void BilinearFormUtility::computeStiffnessMatrix(FieldContainer<double> &stiffness, FieldContainer<double> &innerProductMatrix, FieldContainer<double> &optimalTestWeights) { // stiffness has dimensions (numCells, numTrialDofs, numTrialDofs) // innerProductMatrix has dim. (numCells, numTestDofs, numTestDofs) // optimalTestWeights has dim. (numCells, numTrialDofs, numTestDofs) // all this does is computes stiffness = weights^T * innerProductMatrix * weights int numCells = stiffness.dimension(0); int numTrialDofs = stiffness.dimension(1); int numTestDofs = innerProductMatrix.dimension(1); // check that all the dimensions are compatible: TEUCHOS_TEST_FOR_EXCEPTION( ( optimalTestWeights.dimension(0) != numCells ), std::invalid_argument, "stiffness.dimension(0) and optimalTestWeights.dimension(0) (numCells) do not match."); TEUCHOS_TEST_FOR_EXCEPTION( ( optimalTestWeights.dimension(1) != numTrialDofs ), std::invalid_argument, "numTrialDofs and optimalTestWeights.dimension(1) do not match."); TEUCHOS_TEST_FOR_EXCEPTION( ( optimalTestWeights.dimension(2) != numTestDofs ), std::invalid_argument, "numTestDofs and optimalTestWeights.dimension(2) do not match."); TEUCHOS_TEST_FOR_EXCEPTION( ( innerProductMatrix.dimension(2) != innerProductMatrix.dimension(1) ), std::invalid_argument, "innerProductMatrix.dimension(1) and innerProductMatrix.dimension(2) do not match."); TEUCHOS_TEST_FOR_EXCEPTION( ( stiffness.dimension(1) != stiffness.dimension(2) ), std::invalid_argument, "stiffness.dimension(1) and stiffness.dimension(2) do not match."); stiffness.initialize(0); for (int cellIndex=0; cellIndex < numCells; cellIndex++) { Epetra_SerialDenseMatrix weightsT(Copy, &optimalTestWeights(cellIndex,0,0), optimalTestWeights.dimension(2), // stride optimalTestWeights.dimension(2),optimalTestWeights.dimension(1)); Epetra_SerialDenseMatrix ipMatrixT(Copy, &innerProductMatrix(cellIndex,0,0), innerProductMatrix.dimension(2), // stride innerProductMatrix.dimension(2),innerProductMatrix.dimension(1)); Epetra_SerialDenseMatrix stiffT (View, &stiffness(cellIndex,0,0), stiffness.dimension(2), // stride stiffness.dimension(2),stiffness.dimension(1)); Epetra_SerialDenseMatrix intermediate( numTrialDofs, numTestDofs ); // account for the fact that SDM is column-major and FC is row-major: // (weightsT) * (ipMatrixT)^T * (weightsT)^T int success = intermediate.Multiply('T','T',1.0,weightsT,ipMatrixT,0.0); if (success != 0) { cout << "computeStiffnessMatrix: intermediate.Multiply() failed with error code " << success << endl; } success = stiffT.Multiply('N','N',1.0,intermediate,weightsT,0.0); // stiffT is technically the transpose of stiffness, but the construction A^T * B * A is symmetric even in general... if (success != 0) { cout << "computeStiffnessMatrix: stiffT.Multiply() failed with error code " << success << endl; } } if ( ! checkForZeroRowsAndColumns("stiffness",stiffness) ) { //cout << "stiffness: " << stiffness; } bool enforceNumericalSymmetry = false; if (enforceNumericalSymmetry) { for (unsigned int c=0; c < numCells; c++) for (unsigned int i=0; i < numTrialDofs; i++) for (unsigned int j=i+1; j < numTrialDofs; j++) { stiffness(c,i,j) = (stiffness(c,i,j) + stiffness(c,j,i)) / 2.0; stiffness(c,j,i) = stiffness(c,i,j); } } }
int main(int argc, char *argv[]) { int ierr = 0, i, j, k; bool debug = false; #ifdef EPETRA_MPI MPI_Init(&argc,&argv); Epetra_MpiComm Comm( MPI_COMM_WORLD ); #else Epetra_SerialComm Comm; #endif bool verbose = false; // Check if we should print results to standard out if (argc>1) if (argv[1][0]=='-' && argv[1][1]=='v') verbose = true; if (verbose && Comm.MyPID()==0) cout << Epetra_Version() << endl << endl; int rank = Comm.MyPID(); // char tmp; // if (rank==0) cout << "Press any key to continue..."<< endl; // if (rank==0) cin >> tmp; // Comm.Barrier(); Comm.SetTracebackMode(0); // This should shut down any error traceback reporting if (verbose) cout << Comm <<endl; // bool verbose1 = verbose; // Redefine verbose to only print on PE 0 if (verbose && rank!=0) verbose = false; int N = 20; int NRHS = 4; double * A = new double[N*N]; double * A1 = new double[N*N]; double * X = new double[(N+1)*NRHS]; double * X1 = new double[(N+1)*NRHS]; int LDX = N+1; int LDX1 = N+1; double * B = new double[N*NRHS]; double * B1 = new double[N*NRHS]; int LDB = N; int LDB1 = N; int LDA = N; int LDA1 = LDA; double OneNorm1; bool Transpose = false; Epetra_SerialDenseSolver solver; Epetra_SerialDenseMatrix * Matrix; for (int kk=0; kk<2; kk++) { for (i=1; i<=N; i++) { GenerateHilbert(A, LDA, i); OneNorm1 = 0.0; for (j=1; j<=i; j++) OneNorm1 += 1.0/((double) j); // 1-Norm = 1 + 1/2 + ...+1/n if (kk==0) { Matrix = new Epetra_SerialDenseMatrix(View, A, LDA, i, i); LDA1 = LDA; } else { Matrix = new Epetra_SerialDenseMatrix(Copy, A, LDA, i, i); LDA1 = i; } GenerateHilbert(A1, LDA1, i); if (kk==1) { solver.FactorWithEquilibration(true); solver.SolveWithTranspose(true); Transpose = true; solver.SolveToRefinedSolution(true); } for (k=0; k<NRHS; k++) for (j=0; j<i; j++) { B[j+k*LDB] = 1.0/((double) (k+3)*(j+3)); B1[j+k*LDB1] = B[j+k*LDB1]; } Epetra_SerialDenseMatrix Epetra_B(View, B, LDB, i, NRHS); Epetra_SerialDenseMatrix Epetra_X(View, X, LDX, i, NRHS); solver.SetMatrix(*Matrix); solver.SetVectors(Epetra_X, Epetra_B); ierr = check(solver, A1, LDA1, i, NRHS, OneNorm1, B1, LDB1, X1, LDX1, Transpose, verbose); assert (ierr>-1); delete Matrix; if (ierr!=0) { if (verbose) cout << "Factorization failed due to bad conditioning. This is normal if RCOND is small." << endl; break; } } } delete [] A; delete [] A1; delete [] X; delete [] X1; delete [] B; delete [] B1; ///////////////////////////////////////////////////////////////////// // Now test norms and scaling functions ///////////////////////////////////////////////////////////////////// Epetra_SerialDenseMatrix D; double ScalarA = 2.0; int DM = 10; int DN = 8; D.Shape(DM, DN); for (j=0; j<DN; j++) for (i=0; i<DM; i++) D[j][i] = (double) (1+i+j*DM) ; //cout << D << endl; double NormInfD_ref = (double)(DM*(DN*(DN+1))/2); double NormOneD_ref = (double)((DM*DN*(DM*DN+1))/2 - (DM*(DN-1)*(DM*(DN-1)+1))/2 ); double NormInfD = D.NormInf(); double NormOneD = D.NormOne(); if (verbose) { cout << " *** Before scaling *** " << endl << " Computed one-norm of test matrix = " << NormOneD << endl << " Expected one-norm = " << NormOneD_ref << endl << " Computed inf-norm of test matrix = " << NormInfD << endl << " Expected inf-norm = " << NormInfD_ref << endl; } D.Scale(ScalarA); // Scale entire D matrix by this value NormInfD = D.NormInf(); NormOneD = D.NormOne(); if (verbose) { cout << " *** After scaling *** " << endl << " Computed one-norm of test matrix = " << NormOneD << endl << " Expected one-norm = " << NormOneD_ref*ScalarA << endl << " Computed inf-norm of test matrix = " << NormInfD << endl << " Expected inf-norm = " << NormInfD_ref*ScalarA << endl; } ///////////////////////////////////////////////////////////////////// // Now test that A.Multiply(false, x, y) produces the same result // as y.Multiply('N','N', 1.0, A, x, 0.0). ///////////////////////////////////////////////////////////////////// N = 10; int M = 10; LDA = N; Epetra_SerialDenseMatrix smallA(N, M, false); Epetra_SerialDenseMatrix x(N, 1, false); Epetra_SerialDenseMatrix y1(N, 1, false); Epetra_SerialDenseMatrix y2(N, 1, false); for(i=0; i<N; ++i) { for(j=0; j<M; ++j) { smallA(i,j) = 1.0*i+2.0*j+1.0; } x(i,0) = 1.0; y1(i,0) = 0.0; y2(i,0) = 0.0; } //quick check of operator== if (x == y1) { if (verbose) cout << "err in Epetra_SerialDenseMatrix::operator==, " << "erroneously returned true." << std::endl; return(-1); } //quick check of operator!= if (x != x) { if (verbose) cout << "err in Epetra_SerialDenseMatrix::operator==, " << "erroneously returned true." << std::endl; return(-1); } int err1 = smallA.Multiply(false, x, y1); int err2 = y2.Multiply('N','N', 1.0, smallA, x, 0.0); if (err1 != 0 || err2 != 0) { if (verbose) cout << "err in Epetra_SerialDenseMatrix::Multiply"<<endl; return(err1+err2); } for(i=0; i<N; ++i) { if (y1(i,0) != y2(i,0)) { if (verbose) cout << "different versions of Multiply don't match."<<endl; return(-99); } } ///////////////////////////////////////////////////////////////////// // Now test for larger system, both correctness and performance. ///////////////////////////////////////////////////////////////////// N = 2000; NRHS = 5; LDA = N; LDB = N; LDX = N; if (verbose) cout << "\n\nComputing factor of an " << N << " x " << N << " general matrix...Please wait.\n\n" << endl; // Define A and X A = new double[LDA*N]; X = new double[LDB*NRHS]; for (j=0; j<N; j++) { for (k=0; k<NRHS; k++) X[j+k*LDX] = 1.0/((double) (j+5+k)); for (i=0; i<N; i++) { if (i==((j+2)%N)) A[i+j*LDA] = 100.0 + i; else A[i+j*LDA] = -11.0/((double) (i+5)*(j+2)); } } // Define Epetra_SerialDenseMatrix object Epetra_SerialDenseMatrix BigMatrix(Copy, A, LDA, N, N); Epetra_SerialDenseMatrix OrigBigMatrix(View, A, LDA, N, N); Epetra_SerialDenseSolver BigSolver; BigSolver.FactorWithEquilibration(true); BigSolver.SetMatrix(BigMatrix); // Time factorization Epetra_Flops counter; BigSolver.SetFlopCounter(counter); Epetra_Time Timer(Comm); double tstart = Timer.ElapsedTime(); ierr = BigSolver.Factor(); if (ierr!=0 && verbose) cout << "Error in factorization = "<<ierr<< endl; assert(ierr==0); double time = Timer.ElapsedTime() - tstart; double FLOPS = counter.Flops(); double MFLOPS = FLOPS/time/1000000.0; if (verbose) cout << "MFLOPS for Factorization = " << MFLOPS << endl; // Define Left hand side and right hand side Epetra_SerialDenseMatrix LHS(View, X, LDX, N, NRHS); Epetra_SerialDenseMatrix RHS; RHS.Shape(N,NRHS); // Allocate RHS // Compute RHS from A and X Epetra_Flops RHS_counter; RHS.SetFlopCounter(RHS_counter); tstart = Timer.ElapsedTime(); RHS.Multiply('N', 'N', 1.0, OrigBigMatrix, LHS, 0.0); time = Timer.ElapsedTime() - tstart; Epetra_SerialDenseMatrix OrigRHS = RHS; FLOPS = RHS_counter.Flops(); MFLOPS = FLOPS/time/1000000.0; if (verbose) cout << "MFLOPS to build RHS (NRHS = " << NRHS <<") = " << MFLOPS << endl; // Set LHS and RHS and solve BigSolver.SetVectors(LHS, RHS); tstart = Timer.ElapsedTime(); ierr = BigSolver.Solve(); if (ierr==1 && verbose) cout << "LAPACK guidelines suggest this matrix might benefit from equilibration." << endl; else if (ierr!=0 && verbose) cout << "Error in solve = "<<ierr<< endl; assert(ierr>=0); time = Timer.ElapsedTime() - tstart; FLOPS = BigSolver.Flops(); MFLOPS = FLOPS/time/1000000.0; if (verbose) cout << "MFLOPS for Solve (NRHS = " << NRHS <<") = " << MFLOPS << endl; double * resid = new double[NRHS]; bool OK = Residual(N, NRHS, A, LDA, BigSolver.Transpose(), BigSolver.X(), BigSolver.LDX(), OrigRHS.A(), OrigRHS.LDA(), resid); if (verbose) { if (!OK) cout << "************* Residual do not meet tolerance *************" << endl; for (i=0; i<NRHS; i++) cout << "Residual[" << i <<"] = "<< resid[i] << endl; cout << endl; } // Solve again using the Epetra_SerialDenseVector class for LHS and RHS Epetra_SerialDenseVector X2; Epetra_SerialDenseVector B2; X2.Size(BigMatrix.N()); B2.Size(BigMatrix.M()); int length = BigMatrix.N(); {for (int kk=0; kk<length; kk++) X2[kk] = ((double ) kk)/ ((double) length);} // Define entries of X2 RHS_counter.ResetFlops(); B2.SetFlopCounter(RHS_counter); tstart = Timer.ElapsedTime(); B2.Multiply('N', 'N', 1.0, OrigBigMatrix, X2, 0.0); // Define B2 = A*X2 time = Timer.ElapsedTime() - tstart; Epetra_SerialDenseVector OrigB2 = B2; FLOPS = RHS_counter.Flops(); MFLOPS = FLOPS/time/1000000.0; if (verbose) cout << "MFLOPS to build single RHS = " << MFLOPS << endl; // Set LHS and RHS and solve BigSolver.SetVectors(X2, B2); tstart = Timer.ElapsedTime(); ierr = BigSolver.Solve(); time = Timer.ElapsedTime() - tstart; if (ierr==1 && verbose) cout << "LAPACK guidelines suggest this matrix might benefit from equilibration." << endl; else if (ierr!=0 && verbose) cout << "Error in solve = "<<ierr<< endl; assert(ierr>=0); FLOPS = counter.Flops(); MFLOPS = FLOPS/time/1000000.0; if (verbose) cout << "MFLOPS to solve single RHS = " << MFLOPS << endl; OK = Residual(N, 1, A, LDA, BigSolver.Transpose(), BigSolver.X(), BigSolver.LDX(), OrigB2.A(), OrigB2.LDA(), resid); if (verbose) { if (!OK) cout << "************* Residual do not meet tolerance *************" << endl; cout << "Residual = "<< resid[0] << endl; } delete [] resid; delete [] A; delete [] X; /////////////////////////////////////////////////// // Now test default constructor and index operators /////////////////////////////////////////////////// N = 5; Epetra_SerialDenseMatrix C; // Implicit call to default constructor, should not need to call destructor C.Shape(5,5); // Make it 5 by 5 double * C1 = new double[N*N]; GenerateHilbert(C1, N, N); // Generate Hilber matrix C1[1+2*N] = 1000.0; // Make matrix nonsymmetric // Fill values of C with Hilbert values for (i=0; i<N; i++) for (j=0; j<N; j++) C(i,j) = C1[i+j*N]; // Test if values are correctly written and read for (i=0; i<N; i++) for (j=0; j<N; j++) { assert(C(i,j) == C1[i+j*N]); assert(C(i,j) == C[j][i]); } if (verbose) cout << "Default constructor and index operator check OK. Values of Hilbert matrix = " << endl << C << endl << "Values should be 1/(i+j+1), except value (1,2) should be 1000" << endl; delete [] C1; // now test sized/shaped constructor Epetra_SerialDenseMatrix shapedMatrix(10, 12); assert(shapedMatrix.M() == 10); assert(shapedMatrix.N() == 12); for(i = 0; i < 10; i++) for(j = 0; j < 12; j++) assert(shapedMatrix(i, j) == 0.0); Epetra_SerialDenseVector sizedVector(20); assert(sizedVector.Length() == 20); for(i = 0; i < 20; i++) assert(sizedVector(i) == 0.0); if (verbose) cout << "Shaped/sized constructors check OK." << endl; // test Copy/View mode in op= and cpy ctr int temperr = 0; temperr = matrixAssignment(verbose, debug); if(verbose && temperr == 0) cout << "Operator = checked OK." << endl; EPETRA_TEST_ERR(temperr, ierr); temperr = matrixCpyCtr(verbose, debug); if(verbose && temperr == 0) cout << "Copy ctr checked OK." << endl; EPETRA_TEST_ERR(temperr, ierr); // Test some vector methods Epetra_SerialDenseVector v1(3); v1[0] = 1.0; v1[1] = 3.0; v1[2] = 2.0; Epetra_SerialDenseVector v2(3); v2[0] = 2.0; v2[1] = 1.0; v2[2] = -2.0; temperr = 0; if (v1.Norm1()!=6.0) temperr++; if (fabs(sqrt(14.0)-v1.Norm2())>1.0e-6) temperr++; if (v1.NormInf()!=3.0) temperr++; if(verbose && temperr == 0) cout << "Vector Norms checked OK." << endl; temperr = 0; if (v1.Dot(v2)!=1.0) temperr++; if(verbose && temperr == 0) cout << "Vector Dot product checked OK." << endl; #ifdef EPETRA_MPI MPI_Finalize() ; #endif /* end main */ return ierr ; }
int main(int argc, char *argv[]) { int ierr = 0, i, j, k; #ifdef EPETRA_MPI MPI_Init(&argc,&argv); Epetra_MpiComm Comm( MPI_COMM_WORLD ); #else Epetra_SerialComm Comm; #endif bool verbose = false; // Check if we should print results to standard out if (argc>1) if (argv[1][0]=='-' && argv[1][1]=='v') verbose = true; if(verbose && Comm.MyPID()==0) std::cout << Epetra_Version() << std::endl << std::endl; int rank = Comm.MyPID(); // char tmp; // if (rank==0) std::cout << "Press any key to continue..."<< std::endl; // if (rank==0) cin >> tmp; // Comm.Barrier(); Comm.SetTracebackMode(0); // This should shut down any error traceback reporting if (verbose) std::cout << Comm << std::endl; // bool verbose1 = verbose; // Redefine verbose to only print on PE 0 if (verbose && rank!=0) verbose = false; int N = 20; int NRHS = 4; double * A = new double[N*N]; double * A1 = new double[N*N]; double * X = new double[(N+1)*NRHS]; double * X1 = new double[(N+1)*NRHS]; int LDX = N+1; int LDX1 = N+1; double * B = new double[N*NRHS]; double * B1 = new double[N*NRHS]; int LDB = N; int LDB1 = N; int LDA = N; int LDA1 = LDA; double OneNorm1; bool Upper = false; Epetra_SerialSpdDenseSolver solver; Epetra_SerialSymDenseMatrix * Matrix; for (int kk=0; kk<2; kk++) { for (i=1; i<=N; i++) { GenerateHilbert(A, LDA, i); OneNorm1 = 0.0; for (j=1; j<=i; j++) OneNorm1 += 1.0/((double) j); // 1-Norm = 1 + 1/2 + ...+1/n if (kk==0) { Matrix = new Epetra_SerialSymDenseMatrix(View, A, LDA, i); LDA1 = LDA; } else { Matrix = new Epetra_SerialSymDenseMatrix(Copy, A, LDA, i); LDA1 = i; } GenerateHilbert(A1, LDA1, i); if (kk==1) { solver.FactorWithEquilibration(true); Matrix->SetUpper(); Upper = true; solver.SolveToRefinedSolution(false); } for (k=0; k<NRHS; k++) for (j=0; j<i; j++) { B[j+k*LDB] = 1.0/((double) (k+3)*(j+3)); B1[j+k*LDB1] = B[j+k*LDB1]; } Epetra_SerialDenseMatrix Epetra_B(View, B, LDB, i, NRHS); Epetra_SerialDenseMatrix Epetra_X(View, X, LDX, i, NRHS); solver.SetMatrix(*Matrix); solver.SetVectors(Epetra_X, Epetra_B); ierr = check(solver, A1, LDA1, i, NRHS, OneNorm1, B1, LDB1, X1, LDX1, Upper, verbose); assert (ierr>-1); delete Matrix; if (ierr!=0) { if (verbose) std::cout << "Factorization failed due to bad conditioning. This is normal if SCOND is small." << std::endl; break; } } } delete [] A; delete [] A1; delete [] X; delete [] X1; delete [] B; delete [] B1; ///////////////////////////////////////////////////////////////////// // Now test norms and scaling functions ///////////////////////////////////////////////////////////////////// Epetra_SerialSymDenseMatrix D; double ScalarA = 2.0; int DM = 10; int DN = 10; D.Shape(DM); for (j=0; j<DN; j++) for (i=0; i<DM; i++) D[j][i] = (double) (1+i+j*DM) ; //std::cout << D << std::endl; double NormInfD_ref = (double)(DM*(DN*(DN+1))/2); double NormOneD_ref = NormInfD_ref; double NormInfD = D.NormInf(); double NormOneD = D.NormOne(); if (verbose) { std::cout << " *** Before scaling *** " << std::endl << " Computed one-norm of test matrix = " << NormOneD << std::endl << " Expected one-norm = " << NormOneD_ref << std::endl << " Computed inf-norm of test matrix = " << NormInfD << std::endl << " Expected inf-norm = " << NormInfD_ref << std::endl; } D.Scale(ScalarA); // Scale entire D matrix by this value //std::cout << D << std::endl; NormInfD = D.NormInf(); NormOneD = D.NormOne(); if (verbose) { std::cout << " *** After scaling *** " << std::endl << " Computed one-norm of test matrix = " << NormOneD << std::endl << " Expected one-norm = " << NormOneD_ref*ScalarA << std::endl << " Computed inf-norm of test matrix = " << NormInfD << std::endl << " Expected inf-norm = " << NormInfD_ref*ScalarA << std::endl; } ///////////////////////////////////////////////////////////////////// // Now test for larger system, both correctness and performance. ///////////////////////////////////////////////////////////////////// N = 2000; NRHS = 5; LDA = N; LDB = N; LDX = N; if (verbose) std::cout << "\n\nComputing factor of an " << N << " x " << N << " SPD matrix...Please wait.\n\n" << std::endl; // Define A and X A = new double[LDA*N]; X = new double[LDB*NRHS]; for (j=0; j<N; j++) { for (k=0; k<NRHS; k++) X[j+k*LDX] = 1.0/((double) (j+5+k)); for (i=0; i<N; i++) { if (i==j) A[i+j*LDA] = 100.0 + i; else A[i+j*LDA] = -1.0/((double) (i+10)*(j+10)); } } // Define Epetra_SerialDenseMatrix object Epetra_SerialSymDenseMatrix BigMatrix(Copy, A, LDA, N); Epetra_SerialSymDenseMatrix OrigBigMatrix(View, A, LDA, N); Epetra_SerialSpdDenseSolver BigSolver; BigSolver.FactorWithEquilibration(true); BigSolver.SetMatrix(BigMatrix); // Time factorization Epetra_Flops counter; BigSolver.SetFlopCounter(counter); Epetra_Time Timer(Comm); double tstart = Timer.ElapsedTime(); ierr = BigSolver.Factor(); if (ierr!=0 && verbose) std::cout << "Error in factorization = "<<ierr<< std::endl; assert(ierr==0); double time = Timer.ElapsedTime() - tstart; double FLOPS = counter.Flops(); double MFLOPS = FLOPS/time/1000000.0; if (verbose) std::cout << "MFLOPS for Factorization = " << MFLOPS << std::endl; // Define Left hand side and right hand side Epetra_SerialDenseMatrix LHS(View, X, LDX, N, NRHS); Epetra_SerialDenseMatrix RHS; RHS.Shape(N,NRHS); // Allocate RHS // Compute RHS from A and X Epetra_Flops RHS_counter; RHS.SetFlopCounter(RHS_counter); tstart = Timer.ElapsedTime(); RHS.Multiply('L', 1.0, OrigBigMatrix, LHS, 0.0); // Symmetric Matrix-multiply time = Timer.ElapsedTime() - tstart; Epetra_SerialDenseMatrix OrigRHS = RHS; FLOPS = RHS_counter.Flops(); MFLOPS = FLOPS/time/1000000.0; if (verbose) std::cout << "MFLOPS to build RHS (NRHS = " << NRHS <<") = " << MFLOPS << std::endl; // Set LHS and RHS and solve BigSolver.SetVectors(LHS, RHS); tstart = Timer.ElapsedTime(); ierr = BigSolver.Solve(); if (ierr==1 && verbose) std::cout << "LAPACK guidelines suggest this matrix might benefit from equilibration." << std::endl; else if (ierr!=0 && verbose) std::cout << "Error in solve = "<<ierr<< std::endl; assert(ierr>=0); time = Timer.ElapsedTime() - tstart; FLOPS = BigSolver.Flops(); MFLOPS = FLOPS/time/1000000.0; if (verbose) std::cout << "MFLOPS for Solve (NRHS = " << NRHS <<") = " << MFLOPS << std::endl; double * resid = new double[NRHS]; bool OK = Residual(N, NRHS, A, LDA, BigSolver.X(), BigSolver.LDX(), OrigRHS.A(), OrigRHS.LDA(), resid); if (verbose) { if (!OK) std::cout << "************* Residual do not meet tolerance *************" << std::endl; for (i=0; i<NRHS; i++) std::cout << "Residual[" << i <<"] = "<< resid[i] << std::endl; std::cout << std::endl; } // Solve again using the Epetra_SerialDenseVector class for LHS and RHS Epetra_SerialDenseVector X2; Epetra_SerialDenseVector B2; X2.Size(BigMatrix.N()); B2.Size(BigMatrix.M()); int length = BigMatrix.N(); {for (int kk=0; kk<length; kk++) X2[kk] = ((double ) kk)/ ((double) length);} // Define entries of X2 RHS_counter.ResetFlops(); B2.SetFlopCounter(RHS_counter); tstart = Timer.ElapsedTime(); B2.Multiply('N', 'N', 1.0, OrigBigMatrix, X2, 0.0); // Define B2 = A*X2 time = Timer.ElapsedTime() - tstart; Epetra_SerialDenseVector OrigB2 = B2; FLOPS = RHS_counter.Flops(); MFLOPS = FLOPS/time/1000000.0; if (verbose) std::cout << "MFLOPS to build single RHS = " << MFLOPS << std::endl; // Set LHS and RHS and solve BigSolver.SetVectors(X2, B2); tstart = Timer.ElapsedTime(); ierr = BigSolver.Solve(); time = Timer.ElapsedTime() - tstart; if (ierr==1 && verbose) std::cout << "LAPACK guidelines suggest this matrix might benefit from equilibration." << std::endl; else if (ierr!=0 && verbose) std::cout << "Error in solve = "<<ierr<< std::endl; assert(ierr>=0); FLOPS = counter.Flops(); MFLOPS = FLOPS/time/1000000.0; if (verbose) std::cout << "MFLOPS to solve single RHS = " << MFLOPS << std::endl; OK = Residual(N, 1, A, LDA, BigSolver.X(), BigSolver.LDX(), OrigB2.A(), OrigB2.LDA(), resid); if (verbose) { if (!OK) std::cout << "************* Residual do not meet tolerance *************" << std::endl; std::cout << "Residual = "<< resid[0] << std::endl; } delete [] resid; delete [] A; delete [] X; /////////////////////////////////////////////////// // Now test default constructor and index operators /////////////////////////////////////////////////// N = 5; Epetra_SerialSymDenseMatrix C; // Implicit call to default constructor, should not need to call destructor C.Shape(5); // Make it 5 by 5 double * C1 = new double[N*N]; GenerateHilbert(C1, N, N); // Generate Hilber matrix C1[1+2*N] = 1000.0; // Make matrix nonsymmetric // Fill values of C with Hilbert values for (i=0; i<N; i++) for (j=0; j<N; j++) C(i,j) = C1[i+j*N]; // Test if values are correctly written and read for (i=0; i<N; i++) for (j=0; j<N; j++) { assert(C(i,j) == C1[i+j*N]); assert(C(i,j) == C[j][i]); } if (verbose) std::cout << "Default constructor and index operator check OK. Values of Hilbert matrix = " << std::endl << C << std::endl << "Values should be 1/(i+j+1), except value (1,2) should be 1000" << std::endl; delete [] C1; #ifdef EPETRA_MPI MPI_Finalize() ; #endif /* end main */ return ierr ; }