = (dimSearch/blockSize) - (knownEV/blockSize); int nFound = blockSize; int i, j; if (localVerbose > 0) { cout << endl; cout << " *|* Problem: "; if (M) cout << "K*Q = M*Q D "; else cout << "K*Q = Q D "; if (Prec) cout << " with preconditioner"; cout << endl; cout << " *|* Algorithm = Davidson algorithm (block version)" << endl; cout << " *|* Size of blocks = " << blockSize << endl; cout << " *|* Largest size of search space = " << numBlock*blockSize << endl; cout << " *|* Number of requested eigenvalues = " << numEigen << endl; cout.precision(2); cout.setf(ios::scientific, ios::floatfield); cout << " *|* Tolerance for convergence = " << tolEigenSolve << endl; cout << " *|* Norm used for convergence: "; if (vectWeight) cout << "weighted L2-norm with user-provided weights" << endl; else cout << "L^2-norm" << endl; if (startingEV > 0) cout << " *|* Input converged eigenvectors = " << startingEV << endl; cout << "\n -- Start iterations -- \n"; } int maxBlock = (dimSearch/blockSize) - (knownEV/blockSize); timeOuterLoop -= MyWatch.WallTime(); outerIter = 0; while (outerIter <= maxIterEigenSolve) { highMem = (highMem > currentSize()) ? highMem : currentSize(); int nb; for (nb = bStart; nb < maxBlock; ++nb) { outerIter += 1; if (outerIter > maxIterEigenSolve) break; int localSize = nb*blockSize; Epetra_MultiVector Xcurrent(View, X, localSize + knownEV, blockSize); timeMassOp -= MyWatch.WallTime(); if (M) M->Apply(Xcurrent, MX); timeMassOp += MyWatch.WallTime(); massOp += blockSize; // Orthonormalize X against the known eigenvectors and the previous vectors // Note: Use R as a temporary work space timeOrtho -= MyWatch.WallTime(); if (nb == bStart) { if (nFound > 0) { if (knownEV == 0) { info = modalTool.massOrthonormalize(Xcurrent, MX, M, Q, nFound, 2, R.Values()); } else { Epetra_MultiVector copyQ(View, X, 0, knownEV + localSize); info = modalTool.massOrthonormalize(Xcurrent, MX, M, copyQ, nFound, 0, R.Values()); } } nFound = 0; } else { Epetra_MultiVector copyQ(View, X, 0, knownEV + localSize); info = modalTool.massOrthonormalize(Xcurrent, MX, M, copyQ, blockSize, 0, R.Values()); } timeOrtho += MyWatch.WallTime(); // Exit the code when the number of vectors exceeds the space dimension if (info < 0) { delete[] work1; delete[] work2; if (vectWeight) delete vectWeight; return -10; } timeStifOp -= MyWatch.WallTime(); K->Apply(Xcurrent, KX); timeStifOp += MyWatch.WallTime(); stifOp += blockSize; // Check the orthogonality properties of X if (verbose > 2) { if (knownEV + localSize == 0) accuracyCheck(&Xcurrent, &MX, 0); else { Epetra_MultiVector copyQ(View, X, 0, knownEV + localSize); accuracyCheck(&Xcurrent, &MX, ©Q); } if (localVerbose > 0) cout << endl; } // if (verbose > 2) // Define the local stiffness matrix // Note: S is used as a workspace timeLocalProj -= MyWatch.WallTime(); for (j = 0; j <= nb; ++j) { callBLAS.GEMM('T', 'N', blockSize, blockSize, xr, 1.0, X.Values()+(knownEV+j*blockSize)*xr, xr, KX.Values(), xr, 0.0, tmpKK, blockSize); MyComm.SumAll(tmpKK, S, blockSize*blockSize); int iC; for (iC = 0; iC < blockSize; ++iC) { double *Kpointer = KK + localSize*dimSearch + j*blockSize + iC*dimSearch; memcpy(Kpointer, S + iC*blockSize, blockSize*sizeof(double)); } } timeLocalProj += MyWatch.WallTime(); // Perform a spectral decomposition timeLocalSolve -= MyWatch.WallTime(); int nevLocal = localSize + blockSize; info = modalTool.directSolver(localSize+blockSize, KK, dimSearch, 0, 0, nevLocal, S, dimSearch, theta, localVerbose, 10); timeLocalSolve += MyWatch.WallTime(); if (info != 0) { // Stop as spectral decomposition has a critical failure if (info < 0) { criticalExit = true; break; } // Restart as spectral decomposition failed if (localVerbose > 0) { cout << " Iteration " << outerIter; cout << "- Failure for spectral decomposition - RESTART with new random search\n"; } reStart = true; numRestart += 1; timeRestart -= MyWatch.WallTime(); Epetra_MultiVector Xinit(View, X, knownEV, blockSize); Xinit.Random(); timeRestart += MyWatch.WallTime(); nFound = blockSize; bStart = 0; break; } // if (info != 0) // Update the search space // Note: Use KX as a workspace timeLocalUpdate -= MyWatch.WallTime(); callBLAS.GEMM('N', 'N', xr, blockSize, localSize+blockSize, 1.0, X.Values()+knownEV*xr, xr, S, dimSearch, 0.0, KX.Values(), xr); timeLocalUpdate += MyWatch.WallTime(); // Apply the mass matrix for the next block timeMassOp -= MyWatch.WallTime(); if (M) M->Apply(KX, MX); timeMassOp += MyWatch.WallTime(); massOp += blockSize; // Apply the stiffness matrix for the next block timeStifOp -= MyWatch.WallTime(); K->Apply(KX, R); timeStifOp += MyWatch.WallTime(); stifOp += blockSize; // Form the residuals timeResidual -= MyWatch.WallTime(); if (M) { for (j = 0; j < blockSize; ++j) { callBLAS.AXPY(xr, -theta[j], MX.Values() + j*xr, R.Values() + j*xr); } } else { // Note KX contains the updated block for (j = 0; j < blockSize; ++j) { callBLAS.AXPY(xr, -theta[j], KX.Values() + j*xr, R.Values() + j*xr); } } timeResidual += MyWatch.WallTime(); residual += blockSize; // Compute the norm of residuals timeNorm -= MyWatch.WallTime(); if (vectWeight) { R.NormWeighted(*vectWeight, normR); } else { R.Norm2(normR); } // Scale the norms of residuals with the eigenvalues // Count the number of converged eigenvectors nFound = 0; for (j = 0; j < blockSize; ++j) { normR[j] = (theta[j] == 0.0) ? normR[j] : normR[j]/theta[j]; if (normR[j] < tolEigenSolve) nFound += 1; } // for (j = 0; j < blockSize; ++j) timeNorm += MyWatch.WallTime(); // Store the residual history if (localVerbose > 2) { memcpy(resHistory + historyCount*blockSize, normR, blockSize*sizeof(double)); spaceSizeHistory[historyCount] = localSize + blockSize; historyCount += 1; } maxSpaceSize = (maxSpaceSize > localSize+blockSize) ? maxSpaceSize : localSize+blockSize; sumSpaceSize += localSize + blockSize; // Print information on current iteration if (localVerbose > 0) { cout << " Iteration " << outerIter << " - Number of converged eigenvectors "; cout << knownEV + nFound << endl; } // if (localVerbose > 0) if (localVerbose > 1) { cout << endl; cout.precision(2); cout.setf(ios::scientific, ios::floatfield); for (i=0; i<blockSize; ++i) { cout << " Iteration " << outerIter << " - Scaled Norm of Residual " << i; cout << " = " << normR[i] << endl; } cout << endl; cout.precision(2); for (i=0; i<nevLocal; ++i) { cout << " Iteration " << outerIter << " - Ritz eigenvalue " << i; cout.setf((fabs(theta[i]) < 0.01) ? ios::scientific : ios::fixed, ios::floatfield); cout << " = " << theta[i] << endl; } cout << endl; } // Exit the loop to treat the converged eigenvectors if (nFound > 0) { nb += 1; offSet = 0; break; } // Apply the preconditioner on the residuals // Note: Use KX as a workspace if (maxBlock == 1) { if (Prec) { timePrecOp -= MyWatch.WallTime(); Prec->ApplyInverse(R, Xcurrent); timePrecOp += MyWatch.WallTime(); precOp += blockSize; } else { memcpy(Xcurrent.Values(), R.Values(), blockSize*xr*sizeof(double)); } timeRestart -= MyWatch.WallTime(); Xcurrent.Update(1.0, KX, -1.0); timeRestart += MyWatch.WallTime(); break; } // if (maxBlock == 1) if (nb == maxBlock - 1) { nb += 1; break; } Epetra_MultiVector Xnext(View, X, knownEV+localSize+blockSize, blockSize); if (Prec) { timePrecOp -= MyWatch.WallTime(); Prec->ApplyInverse(R, Xnext); timePrecOp += MyWatch.WallTime(); precOp += blockSize; } else { memcpy(Xnext.Values(), R.Values(), blockSize*xr*sizeof(double)); } } // for (nb = bStart; nb < maxBlock; ++nb) if (outerIter > maxIterEigenSolve) break; if (reStart == true) { reStart = false; continue; } if (criticalExit == true) break; // Store the final converged eigenvectors if (knownEV + nFound >= numEigen) { for (j = 0; j < blockSize; ++j) { if (normR[j] < tolEigenSolve) { memcpy(X.Values() + knownEV*xr, KX.Values() + j*xr, xr*sizeof(double)); lambda[knownEV] = theta[j]; knownEV += 1; } } if (localVerbose == 1) { cout << endl; cout.precision(2); cout.setf(ios::scientific, ios::floatfield); for (i=0; i<blockSize; ++i) { cout << " Iteration " << outerIter << " - Scaled Norm of Residual " << i; cout << " = " << normR[i] << endl; } cout << endl; } break; } // if (knownEV + nFound >= numEigen) // Treat the particular case of 1 block if (maxBlock == 1) { if (nFound > 0) { double *Xpointer = X.Values() + (knownEV+nFound)*xr; nFound = 0; for (j = 0; j < blockSize; ++j) { if (normR[j] < tolEigenSolve) { memcpy(X.Values() + knownEV*xr, KX.Values() + j*xr, xr*sizeof(double)); lambda[knownEV] = theta[j]; knownEV += 1; nFound += 1; } else { memcpy(Xpointer + (j-nFound)*xr, KX.Values() + j*xr, xr*sizeof(double)); } } Epetra_MultiVector Xnext(View, X, knownEV + blockSize - nFound, nFound); Xnext.Random(); } else { nFound = blockSize; } continue; } // Define the restarting block when maxBlock > 1 if (nFound > 0) { int firstIndex = blockSize; for (j = 0; j < blockSize; ++j) { if (normR[j] >= tolEigenSolve) { firstIndex = j; break; } } // for (j = 0; j < blockSize; ++j) while (firstIndex < nFound) { for (j = firstIndex; j < blockSize; ++j) { if (normR[j] < tolEigenSolve) { // Swap the j-th and firstIndex-th position callFortran.SWAP(nb*blockSize, S + j*dimSearch, 1, S + firstIndex*dimSearch, 1); callFortran.SWAP(1, theta + j, 1, theta + firstIndex, 1); callFortran.SWAP(1, normR + j, 1, normR + firstIndex, 1); break; } } // for (j = firstIndex; j < blockSize; ++j) for (j = 0; j < blockSize; ++j) { if (normR[j] >= tolEigenSolve) { firstIndex = j; break; } } // for (j = 0; j < blockSize; ++j) } // while (firstIndex < nFound) // Copy the converged eigenvalues memcpy(lambda + knownEV, theta, nFound*sizeof(double)); } // if (nFound > 0) // Define the restarting size bStart = ((nb - offSet) > 2) ? (nb - offSet)/2 : 0; // Define the restarting space and local stiffness timeRestart -= MyWatch.WallTime(); memset(KK, 0, nb*blockSize*dimSearch*sizeof(double)); for (j = 0; j < bStart*blockSize; ++j) { KK[j + j*dimSearch] = theta[j + nFound]; } // Form the restarting space int oldCol = nb*blockSize; int newCol = nFound + (bStart+1)*blockSize; newCol = (newCol > oldCol) ? oldCol : newCol; callFortran.GEQRF(oldCol, newCol, S, dimSearch, theta, R.Values(), xr*blockSize, &info); callFortran.ORMQR('R', 'N', xr, oldCol, newCol, S, dimSearch, theta, X.Values()+knownEV*xr, xr, R.Values(), blockSize*xr, &info); timeRestart += MyWatch.WallTime(); if (nFound == 0) offSet += 1; knownEV += nFound; maxBlock = (dimSearch/blockSize) - (knownEV/blockSize); // Put random vectors if the Rayleigh Ritz vectors are not enough newCol = nFound + (bStart+1)*blockSize; if (newCol > oldCol) { Epetra_MultiVector Xnext(View, X, knownEV+blockSize-nFound, nFound); Xnext.Random(); continue; } nFound = 0; } // while (outerIter <= maxIterEigenSolve) timeOuterLoop += MyWatch.WallTime(); highMem = (highMem > currentSize()) ? highMem : currentSize(); // Clean memory delete[] work1; delete[] work2; if (vectWeight) delete vectWeight; // Sort the eigenpairs timePostProce -= MyWatch.WallTime(); if ((info == 0) && (knownEV > 0)) { mySort.sortScalars_Vectors(knownEV, lambda, Q.Values(), Q.MyLength()); } timePostProce += MyWatch.WallTime(); return (info == 0) ? knownEV : info; }
//============================================================================== int Ifpack_Chebyshev:: ApplyInverse(const Epetra_MultiVector& X, Epetra_MultiVector& Y) const { if (!IsComputed()) IFPACK_CHK_ERR(-3); if (PolyDegree_ == 0) return 0; int nVec = X.NumVectors(); int len = X.MyLength(); if (nVec != Y.NumVectors()) IFPACK_CHK_ERR(-2); Time_->ResetStartTime(); // AztecOO gives X and Y pointing to the same memory location, // need to create an auxiliary vector, Xcopy Teuchos::RefCountPtr<const Epetra_MultiVector> Xcopy; if (X.Pointers()[0] == Y.Pointers()[0]) Xcopy = Teuchos::rcp( new Epetra_MultiVector(X) ); else Xcopy = Teuchos::rcp( &X, false ); double **xPtr = 0, **yPtr = 0; Xcopy->ExtractView(&xPtr); Y.ExtractView(&yPtr); #ifdef HAVE_IFPACK_EPETRAEXT EpetraExt_PointToBlockDiagPermute* IBD=0; if (UseBlockMode_) IBD=&*InvBlockDiagonal_; #endif //--- Do a quick solve when the matrix is identity double *invDiag=0; if(!UseBlockMode_) invDiag=InvDiagonal_->Values(); if ((LambdaMin_ == 1.0) && (LambdaMax_ == LambdaMin_)) { #ifdef HAVE_IFPACK_EPETRAEXT if(UseBlockMode_) IBD->ApplyInverse(*Xcopy,Y); else #endif if (nVec == 1) { double *yPointer = yPtr[0], *xPointer = xPtr[0]; for (int i = 0; i < len; ++i) yPointer[i] = xPointer[i]*invDiag[i]; } else { int i, k; for (i = 0; i < len; ++i) { double coeff = invDiag[i]; for (k = 0; k < nVec; ++k) yPtr[k][i] = xPtr[k][i] * coeff; } } // if (nVec == 1) return 0; } // if ((LambdaMin_ == 1.0) && (LambdaMax_ == LambdaMin_)) //--- Initialize coefficients // Note that delta stores the inverse of ML_Cheby::delta double alpha = LambdaMax_ / EigRatio_; double beta = 1.1 * LambdaMax_; double delta = 2.0 / (beta - alpha); double theta = 0.5 * (beta + alpha); double s1 = theta * delta; //--- Define vectors // In ML_Cheby, V corresponds to pAux and W to dk Epetra_MultiVector V(X); Epetra_MultiVector W(X); #ifdef HAVE_IFPACK_EPETRAEXT Epetra_MultiVector Temp(X); #endif double *vPointer = V.Values(), *wPointer = W.Values(); double oneOverTheta = 1.0/theta; int i, j, k; //--- If solving normal equations, multiply RHS by A^T if(SolveNormalEquations_){ Apply_Transpose(Operator_,Y,V); Y=V; } // Do the smoothing when block scaling is turned OFF // --- Treat the initial guess if (ZeroStartingSolution_ == false) { Operator_->Apply(Y, V); // Compute W = invDiag * ( X - V )/ Theta #ifdef HAVE_IFPACK_EPETRAEXT if(UseBlockMode_) { Temp.Update(oneOverTheta,X,-oneOverTheta,V,0.0); IBD->ApplyInverse(Temp,W); // Perform additional matvecs for normal equations // CMS: Testing this only in block mode FOR NOW if(SolveNormalEquations_){ IBD->ApplyInverse(W,Temp); Apply_Transpose(Operator_,Temp,W); } } else #endif if (nVec == 1) { double *xPointer = xPtr[0]; for (i = 0; i < len; ++i) wPointer[i] = invDiag[i] * (xPointer[i] - vPointer[i]) * oneOverTheta; } else { for (i = 0; i < len; ++i) { double coeff = invDiag[i]*oneOverTheta; double *wi = wPointer + i, *vi = vPointer + i; for (k = 0; k < nVec; ++k) { *wi = (xPtr[k][i] - (*vi)) * coeff; wi = wi + len; vi = vi + len; } } } // if (nVec == 1) // Update the vector Y Y.Update(1.0, W, 1.0); } else { // Compute W = invDiag * X / Theta #ifdef HAVE_IFPACK_EPETRAEXT if(UseBlockMode_) { IBD->ApplyInverse(X,W); // Perform additional matvecs for normal equations // CMS: Testing this only in block mode FOR NOW if(SolveNormalEquations_){ IBD->ApplyInverse(W,Temp); Apply_Transpose(Operator_,Temp,W); } W.Scale(oneOverTheta); Y.Update(1.0, W, 0.0); } else #endif if (nVec == 1) { double *xPointer = xPtr[0]; for (i = 0; i < len; ++i){ wPointer[i] = invDiag[i] * xPointer[i] * oneOverTheta; } memcpy(yPtr[0], wPointer, len*sizeof(double)); } else { for (i = 0; i < len; ++i) { double coeff = invDiag[i]*oneOverTheta; double *wi = wPointer + i; for (k = 0; k < nVec; ++k) { *wi = xPtr[k][i] * coeff; wi = wi + len; } } for (k = 0; k < nVec; ++k) memcpy(yPtr[k], wPointer + k*len, len*sizeof(double)); } // if (nVec == 1) } // if (ZeroStartingSolution_ == false) //--- Apply the polynomial double rhok = 1.0/s1, rhokp1; double dtemp1, dtemp2; int degreeMinusOne = PolyDegree_ - 1; if (nVec == 1) { double *xPointer = xPtr[0]; for (k = 0; k < degreeMinusOne; ++k) { Operator_->Apply(Y, V); rhokp1 = 1.0 / (2.0*s1 - rhok); dtemp1 = rhokp1 * rhok; dtemp2 = 2.0 * rhokp1 * delta; rhok = rhokp1; // Compute W = dtemp1 * W W.Scale(dtemp1); // Compute W = W + dtemp2 * invDiag * ( X - V ) #ifdef HAVE_IFPACK_EPETRAEXT if(UseBlockMode_) { //NTS: We can clobber V since it will be reset in the Apply V.Update(dtemp2,X,-dtemp2); IBD->ApplyInverse(V,Temp); // Perform additional matvecs for normal equations // CMS: Testing this only in block mode FOR NOW if(SolveNormalEquations_){ IBD->ApplyInverse(V,Temp); Apply_Transpose(Operator_,Temp,V); } W.Update(1.0,Temp,1.0); } else{ #endif for (i = 0; i < len; ++i) wPointer[i] += dtemp2* invDiag[i] * (xPointer[i] - vPointer[i]); #ifdef HAVE_IFPACK_EPETRAEXT } #endif // Update the vector Y Y.Update(1.0, W, 1.0); } // for (k = 0; k < degreeMinusOne; ++k) } else { for (k = 0; k < degreeMinusOne; ++k) { Operator_->Apply(Y, V); rhokp1 = 1.0 / (2.0*s1 - rhok); dtemp1 = rhokp1 * rhok; dtemp2 = 2.0 * rhokp1 * delta; rhok = rhokp1; // Compute W = dtemp1 * W W.Scale(dtemp1); // Compute W = W + dtemp2 * invDiag * ( X - V ) #ifdef HAVE_IFPACK_EPETRAEXT if(UseBlockMode_) { //We can clobber V since it will be reset in the Apply V.Update(dtemp2,X,-dtemp2); IBD->ApplyInverse(V,Temp); // Perform additional matvecs for normal equations // CMS: Testing this only in block mode FOR NOW if(SolveNormalEquations_){ IBD->ApplyInverse(V,Temp); Apply_Transpose(Operator_,Temp,V); } W.Update(1.0,Temp,1.0); } else{ #endif for (i = 0; i < len; ++i) { double coeff = invDiag[i]*dtemp2; double *wi = wPointer + i, *vi = vPointer + i; for (j = 0; j < nVec; ++j) { *wi += (xPtr[j][i] - (*vi)) * coeff; wi = wi + len; vi = vi + len; } } #ifdef HAVE_IFPACK_EPETRAEXT } #endif // Update the vector Y Y.Update(1.0, W, 1.0); } // for (k = 0; k < degreeMinusOne; ++k) } // if (nVec == 1) // Flops are updated in each of the following. ++NumApplyInverse_; ApplyInverseTime_ += Time_->ElapsedTime(); return(0); }
//======================================================= int EpetraExt_HypreIJMatrix::Solve(bool Upper, bool transpose, bool UnitDiagonal, const Epetra_MultiVector & X, Epetra_MultiVector & Y) const { bool SameVectors = false; int NumVectors = X.NumVectors(); if (NumVectors != Y.NumVectors()) return -1; // X and Y must have same number of vectors if(X.Pointers() == Y.Pointers()){ SameVectors = true; } if(SolveOrPrec_ == Solver){ if(IsSolverSetup_[0] == false){ SetupSolver(); } } else { if(IsPrecondSetup_[0] == false){ SetupPrecond(); } } for(int VecNum = 0; VecNum < NumVectors; VecNum++) { //Get values for current vector in multivector. double * x_values; EPETRA_CHK_ERR((*X(VecNum)).ExtractView(&x_values)); double * y_values; if(!SameVectors){ EPETRA_CHK_ERR((*Y(VecNum)).ExtractView(&y_values)); } else { y_values = new double[X.MyLength()]; } // Temporarily make a pointer to data in Hypre for end double *x_temp = x_local->data; // Replace data in Hypre vectors with epetra values x_local->data = x_values; double *y_temp = y_local->data; y_local->data = y_values; EPETRA_CHK_ERR(HYPRE_ParVectorSetConstantValues(par_y, 0.0)); if(transpose && !TransposeSolve_){ // User requested a transpose solve, but the solver selected doesn't provide one EPETRA_CHK_ERR(-1); } if(SolveOrPrec_ == Solver){ // Use the solver methods EPETRA_CHK_ERR(SolverSolvePtr_(Solver_, ParMatrix_, par_x, par_y)); } else { // Apply the preconditioner EPETRA_CHK_ERR(PrecondSolvePtr_(Preconditioner_, ParMatrix_, par_x, par_y)); } if(SameVectors){ int NumEntries = Y.MyLength(); std::vector<double> new_values; new_values.resize(NumEntries); std::vector<int> new_indices; new_indices.resize(NumEntries); for(int i = 0; i < NumEntries; i++){ new_values[i] = y_values[i]; new_indices[i] = i; } EPETRA_CHK_ERR((*Y(VecNum)).ReplaceMyValues(NumEntries, &new_values[0], &new_indices[0])); delete[] y_values; } x_local->data = x_temp; y_local->data = y_temp; } double flops = (double) NumVectors * (double) NumGlobalNonzeros(); UpdateFlops(flops); return 0; } //Solve()