コード例 #1
0
/** Set up an Event workspace
  * @param numentries :: number of log entries to output
  * @param times :: vector of Kernel::DateAndTime
  * @param values :: vector of log value in double
  */
void ExportTimeSeriesLog::setupEventWorkspace(int numentries,
                                              vector<DateAndTime> &times,
                                              vector<double> values) {
  Kernel::DateAndTime runstart(
      m_dataWS->run().getProperty("run_start")->value());

  // Get some stuff from the input workspace
  const size_t numberOfSpectra = 1;
  const int YLength = static_cast<int>(m_dataWS->blocksize());

  // Make a brand new EventWorkspace
  EventWorkspace_sptr outEventWS = boost::dynamic_pointer_cast<EventWorkspace>(
      API::WorkspaceFactory::Instance().create(
          "EventWorkspace", numberOfSpectra, YLength + 1, YLength));
  // Copy geometry over.
  API::WorkspaceFactory::Instance().initializeFromParent(m_dataWS, outEventWS,
                                                         false);

  m_outWS = boost::dynamic_pointer_cast<MatrixWorkspace>(outEventWS);
  if (!m_outWS)
    throw runtime_error(
        "Output workspace cannot be casted to a MatrixWorkspace.");

  g_log.debug("[DBx336] An output workspace is generated.!");

  // Create the output event list (empty)
  EventList &outEL = outEventWS->getOrAddEventList(0);
  outEL.switchTo(WEIGHTED_NOTIME);

  // Allocate all the required memory
  outEL.reserve(numentries);
  outEL.clearDetectorIDs();

  for (size_t i = 0; i < static_cast<size_t>(numentries); i++) {
    Kernel::DateAndTime tnow = times[i];
    int64_t dt = tnow.totalNanoseconds() - runstart.totalNanoseconds();

    // convert to microseconds
    double dtmsec = static_cast<double>(dt) / 1000.0;
    outEL.addEventQuickly(WeightedEventNoTime(dtmsec, values[i], values[i]));
  }
  // Ensure thread-safety
  outEventWS->sortAll(TOF_SORT, NULL);

  // Now, create a default X-vector for histogramming, with just 2 bins.
  Kernel::cow_ptr<MantidVec> axis;
  MantidVec &xRef = axis.access();
  xRef.resize(2);
  std::vector<WeightedEventNoTime> &events = outEL.getWeightedEventsNoTime();
  xRef[0] = events.begin()->tof();
  xRef[1] = events.rbegin()->tof();

  // Set the binning axis using this.
  outEventWS->setX(0, axis);

  return;
}
コード例 #2
0
/** Executes the algorithm */
void FilterBadPulses::exec()
{
  // the input workspace into the event workspace we already know it is
  EventWorkspace_sptr inputWS = this->getProperty("InputWorkspace");

  // get the proton charge exists in the run object
  const API::Run& runlogs = inputWS->run();
  if (!runlogs.hasProperty("proton_charge"))
  {
    throw std::runtime_error("Failed to find \"proton_charge\" in sample logs");
  }
  Kernel::TimeSeriesProperty<double> * pcharge_log
      = dynamic_cast<Kernel::TimeSeriesProperty<double> *>( runlogs.getLogData("proton_charge") );
  Kernel::TimeSeriesPropertyStatistics stats = pcharge_log->getStatistics();

  // set the range
  double min_percent = this->getProperty("LowerCutoff");
  min_percent *= .01; // convert it to a percentage (0<x<1)
  double min_pcharge = stats.mean * min_percent;
  double max_pcharge = stats.maximum * 1.1; // make sure everything high is in
  if (min_pcharge >= max_pcharge) {
    throw std::runtime_error("proton_charge window filters out all of the data");
  }
  this->g_log.information() << "Filtering pcharge outside of " << min_pcharge
                            << " to " << max_pcharge << std::endl;
  size_t inputNumEvents = inputWS->getNumberEvents();

  // sub-algorithme does all of the actual work - do not set the output workspace
  IAlgorithm_sptr filterAlgo = createSubAlgorithm("FilterByLogValue", 0., 1.);
  filterAlgo->setProperty("InputWorkspace", inputWS);
  filterAlgo->setProperty("LogName", "proton_charge");
  filterAlgo->setProperty("MinimumValue", min_pcharge);
  filterAlgo->setProperty("MaximumValue", max_pcharge);
  filterAlgo->execute();

  // just grab the child's output workspace
  EventWorkspace_sptr outputWS = filterAlgo->getProperty("OutputWorkspace");
  size_t outputNumEvents = outputWS->getNumberEvents();
  this->setProperty("OutputWorkspace", outputWS);

  // log the number of events deleted
  double percent = static_cast<double>(inputNumEvents - outputNumEvents)
      / static_cast<double>(inputNumEvents);
  percent *= 100.;
  if (percent > 10.)
  {
    this->g_log.warning() << "Deleted " << (inputNumEvents - outputNumEvents)
                          << " of " << inputNumEvents
                          << " events (" << static_cast<int>(percent) << "%)\n";
  }
  else
  {
    this->g_log.information() << "Deleted " << (inputNumEvents - outputNumEvents)
                              << " of " << inputNumEvents
                              << " events (" << static_cast<int>(percent) << "%)\n";
  }
}
コード例 #3
0
/** Executes the algorithm
 *  @throw std::invalid_argument If the input workspaces do not meet the requirements of this algorithm
 */
void ConjoinWorkspaces::execEvent()
{
  //We do not need to check that binning is compatible, just that there is no overlap
  this->checkForOverlap(event_ws1, event_ws2, false);

  // Create the output workspace
  const size_t totalHists = event_ws1->getNumberHistograms() + event_ws2->getNumberHistograms();
  // Have the minimum # of histograms in the output.
  EventWorkspace_sptr output = boost::dynamic_pointer_cast<EventWorkspace>(
      WorkspaceFactory::Instance().create("EventWorkspace",
          1, event_ws1->readX(0).size(), event_ws1->readY(0).size())
      );
  // Copy over geometry (but not data) from first input workspace
  WorkspaceFactory::Instance().initializeFromParent(event_ws1,output,true);

  // Create the X values inside a cow pointer - they will be shared in the output workspace
  cow_ptr<MantidVec> XValues;
  XValues.access() = event_ws1->readX(0);

  // Initialize the progress reporting object
  m_progress = new API::Progress(this, 0.0, 1.0, totalHists);

  const int64_t& nhist1 = event_ws1->getNumberHistograms();
  for (int64_t i = 0; i < nhist1; ++i)
  {
    //Copy the events over
    output->getOrAddEventList(i) = event_ws1->getEventList(i); //Should fire the copy constructor
    m_progress->report();
  }

  //For second loop we use the offset from the first
  const int64_t& nhist2 = event_ws2->getNumberHistograms();
  for (int64_t j = 0; j < nhist2; ++j)
  {
    //This is the workspace index at which we assign in the output
    int64_t output_wi = j + nhist1;
    //Copy the events over
    output->getOrAddEventList(output_wi) = event_ws2->getEventList(j); //Should fire the copy constructor
    m_progress->report();
  }

  //This will make the spectramap axis.
  output->doneAddingEventLists();

  //Set the same bins for all output pixels
  output->setAllX(XValues);

  this->fixSpectrumNumbers(event_ws1, event_ws2, output);

  // Delete the input workspaces from the ADS
  AnalysisDataService::Instance().remove(getPropertyValue("InputWorkspace1"));
  AnalysisDataService::Instance().remove(getPropertyValue("InputWorkspace2"));

  // Create & assign an output workspace property with the workspace name the same as the first input
  declareProperty(new WorkspaceProperty<>("Output",getPropertyValue("InputWorkspace1"),Direction::Output));
  setProperty("Output", boost::dynamic_pointer_cast<MatrixWorkspace>(output) );
}
コード例 #4
0
ファイル: SmoothNeighbours.cpp プロジェクト: mganeva/mantid
/** Execute the algorithm for a EventWorkspace input
 * @param ws :: EventWorkspace
 */
void SmoothNeighbours::execEvent(Mantid::DataObjects::EventWorkspace_sptr ws) {
  m_progress->resetNumSteps(inWS->getNumberHistograms(), 0.5, 1.0);

  // Get some stuff from the input workspace
  const size_t numberOfSpectra = outWI;
  const int YLength = static_cast<int>(inWS->blocksize());

  EventWorkspace_sptr outWS;
  // Make a brand new EventWorkspace
  outWS = boost::dynamic_pointer_cast<EventWorkspace>(
      API::WorkspaceFactory::Instance().create(
          "EventWorkspace", numberOfSpectra, YLength + 1, YLength));
  // Copy geometry over.
  API::WorkspaceFactory::Instance().initializeFromParent(*ws, *outWS, false);
  // Ensure thread-safety
  outWS->sortAll(TOF_SORT, nullptr);

  this->setProperty("OutputWorkspace",
                    boost::dynamic_pointer_cast<MatrixWorkspace>(outWS));

  // Go through all the output workspace
  PARALLEL_FOR_IF(Kernel::threadSafe(*ws, *outWS))
  for (int outWIi = 0; outWIi < int(numberOfSpectra); outWIi++) {
    PARALLEL_START_INTERUPT_REGION

    // Create the output event list (empty)
    EventList &outEL = outWS->getSpectrum(outWIi);

    // Which are the neighbours?
    std::vector<weightedNeighbour> &neighbours = m_neighbours[outWIi];
    std::vector<weightedNeighbour>::iterator it;
    for (it = neighbours.begin(); it != neighbours.end(); ++it) {
      size_t inWI = it->first;
      // if(sum)outEL.copyInfoFrom(*ws->getSpectrum(inWI));
      double weight = it->second;
      // Copy the event list
      EventList tmpEL = ws->getSpectrum(inWI);
      // Scale it
      tmpEL *= weight;
      // Add it
      outEL += tmpEL;
    }

    // Copy the single detector ID (of the center) and spectrum number from the
    // input workspace
    // if (!sum) outEL.copyInfoFrom(*ws->getSpectrum(outWIi));

    m_progress->report("Summing");
    PARALLEL_END_INTERUPT_REGION
  }
  PARALLEL_CHECK_INTERUPT_REGION

  // Give the 0-th X bins to all the output spectra.
  outWS->setAllX(inWS->binEdges(0));
  if (expandSumAllPixels)
    spreadPixels(outWS);
}
コード例 #5
0
/** Generate mapping file name from Event workspace's instrument
 */
static string generateMappingfileName(EventWorkspace_sptr &wksp) {
  // get the name of the mapping file as set in the parameter files
  std::vector<string> temp =
      wksp->getInstrument()->getStringParameter("TS_mapping_file");
  if (temp.empty())
    return "";
  string mapping = temp[0];
  // Try to get it from the working directory
  Poco::File localmap(mapping);
  if (localmap.exists())
    return mapping;

  // Try to get it from the data directories
  string dataversion = Mantid::API::FileFinder::Instance().getFullPath(mapping);
  if (!dataversion.empty())
    return dataversion;

  // get a list of all proposal directories
  string instrument = wksp->getInstrument()->getName();
  Poco::File base("/SNS/" + instrument + "/");
  // try short instrument name
  if (!base.exists()) {
    instrument =
        Kernel::ConfigService::Instance().getInstrument(instrument).shortName();
    base = Poco::File("/SNS/" + instrument + "/");
    if (!base.exists())
      return "";
  }
  vector<string> dirs; // poco won't let me reuse temp
  base.list(dirs);

  // check all of the proposals for the mapping file in the canonical place
  const string CAL("_CAL");
  const size_t CAL_LEN = CAL.length(); // cache to make life easier
  vector<string> files;
  for (auto &dir : dirs) {
    if ((dir.length() > CAL_LEN) &&
        (dir.compare(dir.length() - CAL.length(), CAL.length(), CAL) == 0)) {
      std::string path = std::string(base.path())
                             .append("/")
                             .append(dir)
                             .append("/calibrations/")
                             .append(mapping);
      if (Poco::File(path).exists())
        files.push_back(path);
    }
  }

  if (files.empty())
    return "";
  else if (files.size() == 1)
    return files[0];
  else // just assume that the last one is the right one, this should never be
       // fired
    return *(files.rbegin());
}
コード例 #6
0
/// Called by the foreground thread to fetch data that's accumulated in
/// the temporary workspace.  The temporary workspace is left empty and
/// ready to receive more data.
/// @return shared pointer to a workspace containing the accumulated data
boost::shared_ptr<Workspace> TOPAZLiveEventDataListener::extractData() {

  // Check to see if the background thread has thrown an exception.  If so,
  // re-throw it here.
  if (m_backgroundException) {
    throw(*m_backgroundException);
  }

  // Sanity check - make sure the workspace has been initialized
  if (!m_workspaceInitialized) {
    throw std::runtime_error("TOPAZLiveEventDataListener:  "
                             "The workspace has not been initialized.");
  }

  using namespace DataObjects;

  // Make a brand new EventWorkspace
  EventWorkspace_sptr temp = boost::dynamic_pointer_cast<EventWorkspace>(
      API::WorkspaceFactory::Instance().create(
          "EventWorkspace", m_eventBuffer->getNumberHistograms(), 2, 1));

  // Copy geometry over.
  API::WorkspaceFactory::Instance().initializeFromParent(*m_eventBuffer, *temp,
                                                         false);

  // Clear out the old logs, except for the most recent entry
  temp->mutableRun().clearOutdatedTimeSeriesLogValues();

  // Clear out old monitor logs
  // TODO: At present, there's no way for monitor logs to be added
  // to m_monitorLogs.  Either implement this feature, or remove
  // m_monitorLogs!
  for (auto &monitorLog : m_monitorLogs) {
    temp->mutableRun().removeProperty(monitorLog);
  }
  m_monitorLogs.clear();

  // Create a fresh monitor workspace and insert into the new 'main' workspace
  auto monitorBuffer = m_eventBuffer->monitorWorkspace();
  auto newMonitorBuffer = WorkspaceFactory::Instance().create(
      "EventWorkspace", monitorBuffer->getNumberHistograms(), 1, 1);
  WorkspaceFactory::Instance().initializeFromParent(*monitorBuffer,
                                                    *newMonitorBuffer, false);
  temp->setMonitorWorkspace(newMonitorBuffer);

  // Lock the mutex and swap the workspaces
  {
    std::lock_guard<std::mutex> scopedLock(m_mutex);
    std::swap(m_eventBuffer, temp);
  } // mutex automatically unlocks here

  return temp;
}
コード例 #7
0
/** Converts an EventWorkspace to an equivalent Workspace2D
 * @param inputMatrixW :: input event workspace
 * @return a MatrixWorkspace_sptr
 */
MatrixWorkspace_sptr
EventWorkspaceHelpers::convertEventTo2D(MatrixWorkspace_sptr inputMatrixW) {
  EventWorkspace_sptr inputW =
      boost::dynamic_pointer_cast<EventWorkspace>(inputMatrixW);
  if (!inputW)
    throw std::invalid_argument("EventWorkspaceHelpers::convertEventTo2D(): "
                                "Input workspace is not an EventWorkspace.");

  size_t numBins = inputW->blocksize();

  // Make a workspace 2D version of it
  MatrixWorkspace_sptr outputW;
  outputW = WorkspaceFactory::Instance().create(
      "Workspace2D", inputW->getNumberHistograms(), numBins + 1, numBins);
  WorkspaceFactory::Instance().initializeFromParent(inputW, outputW, false);

  // Now let's set all the X bins and values
  for (size_t i = 0; i < inputW->getNumberHistograms(); i++) {
    outputW->getSpectrum(i).copyInfoFrom(inputW->getSpectrum(i));
    outputW->setX(i, inputW->refX(i));

    MantidVec &Yout = outputW->dataY(i);
    const MantidVec &Yin = inputW->readY(i);
    for (size_t j = 0; j < numBins; j++)
      Yout[j] = Yin[j];

    MantidVec &Eout = outputW->dataE(i);
    const MantidVec &Ein = inputW->readE(i);
    for (size_t j = 0; j < numBins; j++)
      Eout[j] = Ein[j];
  }

  return outputW;
}
コード例 #8
0
ファイル: ScaleX.cpp プロジェクト: trnielsen/mantid
    void ScaleX::execEvent()
    {
      g_log.information("Processing event workspace");

      const MatrixWorkspace_const_sptr matrixInputWS = this->getProperty("InputWorkspace");
      EventWorkspace_const_sptr inputWS
                     = boost::dynamic_pointer_cast<const EventWorkspace>(matrixInputWS);

      // generate the output workspace pointer
      API::MatrixWorkspace_sptr matrixOutputWS = this->getProperty("OutputWorkspace");
      EventWorkspace_sptr outputWS;
      if (matrixOutputWS == matrixInputWS)
        outputWS = boost::dynamic_pointer_cast<EventWorkspace>(matrixOutputWS);
      else
      {
        //Make a brand new EventWorkspace
        outputWS = boost::dynamic_pointer_cast<EventWorkspace>(
            API::WorkspaceFactory::Instance().create("EventWorkspace", inputWS->getNumberHistograms(), 2, 1));
        //Copy geometry over.
        API::WorkspaceFactory::Instance().initializeFromParent(inputWS, outputWS, false);
        //You need to copy over the data as well.
        outputWS->copyDataFrom( (*inputWS) );

        //Cast to the matrixOutputWS and save it
        matrixOutputWS = boost::dynamic_pointer_cast<MatrixWorkspace>(outputWS);
        this->setProperty("OutputWorkspace", matrixOutputWS);
      }

      int numHistograms = static_cast<int>(inputWS->getNumberHistograms());
      PARALLEL_FOR1(outputWS)
      for (int i=0; i < numHistograms; ++i)
      {
        PARALLEL_START_INTERUPT_REGION
        //Do the offsetting
        if ((i >= wi_min) && (i <= wi_max))
        {
          outputWS->getEventList(i).scaleTof(factor);
          if( factor < 0 )
          {
            outputWS->getEventList(i).reverse();
          }
        }
        m_progress->report("Scaling X");
        PARALLEL_END_INTERUPT_REGION
      }
      PARALLEL_CHECK_INTERUPT_REGION

      outputWS->clearMRU();
    }
コード例 #9
0
ファイル: SmoothNeighbours.cpp プロジェクト: mganeva/mantid
/** Executes the algorithm
 *
 */
void SmoothNeighbours::exec() {
  inWS = getProperty("InputWorkspace");

  PreserveEvents = getProperty("PreserveEvents");

  expandSumAllPixels = getProperty("ExpandSumAllPixels");

  // Use the unit type to translate the entered radius into meters.
  Radius = translateToMeters(getProperty("RadiusUnits"), getProperty("Radius"));

  setWeightingStrategy(getProperty("WeightedSum"), Radius);

  AdjX = getProperty("AdjX");
  AdjY = getProperty("AdjY");
  Edge = getProperty("ZeroEdgePixels");

  nNeighbours = getProperty("NumberOfNeighbours");

  // Progress reporting, first for the sorting
  m_progress =
      make_unique<Progress>(this, 0.0, 0.2, inWS->getNumberHistograms());

  // Run the appropriate method depending on the type of the instrument
  if (inWS->getInstrument()->containsRectDetectors() ==
      Instrument::ContainsState::Full)
    findNeighboursRectangular();
  else
    findNeighboursUbiqutious();

  EventWorkspace_sptr wsEvent =
      boost::dynamic_pointer_cast<EventWorkspace>(inWS);
  if (wsEvent)
    wsEvent->sortAll(TOF_SORT, m_progress.get());

  if (!wsEvent || !PreserveEvents)
    this->execWorkspace2D();
  else if (wsEvent)
    this->execEvent(wsEvent);
  else
    throw std::runtime_error("This algorithm requires a Workspace2D or "
                             "EventWorkspace as its input.");
}
コード例 #10
0
void GatherWorkspaces::execEvent() {

  // Every process in an MPI job must hit this next line or everything hangs!
  mpi::communicator included; // The communicator containing all processes
  // The root process needs to create a workspace of the appropriate size
  EventWorkspace_sptr outputWorkspace;
  if (included.rank() == 0) {
    g_log.debug() << "Total number of spectra is " << totalSpec << "\n";
    // Create the workspace for the output
    outputWorkspace = boost::dynamic_pointer_cast<EventWorkspace>(
        API::WorkspaceFactory::Instance().create("EventWorkspace", sumSpec,
                                                 numBins + hist, numBins));
    // Copy geometry over.
    API::WorkspaceFactory::Instance().initializeFromParent(
        eventW, outputWorkspace, true);
    setProperty("OutputWorkspace", outputWorkspace);
    ExperimentInfo_sptr inWS = inputWorkspace;
    outputWorkspace->copyExperimentInfoFrom(inWS.get());
  }

  for (size_t wi = 0; wi < totalSpec; wi++) {
    if (included.rank() == 0) {
      // How do we accumulate the data?
      std::string accum = this->getPropertyValue("AccumulationMethod");
      std::vector<Mantid::DataObjects::EventList> out_values;
      gather(included, eventW->getEventList(wi), out_values, 0);
      for (int i = 0; i < included.size(); i++) {
        size_t index = wi; // accum == "Add"
        if (accum == "Append")
          index = wi + i * totalSpec;
        outputWorkspace->dataX(index) = eventW->readX(wi);
        outputWorkspace->getOrAddEventList(index) += out_values[i];
        const ISpectrum *inSpec = eventW->getSpectrum(wi);
        ISpectrum *outSpec = outputWorkspace->getSpectrum(index);
        outSpec->clearDetectorIDs();
        outSpec->addDetectorIDs(inSpec->getDetectorIDs());
      }
    } else {
      gather(included, eventW->getEventList(wi), 0);
    }
  }
}
コード例 #11
0
ファイル: MergeRuns.cpp プロジェクト: mducle/mantid
/** Validate the input event workspaces
 *
 *  @param  inputWorkspaces The names of the input workspaces
 *  @throw invalid_argument if there is an incompatibility.
 *  @return true if all workspaces are event workspaces and valid. False if any
 *are not found,
 */
bool MergeRuns::validateInputsForEventWorkspaces(
    const std::vector<std::string> &inputWorkspaces) {
    std::string xUnitID;
    std::string YUnit;
    bool dist(false);

    m_inEventWS.clear();

    // Going to check that name of instrument matches - think that's the best
    // possible at the moment
    //   because if instrument is created from raw file it'll be a different
    //   object
    std::string instrument;

    for (size_t i = 0; i < inputWorkspaces.size(); ++i) {
        // Fetch the next input workspace as an - throw an error if it's not there
        EventWorkspace_sptr ws =
            AnalysisDataService::Instance().retrieveWS<EventWorkspace>(
                inputWorkspaces[i]);

        if (!ws) { // Either it is not found, or it is not an EventWorkspace
            return false;
        }
        m_inEventWS.push_back(ws);

        // Check a few things are the same for all input workspaces
        if (i == 0) {
            xUnitID = ws->getAxis(0)->unit()->unitID();
            YUnit = ws->YUnit();
            dist = ws->isDistribution();
            instrument = ws->getInstrument()->getName();
        } else {
            testCompatibility(ws, xUnitID, YUnit, dist, instrument);
        }
    } // for each input WS name

    // We got here: all are event workspaces
    return true;
}
コード例 #12
0
ファイル: CompressEvents.cpp プロジェクト: trnielsen/mantid
void CompressEvents::exec()
{
  // Get the input workspace
  EventWorkspace_sptr inputWS = getProperty("InputWorkspace");
  EventWorkspace_sptr outputWS = getProperty("OutputWorkspace");
  double tolerance = getProperty("Tolerance");

  // Some starting things
  bool inplace = (inputWS == outputWS);
  const int noSpectra = static_cast<int>(inputWS->getNumberHistograms());
  Progress prog(this,0.0,1.0, noSpectra*2);

  // Sort the input workspace in-place by TOF. This can be faster if there are few event lists.
  inputWS->sortAll(TOF_SORT, &prog);

  // Are we making a copy of the input workspace?
  if (!inplace)
  {
    //Make a brand new EventWorkspace
    outputWS = boost::dynamic_pointer_cast<EventWorkspace>(
        API::WorkspaceFactory::Instance().create("EventWorkspace", inputWS->getNumberHistograms(), 2, 1));
    //Copy geometry over.
    API::WorkspaceFactory::Instance().initializeFromParent(inputWS, outputWS, false);
    // We DONT copy the data though

    // Do we want to parallelize over event lists, or in each event list
    bool parallel_in_each = noSpectra < PARALLEL_GET_MAX_THREADS;
    //parallel_in_each = false;

    // Loop over the histograms (detector spectra)
    // Don't parallelize the loop if we are going to parallelize each event list.
    // cppcheck-suppress syntaxError
    PRAGMA_OMP( parallel for schedule(dynamic) if (!parallel_in_each) )
    for (int i = 0; i < noSpectra; ++i)
    {
      PARALLEL_START_INTERUPT_REGION
      //the loop variable i can't be signed because of OpenMp rules inforced in Linux. Using this signed type suppresses warnings below
      const size_t index = static_cast<size_t>(i);
      // The input event list
      EventList& input_el = inputWS->getEventList(index);
      // And on the output side
      EventList & output_el = outputWS->getOrAddEventList(index);
      // Copy other settings into output
      output_el.setX( input_el.ptrX() );

      // The EventList method does the work.
      input_el.compressEvents(tolerance, &output_el, parallel_in_each);

      prog.report("Compressing");
      PARALLEL_END_INTERUPT_REGION
    }
    PARALLEL_CHECK_INTERUPT_REGION

  }
コード例 #13
0
ファイル: SortEvents.cpp プロジェクト: AlistairMills/mantid
    /** Executes the rebin algorithm
    *
    *  @throw runtime_error Thrown if the bin range does not intersect the range of the input workspace
    */
    void SortEvents::exec()
    {
      // Get the input workspace
      EventWorkspace_sptr eventW = getProperty("InputWorkspace");
      //And other properties
      std::string sortoption = getPropertyValue("SortBy");

      //------- EventWorkspace ---------------------------
      const size_t histnumber = eventW->getNumberHistograms();

      //Initialize progress reporting.
      Progress prog(this,0.0,1.0, histnumber);

      DataObjects::EventSortType sortType = DataObjects::TOF_SORT;
      if (sortoption == "Pulse Time")
        sortType = DataObjects::PULSETIME_SORT;
      else if (sortoption == "Pulse Time + TOF")
        sortType = DataObjects::PULSETIMETOF_SORT;

      //This runs the SortEvents algorithm in parallel
      eventW->sortAll(sortType, &prog);

      return;
    }
コード例 #14
0
void SANSSolidAngleCorrection::execEvent() {
  MatrixWorkspace_sptr inputWS = getProperty("InputWorkspace");
  EventWorkspace_sptr inputEventWS =
      boost::dynamic_pointer_cast<EventWorkspace>(inputWS);

  const int numberOfSpectra =
      static_cast<int>(inputEventWS->getNumberHistograms());
  Progress progress(this, 0.0, 1.0, inputEventWS->getNumberHistograms());

  // generate the output workspace pointer
  MatrixWorkspace_sptr outputWS = this->getProperty("OutputWorkspace");
  EventWorkspace_sptr outputEventWS;
  if (outputWS == inputWS)
    outputEventWS = boost::dynamic_pointer_cast<EventWorkspace>(outputWS);
  else {
    // Make a brand new EventWorkspace
    outputEventWS = boost::dynamic_pointer_cast<EventWorkspace>(
        WorkspaceFactory::Instance().create(
            "EventWorkspace", inputEventWS->getNumberHistograms(), 2, 1));
    // Copy geometry over.
    WorkspaceFactory::Instance().initializeFromParent(inputEventWS,
                                                      outputEventWS, false);
    // You need to copy over the data as well.
    outputEventWS->copyDataFrom((*inputEventWS));

    // Cast to the matrixOutputWS and save it
    outputWS = boost::dynamic_pointer_cast<MatrixWorkspace>(outputEventWS);
    this->setProperty("OutputWorkspace", outputWS);
  }

  progress.report("Solid Angle Correction");

  PARALLEL_FOR2(inputEventWS, outputEventWS)
  for (int i = 0; i < numberOfSpectra; i++) {
    PARALLEL_START_INTERUPT_REGION
    IDetector_const_sptr det;
    try {
      det = inputEventWS->getDetector(i);
    } catch (Exception::NotFoundError &) {
      g_log.warning() << "Spectrum index " << i
                      << " has no detector assigned to it - discarding"
                      << std::endl;
      // Catch if no detector. Next line tests whether this happened - test
      // placed
      // outside here because Mac Intel compiler doesn't like 'continue' in a
      // catch
      // in an openmp block.
    }
    if (!det)
      continue;

    // Skip if we have a monitor or if the detector is masked.
    if (det->isMonitor() || det->isMasked())
      continue;

    // Compute solid angle correction factor
    const bool is_tube = getProperty("DetectorTubes");
    const double tanTheta = tan(inputEventWS->detectorTwoTheta(det));
    const double theta_term = sqrt(tanTheta * tanTheta + 1.0);
    double corr;
    if (is_tube) {
      const double tanAlpha = tan(getYTubeAngle(det, inputWS));
      const double alpha_term = sqrt(tanAlpha * tanAlpha + 1.0);
      corr = alpha_term * theta_term * theta_term;
    } else {
      corr = theta_term * theta_term * theta_term;
    }
    EventList &el = outputEventWS->getEventList(i);
    el *= corr;
    progress.report("Solid Angle Correction");
    PARALLEL_END_INTERUPT_REGION
  }
  PARALLEL_CHECK_INTERUPT_REGION

  setProperty("OutputMessage", "Solid angle correction applied");
}
コード例 #15
0
/// Executes the algorithm for events
void UnaryOperation::execEvent() {
  g_log.information("Processing event workspace");

  const MatrixWorkspace_const_sptr matrixInputWS =
      this->getProperty(inputPropName());
  EventWorkspace_const_sptr inputWS =
      boost::dynamic_pointer_cast<const EventWorkspace>(matrixInputWS);

  // generate the output workspace pointer
  API::MatrixWorkspace_sptr matrixOutputWS =
      this->getProperty(outputPropName());
  EventWorkspace_sptr outputWS;
  if (matrixOutputWS == matrixInputWS) {
    outputWS = boost::dynamic_pointer_cast<EventWorkspace>(matrixOutputWS);
  } else {
    // Make a brand new EventWorkspace
    outputWS = boost::dynamic_pointer_cast<EventWorkspace>(
        API::WorkspaceFactory::Instance().create(
            "EventWorkspace", inputWS->getNumberHistograms(), 2, 1));
    // Copy geometry over.
    API::WorkspaceFactory::Instance().initializeFromParent(inputWS, outputWS,
                                                           false);
    // You need to copy over the data as well.
    outputWS->copyDataFrom((*inputWS));

    // Cast to the matrixOutputWS and save it
    matrixOutputWS = boost::dynamic_pointer_cast<MatrixWorkspace>(outputWS);
    this->setProperty("OutputWorkspace", matrixOutputWS);
  }

  // Now fetch any properties defined by concrete algorithm
  retrieveProperties();

  int64_t numHistograms = static_cast<int64_t>(inputWS->getNumberHistograms());
  API::Progress prog = API::Progress(this, 0.0, 1.0, numHistograms);
  PARALLEL_FOR1(outputWS)
  for (int64_t i = 0; i < numHistograms; ++i) {
    PARALLEL_START_INTERUPT_REGION
    // switch to weighted events if needed, and use the appropriate helper
    // function
    EventList *evlist = outputWS->getEventListPtr(i);
    switch (evlist->getEventType()) {
    case TOF:
      // Switch to weights if needed.
      evlist->switchTo(WEIGHTED);
    /* no break */
    // Fall through

    case WEIGHTED:
      unaryOperationEventHelper(evlist->getWeightedEvents());
      break;

    case WEIGHTED_NOTIME:
      unaryOperationEventHelper(evlist->getWeightedEventsNoTime());
      break;
    }

    prog.report();
    PARALLEL_END_INTERUPT_REGION
  }
  PARALLEL_CHECK_INTERUPT_REGION

  outputWS->clearMRU();
  if (inputWS->getNumberEvents() != outputWS->getNumberEvents()) {
    g_log.information() << "Number of events has changed!!!" << std::endl;
  }
}
コード例 #16
0
ファイル: FilterByTime.cpp プロジェクト: AlistairMills/mantid
/** Executes the algorithm
 */
void FilterByTime::exec()
{
  EventWorkspace_const_sptr inputWS = this->getProperty("InputWorkspace");

  // ---- Find the start/end times ----
  DateAndTime start, stop;

  double start_dbl, stop_dbl;
  start_dbl = getProperty("StartTime");
  stop_dbl = getProperty("StopTime");

  std::string start_str, stop_str;
  start_str = getPropertyValue("AbsoluteStartTime");
  stop_str = getPropertyValue("AbsoluteStopTime");

  if ( (start_str != "") && (stop_str != "") && (start_dbl <= 0.0) && (stop_dbl <= 0.0) )
  {
    // Use the absolute string
    start = DateAndTime( start_str );
    stop  = DateAndTime( stop_str );
  }
  else if ( (start_str == "") && (stop_str == "") && ((start_dbl > 0.0) || (stop_dbl > 0.0)) )
  {
    // Use the relative times in seconds.
    DateAndTime first = inputWS->getFirstPulseTime();
    DateAndTime last = inputWS->getLastPulseTime();
    start = first + start_dbl;
    if (stop_dbl > 0.0)
    {
      stop = first + stop_dbl;
    }
    else
    {
      this->getLogger().debug() << "No end filter time specified - assuming last pulse" << std::endl;
      stop = last + 10000.0;   // so we get all events - needs to be past last pulse
    }
  }
  else
  {
    //Either both or none were specified
    throw std::invalid_argument("You need to specify either the StartTime or StopTime parameters; or both the AbsoluteStartTime and AbsoluteStopTime parameters; but not other combinations.");
  }

  if (stop <= start)
    throw std::invalid_argument("The stop time should be larger than the start time.");

  // Make a brand new EventWorkspace
  EventWorkspace_sptr outputWS = boost::dynamic_pointer_cast<EventWorkspace>(
        API::WorkspaceFactory::Instance().create("EventWorkspace", inputWS->getNumberHistograms(), 2, 1));
  // Copy geometry over.
  API::WorkspaceFactory::Instance().initializeFromParent(inputWS, outputWS, false);
  // But we don't copy the data.

  setProperty("OutputWorkspace", outputWS);

  size_t numberOfSpectra = inputWS->getNumberHistograms();

  // Initialise the progress reporting object
  Progress prog(this,0.0,1.0,numberOfSpectra);

  // Loop over the histograms (detector spectra)
  PARALLEL_FOR_NO_WSP_CHECK()
  for (int64_t i = 0; i < int64_t(numberOfSpectra); ++i)
  {
    PARALLEL_START_INTERUPT_REGION

    //Get the output event list (should be empty)
    EventList& output_el = outputWS->getEventList(i);
    //and this is the input event list
    const EventList& input_el = inputWS->getEventList(i);

    //Perform the filtering
    input_el.filterByPulseTime(start, stop, output_el);

    prog.report();
    PARALLEL_END_INTERUPT_REGION
  }
  PARALLEL_CHECK_INTERUPT_REGION


  //Now filter out the run, using the DateAndTime type.
  outputWS->mutableRun().filterByTime(start, stop);

}
コード例 #17
0
/** Convert the workspace units using TOF as an intermediate step in the
 * conversion
 * @param fromUnit :: The unit of the input workspace
 * @param outputWS :: The output workspace
 */
void ConvertUnitsUsingDetectorTable::convertViaTOF(
    Kernel::Unit_const_sptr fromUnit, API::MatrixWorkspace_sptr outputWS) {
  using namespace Geometry;

  // Let's see if we are using a TableWorkspace to override parameters
  TableWorkspace_sptr paramWS = getProperty("DetectorParameters");

  // See if we have supplied a DetectorParameters Workspace
  // TODO: Check if paramWS is NULL and if so throw an exception

  //      const std::string l1ColumnLabel("l1");

  // Let's check all the columns exist and are readable
  try {
    auto spectraColumnTmp = paramWS->getColumn("spectra");
    auto l1ColumnTmp = paramWS->getColumn("l1");
    auto l2ColumnTmp = paramWS->getColumn("l2");
    auto twoThetaColumnTmp = paramWS->getColumn("twotheta");
    auto efixedColumnTmp = paramWS->getColumn("efixed");
    auto emodeColumnTmp = paramWS->getColumn("emode");
  } catch (...) {
    throw Exception::InstrumentDefinitionError(
        "DetectorParameter TableWorkspace is not defined correctly.");
  }

  // Now let's read them into some vectors.
  auto l1Column = paramWS->getColVector<double>("l1");
  auto l2Column = paramWS->getColVector<double>("l2");
  auto twoThetaColumn = paramWS->getColVector<double>("twotheta");
  auto efixedColumn = paramWS->getColVector<double>("efixed");
  auto emodeColumn = paramWS->getColVector<int>("emode");
  auto spectraColumn = paramWS->getColVector<int>("spectra");

  EventWorkspace_sptr eventWS =
      boost::dynamic_pointer_cast<EventWorkspace>(outputWS);
  assert(static_cast<bool>(eventWS) == m_inputEvents); // Sanity check

  Progress prog(this, 0.2, 1.0, m_numberOfSpectra);
  int64_t numberOfSpectra_i =
      static_cast<int64_t>(m_numberOfSpectra); // cast to make openmp happy

  // Get the unit object for each workspace
  Kernel::Unit_const_sptr outputUnit = outputWS->getAxis(0)->unit();

  std::vector<double> emptyVec;
  int failedDetectorCount = 0;

  // ConstColumnVector<int> spectraNumber = paramWS->getVector("spectra");

  // TODO: Check why this parallel stuff breaks
  // Loop over the histograms (detector spectra)
  // PARALLEL_FOR1(outputWS)
  for (int64_t i = 0; i < numberOfSpectra_i; ++i) {

    // Lets find what row this spectrum ID appears in our detector table.

    // PARALLEL_START_INTERUPT_REGION

    std::size_t wsid = i;

    try {

      double deg2rad = M_PI / 180.;

      auto det = outputWS->getDetector(i);
      int specid = det->getID();

      // int spectraNumber = static_cast<int>(spectraColumn->toDouble(i));
      // wsid = outputWS->getIndexFromSpectrumNumber(spectraNumber);
      g_log.debug() << "###### Spectra #" << specid
                    << " ==> Workspace ID:" << wsid << std::endl;

      // Now we need to find the row that contains this spectrum
      std::vector<int>::iterator specIter;

      specIter = std::find(spectraColumn.begin(), spectraColumn.end(), specid);
      if (specIter != spectraColumn.end()) {
        size_t detectorRow = std::distance(spectraColumn.begin(), specIter);
        double l1 = l1Column[detectorRow];
        double l2 = l2Column[detectorRow];
        double twoTheta = twoThetaColumn[detectorRow] * deg2rad;
        double efixed = efixedColumn[detectorRow];
        int emode = emodeColumn[detectorRow];

        g_log.debug() << "specId from detector table = "
                      << spectraColumn[detectorRow] << std::endl;

        // l1 = l1Column->toDouble(detectorRow);
        // l2 = l2Column->toDouble(detectorRow);
        // twoTheta = deg2rad * twoThetaColumn->toDouble(detectorRow);
        // efixed = efixedColumn->toDouble(detectorRow);
        // emode = static_cast<int>(emodeColumn->toDouble(detectorRow));

        g_log.debug() << "###### Spectra #" << specid
                      << " ==> Det Table Row:" << detectorRow << std::endl;

        g_log.debug() << "\tL1=" << l1 << ",L2=" << l2 << ",TT=" << twoTheta
                      << ",EF=" << efixed << ",EM=" << emode << std::endl;

        // Make local copies of the units. This allows running the loop in
        // parallel
        Unit *localFromUnit = fromUnit->clone();
        Unit *localOutputUnit = outputUnit->clone();
        /// @todo Don't yet consider hold-off (delta)
        const double delta = 0.0;
        // Convert the input unit to time-of-flight
        localFromUnit->toTOF(outputWS->dataX(wsid), emptyVec, l1, l2, twoTheta,
                             emode, efixed, delta);
        // Convert from time-of-flight to the desired unit
        localOutputUnit->fromTOF(outputWS->dataX(wsid), emptyVec, l1, l2,
                                 twoTheta, emode, efixed, delta);
        // EventWorkspace part, modifying the EventLists.
        if (m_inputEvents) {
          eventWS->getEventList(wsid)
              .convertUnitsViaTof(localFromUnit, localOutputUnit);
        }
        // Clear unit memory
        delete localFromUnit;
        delete localOutputUnit;

      } else {
        // Not found
        g_log.debug() << "Spectrum " << specid << " not found!" << std::endl;
        failedDetectorCount++;
        outputWS->maskWorkspaceIndex(wsid);
      }

    } catch (Exception::NotFoundError &) {
      // Get to here if exception thrown when calculating distance to detector
      failedDetectorCount++;
      // Since you usually (always?) get to here when there's no attached
      // detectors, this call is
      // the same as just zeroing out the data (calling clearData on the
      // spectrum)
      outputWS->maskWorkspaceIndex(i);
    }

    prog.report("Convert to " + m_outputUnit->unitID());
    // PARALLEL_END_INTERUPT_REGION
  } // loop over spectra
  // PARALLEL_CHECK_INTERUPT_REGION

  if (failedDetectorCount != 0) {
    g_log.information() << "Something went wrong for " << failedDetectorCount
                        << " spectra. Masking spectrum." << std::endl;
  }
  if (m_inputEvents)
    eventWS->clearMRU();
}
コード例 #18
0
void ModeratorTzero::execEvent()
{
  g_log.information("Processing event workspace");

  const MatrixWorkspace_const_sptr matrixInputWS = getProperty("InputWorkspace");
  EventWorkspace_const_sptr inputWS= boost::dynamic_pointer_cast<const EventWorkspace>(matrixInputWS);

  // generate the output workspace pointer
  const size_t numHists = static_cast<size_t>(inputWS->getNumberHistograms());
  Mantid::API::MatrixWorkspace_sptr matrixOutputWS = getProperty("OutputWorkspace");
  EventWorkspace_sptr outputWS;
  if (matrixOutputWS == matrixInputWS)
  {
    outputWS = boost::dynamic_pointer_cast<EventWorkspace>(matrixOutputWS);
  }
  else
  {
    //Make a brand new EventWorkspace
    outputWS = boost::dynamic_pointer_cast<EventWorkspace>(WorkspaceFactory::Instance().create("EventWorkspace", numHists, 2, 1));
    //Copy geometry over.
    WorkspaceFactory::Instance().initializeFromParent(inputWS, outputWS, false);
    //You need to copy over the data as well.
    outputWS->copyDataFrom( (*inputWS) );
    //Cast to the matrixOutputWS and save it
    matrixOutputWS = boost::dynamic_pointer_cast<MatrixWorkspace>(outputWS);
    setProperty("OutputWorkspace", matrixOutputWS);
  }

  //Get a pointer to the sample
  IComponent_const_sptr sample = outputWS->getInstrument()->getSample();

  // Loop over the spectra
  Progress prog(this,0.0,1.0,numHists); //report progress of algorithm
  PARALLEL_FOR1(outputWS)
  for (int i = 0; i < static_cast<int>(numHists); ++i)
  {
    PARALLEL_START_INTERUPT_REGION
    size_t wsIndex = static_cast<size_t>(i);
    EventList &evlist=outputWS->getEventList(wsIndex);
    if( evlist.getNumberEvents() > 0 ) //don't bother with empty lists
    {
      double L1=CalculateL1(matrixOutputWS, wsIndex); // distance from source to sample or monitor
      double t2=CalculateT2(matrixOutputWS, wsIndex); // time from sample to detector
      if(t2>=0) //t2 < 0 when no detector info is available
      {
        double tof, E1;
        mu::Parser parser;
        parser.DefineVar("incidentEnergy", &E1); // associate variable E1 to this parser
        parser.SetExpr(m_formula);
        E1=m_convfactor*(L1/m_t1min)*(L1/m_t1min);
        double min_t0_next=parser.Eval(); // fast neutrons are shifted by min_t0_next, irrespective of tof

        // fix the histogram bins
        MantidVec &x=evlist.dataX();
        for (MantidVec::iterator iter=x.begin(); iter!=x.end(); ++iter)
        {
          tof=*iter;
          if(tof<m_t1min+t2)
            tof-=min_t0_next;
          else
            tof-=CalculateT0(tof, L1, t2, E1, parser);
          *iter=tof;
        }

        MantidVec tofs=evlist.getTofs();
        for(unsigned int itof=0; itof<tofs.size(); itof++)
        {
          tof=tofs[itof]+0.002*(rand()%100 -50); // add a [-0.1,0.1] microsecond noise to avoid artifacts resulting from original tof data
          if(tof<m_t1min+t2)
            tof-=min_t0_next;
          else
            tof-=CalculateT0(tof, L1, t2, E1, parser);
          tofs[itof]=tof;
        }
        evlist.setTofs(tofs);
        evlist.setSortOrder(Mantid::DataObjects::EventSortType::UNSORTED);
      }
    }
    prog.report();
    PARALLEL_END_INTERUPT_REGION
  }
  PARALLEL_CHECK_INTERUPT_REGION
  outputWS->clearMRU(); // Clears the Most Recent Used lists */
} // end of void ModeratorTzero::execEvent()
コード例 #19
0
/** Executes the algorithm
 *@param localworkspace :: the input workspace
 *@param indices :: set of indices to sum up
 */
void SumSpectra::execEvent(EventWorkspace_const_sptr localworkspace,
                           std::set<int> &indices) {
  // Make a brand new EventWorkspace
  EventWorkspace_sptr outputWorkspace =
      boost::dynamic_pointer_cast<EventWorkspace>(
          API::WorkspaceFactory::Instance().create("EventWorkspace", 1, 2, 1));
  // Copy geometry over.
  API::WorkspaceFactory::Instance().initializeFromParent(localworkspace,
                                                         outputWorkspace, true);

  Progress progress(this, 0, 1, indices.size());

  // Get the pointer to the output event list
  EventList &outEL = outputWorkspace->getEventList(0);
  outEL.setSpectrumNo(m_outSpecId);
  outEL.clearDetectorIDs();

  // Loop over spectra
  std::set<int>::iterator it;
  size_t numSpectra(0);
  size_t numMasked(0);
  size_t numZeros(0);
  // for (int i = m_minSpec; i <= m_maxSpec; ++i)
  for (it = indices.begin(); it != indices.end(); ++it) {
    int i = *it;
    // Don't go outside the range.
    if ((i >= m_numberOfSpectra) || (i < 0)) {
      g_log.error() << "Invalid index " << i
                    << " was specified. Sum was aborted.\n";
      break;
    }

    try {
      // Get the detector object for this spectrum
      Geometry::IDetector_const_sptr det = localworkspace->getDetector(i);
      // Skip monitors, if the property is set to do so
      if (!m_keepMonitors && det->isMonitor())
        continue;
      // Skip masked detectors
      if (det->isMasked()) {
        numMasked++;
        continue;
      }
    } catch (...) {
      // if the detector not found just carry on
    }
    numSpectra++;

    // Add the event lists with the operator
    const EventList &tOutEL = localworkspace->getEventList(i);
    if (tOutEL.empty()) {
      ++numZeros;
    }
    outEL += tOutEL;

    progress.report();
  }

  // Set all X bins on the output
  cow_ptr<MantidVec> XValues;
  XValues.access() = localworkspace->readX(0);
  outputWorkspace->setAllX(XValues);

  outputWorkspace->mutableRun().addProperty("NumAllSpectra", int(numSpectra),
                                            "", true);
  outputWorkspace->mutableRun().addProperty("NumMaskSpectra", int(numMasked),
                                            "", true);
  outputWorkspace->mutableRun().addProperty("NumZeroSpectra", int(numZeros), "",
                                            true);

  // Assign it to the output workspace property
  setProperty("OutputWorkspace",
              boost::dynamic_pointer_cast<MatrixWorkspace>(outputWorkspace));
}
コード例 #20
0
ファイル: LoadEventPreNexus.cpp プロジェクト: nimgould/mantid
/** Process the event file properly.
 * @param workspace :: EventWorkspace to write to.
 */
void
LoadEventPreNexus::procEvents(DataObjects::EventWorkspace_sptr &workspace) {
  this->num_error_events = 0;
  this->num_good_events = 0;
  this->num_ignored_events = 0;

  // Default values in the case of no parallel
  size_t loadBlockSize = Mantid::Kernel::DEFAULT_BLOCK_SIZE * 2;

  shortest_tof = static_cast<double>(MAX_TOF_UINT32) * TOF_CONVERSION;
  longest_tof = 0.;

  // Initialize progress reporting.
  size_t numBlocks = (max_events + loadBlockSize - 1) / loadBlockSize;

  // We want to pad out empty pixels.
  detid2det_map detector_map;
  workspace->getInstrument()->getDetectors(detector_map);

  // -------------- Determine processing mode
  std::string procMode = getProperty("UseParallelProcessing");
  if (procMode == "Serial")
    parallelProcessing = false;
  else if (procMode == "Parallel")
    parallelProcessing = true;
  else {
    // Automatic determination. Loading serially (for me) is about 3 million
    // events per second,
    // (which is sped up by ~ x 3 with parallel processing, say 10 million per
    // second, e.g. 7 million events more per seconds).
    // compared to a setup time/merging time of about 10 seconds per million
    // detectors.
    double setUpTime = double(detector_map.size()) * 10e-6;
    parallelProcessing = ((double(max_events) / 7e6) > setUpTime);
    g_log.debug() << (parallelProcessing ? "Using" : "Not using")
                  << " parallel processing." << std::endl;
  }

  // determine maximum pixel id
  detid2det_map::iterator it;
  detid_max = 0; // seems like a safe lower bound
  for (it = detector_map.begin(); it != detector_map.end(); it++)
    if (it->first > detid_max)
      detid_max = it->first;

  // Pad all the pixels
  prog->report("Padding Pixels");
  this->pixel_to_wkspindex.reserve(
      detid_max + 1); // starting at zero up to and including detid_max
  // Set to zero
  this->pixel_to_wkspindex.assign(detid_max + 1, 0);
  size_t workspaceIndex = 0;
  for (it = detector_map.begin(); it != detector_map.end(); it++) {
    if (!it->second->isMonitor()) {
      this->pixel_to_wkspindex[it->first] = workspaceIndex;
      EventList &spec = workspace->getOrAddEventList(workspaceIndex);
      spec.addDetectorID(it->first);
      // Start the spectrum number at 1
      spec.setSpectrumNo(specid_t(workspaceIndex + 1));
      workspaceIndex += 1;
    }
  }

  // For slight speed up
  loadOnlySomeSpectra = (this->spectra_list.size() > 0);

  // Turn the spectra list into a map, for speed of access
  for (std::vector<int64_t>::iterator it = spectra_list.begin();
       it != spectra_list.end(); it++)
    spectraLoadMap[*it] = true;

  CPUTimer tim;

  // --------------- Create the partial workspaces
  // ------------------------------------------
  // Vector of partial workspaces, for parallel processing.
  std::vector<EventWorkspace_sptr> partWorkspaces;
  std::vector<DasEvent *> buffers;

  /// Pointer to the vector of events
  typedef std::vector<TofEvent> *EventVector_pt;
  /// Bare array of arrays of pointers to the EventVectors
  EventVector_pt **eventVectors;

  /// How many threads will we use?
  size_t numThreads = 1;
  if (parallelProcessing)
    numThreads = size_t(PARALLEL_GET_MAX_THREADS);

  partWorkspaces.resize(numThreads);
  buffers.resize(numThreads);
  eventVectors = new EventVector_pt *[numThreads];

  // cppcheck-suppress syntaxError
  PRAGMA_OMP( parallel for if (parallelProcessing) )
  for (int i = 0; i < int(numThreads); i++) {
    // This is the partial workspace we are about to create (if in parallel)
    EventWorkspace_sptr partWS;
    if (parallelProcessing) {
      prog->report("Creating Partial Workspace");
      // Create a partial workspace
      partWS = EventWorkspace_sptr(new EventWorkspace());
      // Make sure to initialize.
      partWS->initialize(1, 1, 1);
      // Copy all the spectra numbers and stuff (no actual events to copy
      // though).
      partWS->copyDataFrom(*workspace);
      // Push it in the array
      partWorkspaces[i] = partWS;
    } else
      partWS = workspace;

    // Allocate the buffers
    buffers[i] = new DasEvent[loadBlockSize];

    // For each partial workspace, make an array where index = detector ID and
    // value = pointer to the events vector
    eventVectors[i] = new EventVector_pt[detid_max + 1];
    EventVector_pt *theseEventVectors = eventVectors[i];
    for (detid_t j = 0; j < detid_max + 1; j++) {
      size_t wi = pixel_to_wkspindex[j];
      // Save a POINTER to the vector<tofEvent>
      theseEventVectors[j] = &partWS->getEventList(wi).getEvents();
    }
  }

  g_log.debug() << tim << " to create " << partWorkspaces.size()
                << " workspaces for parallel loading." << std::endl;

  prog->resetNumSteps(numBlocks, 0.1, 0.8);

  // ---------------------------------- LOAD THE DATA --------------------------
  PRAGMA_OMP( parallel for schedule(dynamic, 1) if (parallelProcessing) )
  for (int blockNum = 0; blockNum < int(numBlocks); blockNum++) {
    PARALLEL_START_INTERUPT_REGION

    // Find the workspace for this particular thread
    EventWorkspace_sptr ws;
    size_t threadNum = 0;
    if (parallelProcessing) {
      threadNum = PARALLEL_THREAD_NUMBER;
      ws = partWorkspaces[threadNum];
    } else
      ws = workspace;

    // Get the buffer (for this thread)
    DasEvent *event_buffer = buffers[threadNum];

    // Get the speeding-up array of vector<tofEvent> where index = detid.
    EventVector_pt *theseEventVectors = eventVectors[threadNum];

    // Where to start in the file?
    size_t fileOffset = first_event + (loadBlockSize * blockNum);
    // May need to reduce size of last (or only) block
    size_t current_event_buffer_size =
        (blockNum == int(numBlocks - 1))
            ? (max_events - (numBlocks - 1) * loadBlockSize)
            : loadBlockSize;

    // Load this chunk of event data (critical block)
    PARALLEL_CRITICAL(LoadEventPreNexus_fileAccess) {
      current_event_buffer_size = eventfile->loadBlockAt(
          event_buffer, fileOffset, current_event_buffer_size);
    }

    // This processes the events. Can be done in parallel!
    procEventsLinear(ws, theseEventVectors, event_buffer,
                     current_event_buffer_size, fileOffset);

    // Report progress
    prog->report("Load Event PreNeXus");

    PARALLEL_END_INTERUPT_REGION
  }
  PARALLEL_CHECK_INTERUPT_REGION
  g_log.debug() << tim << " to load the data." << std::endl;

  // ---------------------------------- MERGE WORKSPACES BACK TOGETHER
  // --------------------------
  if (parallelProcessing) {
    PARALLEL_START_INTERUPT_REGION
    prog->resetNumSteps(workspace->getNumberHistograms(), 0.8, 0.95);

    size_t memoryCleared = 0;
    MemoryManager::Instance().releaseFreeMemory();

    // Merge all workspaces, index by index.
    PARALLEL_FOR_NO_WSP_CHECK()
    for (int iwi = 0; iwi < int(workspace->getNumberHistograms()); iwi++) {
      size_t wi = size_t(iwi);

      // The output event list.
      EventList &el = workspace->getEventList(wi);
      el.clear(false);

      // How many events will it have?
      size_t numEvents = 0;
      for (size_t i = 0; i < numThreads; i++)
        numEvents += partWorkspaces[i]->getEventList(wi).getNumberEvents();
      // This will avoid too much copying.
      el.reserve(numEvents);

      // Now merge the event lists
      for (size_t i = 0; i < numThreads; i++) {
        EventList &partEl = partWorkspaces[i]->getEventList(wi);
        el += partEl.getEvents();
        // Free up memory as you go along.
        partEl.clear(false);
      }

      // With TCMalloc, release memory when you accumulate enough to make sense
      PARALLEL_CRITICAL(LoadEventPreNexus_trackMemory) {
        memoryCleared += numEvents;
        if (memoryCleared > 10000000) // ten million events = about 160 MB
        {
          MemoryManager::Instance().releaseFreeMemory();
          memoryCleared = 0;
        }
      }
      prog->report("Merging Workspaces");
    }
    // Final memory release
    MemoryManager::Instance().releaseFreeMemory();
    g_log.debug() << tim << " to merge workspaces together." << std::endl;
    PARALLEL_END_INTERUPT_REGION
  }
  PARALLEL_CHECK_INTERUPT_REGION

  // Delete the buffers for each thread.
  for (size_t i = 0; i < numThreads; i++) {
    delete[] buffers[i];
    delete[] eventVectors[i];
  }
  delete[] eventVectors;
  // delete [] pulsetimes;

  prog->resetNumSteps(3, 0.94, 1.00);

  // finalize loading
  prog->report("Deleting Empty Lists");
  if (loadOnlySomeSpectra)
    workspace->deleteEmptyLists();

  prog->report("Setting proton charge");
  this->setProtonCharge(workspace);
  g_log.debug() << tim << " to set the proton charge log." << std::endl;

  // Make sure the MRU is cleared
  workspace->clearMRU();

  // Now, create a default X-vector for histogramming, with just 2 bins.
  Kernel::cow_ptr<MantidVec> axis;
  MantidVec &xRef = axis.access();
  xRef.resize(2);
  xRef[0] = shortest_tof - 1; // Just to make sure the bins hold it all
  xRef[1] = longest_tof + 1;
  workspace->setAllX(axis);
  this->pixel_to_wkspindex.clear();

  g_log.information() << "Read " << this->num_good_events << " events + "
                      << this->num_error_events << " errors"
                      << ". Shortest TOF: " << shortest_tof
                      << " microsec; longest TOF: " << longest_tof
                      << " microsec." << std::endl;
}
コード例 #21
0
/** Carries out the bin-by-bin normalisation
 *  @param inputWorkspace The input workspace
 *  @param outputWorkspace The result workspace
 */
void NormaliseToMonitor::normaliseBinByBin(API::MatrixWorkspace_sptr inputWorkspace,
                                           API::MatrixWorkspace_sptr& outputWorkspace)
{ 
  EventWorkspace_sptr inputEvent = boost::dynamic_pointer_cast<EventWorkspace>(inputWorkspace);
  EventWorkspace_sptr outputEvent;

  // Only create output workspace if different to input one
  if (outputWorkspace != inputWorkspace )
  {
    if (inputEvent)
    {
      //Make a brand new EventWorkspace
      outputEvent = boost::dynamic_pointer_cast<EventWorkspace>(
          API::WorkspaceFactory::Instance().create("EventWorkspace", inputEvent->getNumberHistograms(), 2, 1));
      //Copy geometry and data
      API::WorkspaceFactory::Instance().initializeFromParent(inputEvent, outputEvent, false);
      outputEvent->copyDataFrom( (*inputEvent) );
      outputWorkspace = boost::dynamic_pointer_cast<MatrixWorkspace>(outputEvent);
    }
    else
      outputWorkspace = WorkspaceFactory::Instance().create(inputWorkspace);
  }

  // Get hold of the monitor spectrum
  const MantidVec& monX = m_monitor->readX(0);
  MantidVec& monY = m_monitor->dataY(0);
  MantidVec& monE = m_monitor->dataE(0);
  // Calculate the overall normalisation just the once if bins are all matching
  if (m_commonBins) this->normalisationFactor(m_monitor->readX(0),&monY,&monE);


  const size_t numHists = inputWorkspace->getNumberHistograms();
  MantidVec::size_type specLength = inputWorkspace->blocksize();
  Progress prog(this,0.0,1.0,numHists);
  // Loop over spectra
  PARALLEL_FOR3(inputWorkspace,outputWorkspace,m_monitor)
  for (int64_t i = 0; i < int64_t(numHists); ++i)
  {
    PARALLEL_START_INTERUPT_REGION
    prog.report();

    const MantidVec& X = inputWorkspace->readX(i);
    // If not rebinning, just point to our monitor spectra, otherwise create new vectors
    MantidVec* Y = ( m_commonBins ? &monY : new MantidVec(specLength) );
    MantidVec* E = ( m_commonBins ? &monE : new MantidVec(specLength) );

    if (!m_commonBins)
    {
      // ConvertUnits can give X vectors of all zeroes - skip these, they cause problems
      if (X.back() == 0.0 && X.front() == 0.0) continue;
      // Rebin the monitor spectrum to match the binning of the current data spectrum
      VectorHelper::rebinHistogram(monX,monY,monE,X,*Y,*E,false);
      // Recalculate the overall normalisation factor
      this->normalisationFactor(X,Y,E);
    }

    if (inputEvent)
    {
      // ----------------------------------- EventWorkspace ---------------------------------------
      EventList & outEL = outputEvent->getEventList(i);
      outEL.divide(X, *Y, *E);
    }
    else
    {
      // ----------------------------------- Workspace2D ---------------------------------------
      const MantidVec& inY = inputWorkspace->readY(i);
      const MantidVec& inE = inputWorkspace->readE(i);
      MantidVec& YOut = outputWorkspace->dataY(i);
      MantidVec& EOut = outputWorkspace->dataE(i);
      outputWorkspace->dataX(i) = inputWorkspace->readX(i);
      // The code below comes more or less straight out of Divide.cpp
      for (MantidVec::size_type k = 0; k < specLength; ++k)
      {
        // Get references to the input Y's
        const double& leftY = inY[k];
        const double& rightY = (*Y)[k];

        // Calculate result and store in local variable to avoid overwriting original data if
        // output workspace is same as one of the input ones
        const double newY = leftY/rightY;

        if (fabs(rightY)>1.0e-12 && fabs(newY)>1.0e-12)
        {
          const double lhsFactor = (inE[k]<1.0e-12|| fabs(leftY)<1.0e-12) ? 0.0 : pow((inE[k]/leftY),2);
          const double rhsFactor = (*E)[k]<1.0e-12 ? 0.0 : pow(((*E)[k]/rightY),2);
          EOut[k] = std::abs(newY) * sqrt(lhsFactor+rhsFactor);
        }

        // Now store the result
        YOut[k] = newY;
      } // end Workspace2D case
    } // end loop over current spectrum

    if (!m_commonBins) { delete Y; delete E; }
    PARALLEL_END_INTERUPT_REGION
  } // end loop over spectra
  PARALLEL_CHECK_INTERUPT_REGION
}
コード例 #22
0
/** Load the event_workspace field
 *
 * @param wksp_cls
 * @param progressStart
 * @param progressRange
 * @return
 */
API::MatrixWorkspace_sptr LoadNexusProcessed::loadEventEntry(NXData & wksp_cls, NXDouble & xbins,
    const double& progressStart, const double& progressRange)
{
  NXDataSetTyped<int64_t> indices_data = wksp_cls.openNXDataSet<int64_t>("indices");
  indices_data.load();
  boost::shared_array<int64_t> indices = indices_data.sharedBuffer();
  int numspec = indices_data.dim0()-1;

  int num_xbins = xbins.dim0();
  if (num_xbins < 2) num_xbins = 2;
  EventWorkspace_sptr ws = boost::dynamic_pointer_cast<EventWorkspace>
  (WorkspaceFactory::Instance().create("EventWorkspace", numspec, num_xbins, num_xbins-1));

  // Set the YUnit label
  ws->setYUnit(indices_data.attributes("units"));
  std::string unitLabel = indices_data.attributes("unit_label");
  if (unitLabel.empty()) unitLabel = indices_data.attributes("units");
  ws->setYUnitLabel(unitLabel);

  //Handle optional fields.
  // TODO: Handle inconsistent sizes
  boost::shared_array<int64_t> pulsetimes;
  if (wksp_cls.isValid("pulsetime"))
  {
    NXDataSetTyped<int64_t> pulsetime = wksp_cls.openNXDataSet<int64_t>("pulsetime");
    pulsetime.load();
    pulsetimes = pulsetime.sharedBuffer();
  }

  boost::shared_array<double> tofs;
  if (wksp_cls.isValid("tof"))
  {
    NXDouble tof = wksp_cls.openNXDouble("tof");
    tof.load();
    tofs = tof.sharedBuffer();
  }

  boost::shared_array<float> error_squareds;
  if (wksp_cls.isValid("error_squared"))
  {
    NXFloat error_squared = wksp_cls.openNXFloat("error_squared");
    error_squared.load();
    error_squareds = error_squared.sharedBuffer();
  }

  boost::shared_array<float> weights;
  if (wksp_cls.isValid("weight"))
  {
    NXFloat weight = wksp_cls.openNXFloat("weight");
    weight.load();
    weights = weight.sharedBuffer();
  }

  // What type of event lists?
  EventType type = TOF;
  if (tofs && pulsetimes && weights && error_squareds)
    type = WEIGHTED;
  else if ((tofs && weights && error_squareds))
    type = WEIGHTED_NOTIME;
  else if (pulsetimes && tofs)
    type = TOF;
  else
    throw std::runtime_error("Could not figure out the type of event list!");

  // Create all the event lists
  PARALLEL_FOR_NO_WSP_CHECK()
  for (int wi=0; wi < numspec; wi++)
  {
    PARALLEL_START_INTERUPT_REGION
    int64_t index_start = indices[wi];
    int64_t index_end = indices[wi+1];
    if (index_end >= index_start)
    {
      EventList & el = ws->getEventList(wi);
      el.switchTo(type);

      // Allocate all the required memory
      el.reserve(index_end - index_start);
      el.clearDetectorIDs();

      for (long i=index_start; i<index_end; i++)
      switch (type)
      {
      case TOF:
        el.addEventQuickly( TofEvent( tofs[i], DateAndTime(pulsetimes[i])) );
        break;
      case WEIGHTED:
        el.addEventQuickly( WeightedEvent( tofs[i], DateAndTime(pulsetimes[i]), weights[i], error_squareds[i]) );
        break;
      case WEIGHTED_NOTIME:
        el.addEventQuickly( WeightedEventNoTime( tofs[i], weights[i], error_squareds[i]) );
        break;
      }

      // Set the X axis
      if (this->m_shared_bins)
        el.setX(this->m_xbins);
      else
      {
        MantidVec x;
        x.resize(xbins.dim0());
        for (int i=0; i < xbins.dim0(); i++)
          x[i] = xbins(wi, i);
        el.setX(x);
      }
    }

    progress(progressStart + progressRange*(1.0/numspec));
    PARALLEL_END_INTERUPT_REGION
  }
  PARALLEL_CHECK_INTERUPT_REGION

  // Clean up some stuff
  ws->doneAddingEventLists();

  return ws;
}
コード例 #23
0
void TOFSANSResolution::exec()
{
  Workspace2D_sptr iqWS = getProperty("InputWorkspace");
  MatrixWorkspace_sptr reducedWS = getProperty("ReducedWorkspace");
  EventWorkspace_sptr reducedEventWS = boost::dynamic_pointer_cast<EventWorkspace>(reducedWS);
  const double min_wl = getProperty("MinWavelength");
  const double max_wl = getProperty("MaxWavelength");
  double pixel_size_x = getProperty("PixelSizeX");
  double pixel_size_y = getProperty("PixelSizeY");
  double R1 = getProperty("SourceApertureRadius");
  double R2 = getProperty("SampleApertureRadius");
  // Convert to meters
  pixel_size_x /= 1000.0;
  pixel_size_y /= 1000.0;
  R1 /= 1000.0;
  R2 /= 1000.0;
  wl_resolution = getProperty("DeltaT");

  // Although we want the 'ReducedWorkspace' to be an event workspace for this algorithm to do
  // anything, we don't want the algorithm to 'fail' if it isn't
  if (!reducedEventWS)
  {
    g_log.warning() << "An Event Workspace is needed to compute dQ. Calculation skipped." << std::endl;
    return;
  }

  // Calculate the output binning
  const std::vector<double> binParams = getProperty("OutputBinning");

  // Count histogram for normalization
  const int xLength = static_cast<int>(iqWS->readX(0).size());
  std::vector<double> XNorm(xLength-1, 0.0);

  // Create workspaces with each component of the resolution for debugging purposes
  MatrixWorkspace_sptr thetaWS = WorkspaceFactory::Instance().create(iqWS);
  declareProperty(new WorkspaceProperty<>("ThetaError","",Direction::Output));
  setPropertyValue("ThetaError","__"+iqWS->getName()+"_theta_error");
  setProperty("ThetaError",thetaWS);
  thetaWS->setX(0,iqWS->readX(0));
  MantidVec& ThetaY = thetaWS->dataY(0);

  MatrixWorkspace_sptr tofWS = WorkspaceFactory::Instance().create(iqWS);
  declareProperty(new WorkspaceProperty<>("TOFError","",Direction::Output));
  setPropertyValue("TOFError","__"+iqWS->getName()+"_tof_error");
  setProperty("TOFError",tofWS);
  tofWS->setX(0,iqWS->readX(0));
  MantidVec& TOFY = tofWS->dataY(0);

  // Initialize Dq
  MantidVec& DxOut = iqWS->dataDx(0);
  for ( int i = 0; i<xLength-1; i++ ) DxOut[i] = 0.0;

  const V3D samplePos = reducedWS->getInstrument()->getSample()->getPos();
  const V3D sourcePos = reducedWS->getInstrument()->getSource()->getPos();
  const V3D SSD = samplePos - sourcePos;
  const double L1 = SSD.norm();

  const int numberOfSpectra = static_cast<int>(reducedWS->getNumberHistograms());
  Progress progress(this,0.0,1.0,numberOfSpectra);

  PARALLEL_FOR2(reducedEventWS, iqWS)
  for (int i = 0; i < numberOfSpectra; i++)
  {
    PARALLEL_START_INTERUPT_REGION
    IDetector_const_sptr det;
    try {
      det = reducedEventWS->getDetector(i);
    } catch (Exception::NotFoundError&) {
      g_log.warning() << "Spectrum index " << i << " has no detector assigned to it - discarding" << std::endl;
      // Catch if no detector. Next line tests whether this happened - test placed
      // outside here because Mac Intel compiler doesn't like 'continue' in a catch
      // in an openmp block.
    }
    // If no detector found or if it's masked or a monitor, skip onto the next spectrum
    if ( !det || det->isMonitor() || det->isMasked() ) continue;

    // Get the flight path from the sample to the detector pixel
    const V3D scattered_flight_path = det->getPos() - samplePos;

    // Multiplicative factor to go from lambda to Q
    // Don't get fooled by the function name...
    const double theta = reducedEventWS->detectorTwoTheta(det);
    const double factor = 4.0 * M_PI * sin( theta/2.0 );

    EventList& el = reducedEventWS->getEventList(i);
    el.switchTo(WEIGHTED);

    std::vector<WeightedEvent>::iterator itev;
    std::vector<WeightedEvent>::iterator itev_end = el.getWeightedEvents().end();

    for (itev = el.getWeightedEvents().begin(); itev != itev_end; ++itev)
    {
      if ( itev->m_weight != itev->m_weight ) continue;
      if (std::abs(itev->m_weight) == std::numeric_limits<double>::infinity()) continue;
      if ( !isEmpty(min_wl) && itev->m_tof < min_wl ) continue;
      if ( !isEmpty(max_wl) && itev->m_tof > max_wl ) continue;

      const double q = factor/itev->m_tof;
      int iq = 0;

      // Bin assignment depends on whether we have log or linear bins
      if(binParams[1]>0.0)
      {
        iq = (int)floor( (q-binParams[0])/ binParams[1] );
      } else {
        iq = (int)floor(log(q/binParams[0])/log(1.0-binParams[1]));
      }

      const double L2 = scattered_flight_path.norm();
      const double src_to_pixel = L1+L2;
      const double dTheta2 = ( 3.0*R1*R1/(L1*L1) + 3.0*R2*R2*src_to_pixel*src_to_pixel/(L1*L1*L2*L2)
            + 2.0*(pixel_size_x*pixel_size_x+pixel_size_y*pixel_size_y)/(L2*L2) )/12.0;

      const double dwl_over_wl = 3.9560*getTOFResolution(itev->m_tof)/(1000.0*(L1+L2)*itev->m_tof);
      const double dq_over_q = std::sqrt(dTheta2/(theta*theta)+dwl_over_wl*dwl_over_wl);

      PARALLEL_CRITICAL(iq)    /* Write to shared memory - must protect */
      if (iq>=0 && iq < xLength-1 && !dq_over_q!=dq_over_q && dq_over_q>0)
      {
        DxOut[iq] += q*dq_over_q*itev->m_weight;
        XNorm[iq] += itev->m_weight;
        TOFY[iq] += q*std::fabs(dwl_over_wl)*itev->m_weight;
        ThetaY[iq] += q*std::sqrt(dTheta2)/theta*itev->m_weight;
      }
    }

    progress.report("Computing Q resolution");
    PARALLEL_END_INTERUPT_REGION
  }
  PARALLEL_CHECK_INTERUPT_REGION
  // Normalize according to the chosen weighting scheme
  for ( int i = 0; i<xLength-1; i++ )
  {
    if (XNorm[i]>0)
    {
      DxOut[i] /= XNorm[i];
      TOFY[i] /= XNorm[i];
      ThetaY[i] /= XNorm[i];
    }
  }
}
コード例 #24
0
/**
 * Execute the align detectors algorithm for an event workspace.
 */
void AlignDetectors::execEvent() {
  // g_log.information("Processing event workspace");

  // the calibration information is already read in at this point

  // convert the input workspace into the event workspace we already know it is
  const MatrixWorkspace_const_sptr matrixInputWS =
      this->getProperty("InputWorkspace");
  EventWorkspace_const_sptr inputWS =
      boost::dynamic_pointer_cast<const EventWorkspace>(matrixInputWS);

  // generate the output workspace pointer
  API::MatrixWorkspace_sptr matrixOutputWS =
      this->getProperty("OutputWorkspace");
  EventWorkspace_sptr outputWS;
  if (matrixOutputWS == matrixInputWS)
    outputWS = boost::dynamic_pointer_cast<EventWorkspace>(matrixOutputWS);
  else {
    // Make a brand new EventWorkspace
    outputWS = boost::dynamic_pointer_cast<EventWorkspace>(
        API::WorkspaceFactory::Instance().create(
            "EventWorkspace", inputWS->getNumberHistograms(), 2, 1));
    // Copy geometry over.
    API::WorkspaceFactory::Instance().initializeFromParent(inputWS, outputWS,
                                                           false);
    // You need to copy over the data as well.
    outputWS->copyDataFrom((*inputWS));

    // Cast to the matrixOutputWS and save it
    matrixOutputWS = boost::dynamic_pointer_cast<MatrixWorkspace>(outputWS);
    this->setProperty("OutputWorkspace", matrixOutputWS);
  }

  // Set the final unit that our output workspace will have
  setXAxisUnits(outputWS);

  ConversionFactors converter = ConversionFactors(m_calibrationWS);

  Progress progress(this, 0.0, 1.0, m_numberOfSpectra);

  PARALLEL_FOR_NO_WSP_CHECK()
  for (int64_t i = 0; i < m_numberOfSpectra; ++i) {
    PARALLEL_START_INTERUPT_REGION

    auto toDspacing = converter.getConversionFunc(
        inputWS->getSpectrum(size_t(i))->getDetectorIDs());
    outputWS->getEventList(i).convertTof(toDspacing);

    progress.report();
    PARALLEL_END_INTERUPT_REGION
  }
  PARALLEL_CHECK_INTERUPT_REGION

  if (outputWS->getTofMin() < 0.) {
    std::stringstream msg;
    msg << "Something wrong with the calibration. Negative minimum d-spacing "
           "created. d_min = " << outputWS->getTofMin() << " d_max "
        << outputWS->getTofMax();
    g_log.warning(msg.str());
  }
  outputWS->clearMRU();
}
コード例 #25
0
ファイル: GroupDetectors2.cpp プロジェクト: trnielsen/mantid
void GroupDetectors2::execEvent()
{
    // Get the input workspace
    const MatrixWorkspace_const_sptr matrixInputWS = getProperty("InputWorkspace");
    EventWorkspace_const_sptr inputWS= boost::dynamic_pointer_cast<const EventWorkspace>(matrixInputWS);


    const size_t numInHists = inputWS->getNumberHistograms();
    progress( m_FracCompl = CHECKBINS );
    interruption_point();

    // some values loaded into this vector can be negative so this needs to be a signed type
    std::vector<int64_t> unGroupedInds;
    //the ungrouped list could be very big but might be none at all
    unGroupedInds.reserve(numInHists);
    for( size_t i = 0; i < numInHists ; i++ )
    {
      unGroupedInds.push_back(i);
    }

    // read in the input parameters to make that map, if KeepUngroupedSpectra was set we'll need a list of the ungrouped spectrra too
    getGroups(inputWS, unGroupedInds);

    // converting the list into a set gets rid of repeated values, here the multiple GroupDetectors2::USED become one USED at the start
    const std::set<int64_t> unGroupedSet(unGroupedInds.begin(), unGroupedInds.end());

    // Check what the user asked to be done with ungrouped spectra
    const bool keepAll = getProperty("KeepUngroupedSpectra");
    // ignore the one USED value in set or ignore all the ungrouped if the user doesn't want them
    const size_t numUnGrouped = keepAll ? unGroupedSet.size()-1 : 0;

    //Make a brand new EventWorkspace
    EventWorkspace_sptr outputWS = boost::dynamic_pointer_cast<EventWorkspace>(
        WorkspaceFactory::Instance().create("EventWorkspace",  m_GroupSpecInds.size()+ numUnGrouped,
                                                  inputWS->readX(0).size(), inputWS->blocksize()));
    //Copy geometry over.
    WorkspaceFactory::Instance().initializeFromParent(inputWS, outputWS, true);

    // prepare to move the requested histograms into groups, first estimate how long for progress reporting. +1 in the demonator gets rid of any divide by zero risk
    double prog4Copy=( (1.0 - m_FracCompl)/(static_cast<double>(numInHists-unGroupedSet.size())+1.) )*
      (keepAll ? static_cast<double>(numInHists-unGroupedSet.size())/static_cast<double>(numInHists): 1.);

    // Build a new map
    const size_t outIndex = formGroupsEvent(inputWS, outputWS, prog4Copy);

    // If we're keeping ungrouped spectra
    if (keepAll)
    {
      // copy them into the output workspace
      moveOthersEvent(unGroupedSet, inputWS, outputWS, outIndex);
    }

    //Set all X bins on the output
    cow_ptr<MantidVec> XValues;
    XValues.access() = inputWS->readX(0);
    outputWS->setAllX(XValues);

    g_log.information() << name() << " algorithm has finished\n";

    setProperty("OutputWorkspace",outputWS);
}
コード例 #26
0
/** Execute the algorithm.
 */
void IntegrateEllipsoids::exec() {
  // get the input workspace
  MatrixWorkspace_sptr wksp = getProperty("InputWorkspace");

  EventWorkspace_sptr eventWS =
      boost::dynamic_pointer_cast<EventWorkspace>(wksp);
  Workspace2D_sptr histoWS = boost::dynamic_pointer_cast<Workspace2D>(wksp);
  if (!eventWS && !histoWS) {
    throw std::runtime_error("IntegrateEllipsoids needs either a "
                             "EventWorkspace or Workspace2D as input.");
  }

  // error out if there are not events
  if (eventWS && eventWS->getNumberEvents() <= 0) {
    throw std::runtime_error(
        "IntegrateEllipsoids does not work for empty event lists");
  }

  PeaksWorkspace_sptr in_peak_ws = getProperty("PeaksWorkspace");
  if (!in_peak_ws) {
    throw std::runtime_error("Could not read the peaks workspace");
  }

  double radius = getProperty("RegionRadius");
  int numSigmas = getProperty("NumSigmas");
  double cutoffIsigI = getProperty("CutoffIsigI");
  bool specify_size = getProperty("SpecifySize");
  double peak_radius = getProperty("PeakSize");
  double back_inner_radius = getProperty("BackgroundInnerSize");
  double back_outer_radius = getProperty("BackgroundOuterSize");
  bool hkl_integ = getProperty("IntegrateInHKL");
  bool integrateEdge = getProperty("IntegrateIfOnEdge");
  if (!integrateEdge) {
    // This only fails in the unit tests which say that MaskBTP is not
    // registered
    try {
      runMaskDetectors(in_peak_ws, "Tube", "edges");
      runMaskDetectors(in_peak_ws, "Pixel", "edges");
    } catch (...) {
      g_log.error("Can't execute MaskBTP algorithm for this instrument to set "
                  "edge for IntegrateIfOnEdge option");
    }
    calculateE1(in_peak_ws->detectorInfo()); // fill E1Vec for use in detectorQ
  }

  Mantid::DataObjects::PeaksWorkspace_sptr peak_ws =
      getProperty("OutputWorkspace");
  if (peak_ws != in_peak_ws) {
    peak_ws = in_peak_ws->clone();
  }

  // get UBinv and the list of
  // peak Q's for the integrator
  std::vector<Peak> &peaks = peak_ws->getPeaks();
  size_t n_peaks = peak_ws->getNumberPeaks();
  size_t indexed_count = 0;
  std::vector<V3D> peak_q_list;
  std::vector<std::pair<double, V3D>> qList;
  std::vector<V3D> hkl_vectors;
  for (size_t i = 0; i < n_peaks; i++) // Note: we skip un-indexed peaks
  {
    V3D hkl(peaks[i].getH(), peaks[i].getK(), peaks[i].getL());
    if (Geometry::IndexingUtils::ValidIndex(hkl, 1.0)) // use tolerance == 1 to
                                                       // just check for (0,0,0)
    {
      peak_q_list.emplace_back(peaks[i].getQLabFrame());
      qList.emplace_back(1., V3D(peaks[i].getQLabFrame()));
      V3D miller_ind(static_cast<double>(boost::math::iround<double>(hkl[0])),
                     static_cast<double>(boost::math::iround<double>(hkl[1])),
                     static_cast<double>(boost::math::iround<double>(hkl[2])));
      hkl_vectors.push_back(miller_ind);
      indexed_count++;
    }
  }

  if (indexed_count < 3) {
    throw std::runtime_error(
        "At least three linearly independent indexed peaks are needed.");
  }
  // Get UB using indexed peaks and
  // lab-Q vectors
  Matrix<double> UB(3, 3, false);
  Geometry::IndexingUtils::Optimize_UB(UB, hkl_vectors, peak_q_list);
  Matrix<double> UBinv(UB);
  UBinv.Invert();
  UBinv *= (1.0 / (2.0 * M_PI));

  std::vector<double> PeakRadiusVector(n_peaks, peak_radius);
  std::vector<double> BackgroundInnerRadiusVector(n_peaks, back_inner_radius);
  std::vector<double> BackgroundOuterRadiusVector(n_peaks, back_outer_radius);
  if (specify_size) {
    if (back_outer_radius > radius)
      throw std::runtime_error(
          "BackgroundOuterSize must be less than or equal to the RegionRadius");

    if (back_inner_radius >= back_outer_radius)
      throw std::runtime_error(
          "BackgroundInnerSize must be less BackgroundOuterSize");

    if (peak_radius > back_inner_radius)
      throw std::runtime_error(
          "PeakSize must be less than or equal to the BackgroundInnerSize");
  }

  // make the integrator
  Integrate3DEvents integrator(qList, UBinv, radius);

  // get the events and add
  // them to the inegrator
  // set up a descripter of where we are going
  this->initTargetWSDescr(wksp);

  // set up the progress bar
  const size_t numSpectra = wksp->getNumberHistograms();
  Progress prog(this, 0.5, 1.0, numSpectra);

  if (eventWS) {
    // process as EventWorkspace
    qListFromEventWS(integrator, prog, eventWS, UBinv, hkl_integ);
  } else {
    // process as Workspace2D
    qListFromHistoWS(integrator, prog, histoWS, UBinv, hkl_integ);
  }

  double inti;
  double sigi;
  std::vector<double> principalaxis1, principalaxis2, principalaxis3;
  V3D peak_q;
  for (size_t i = 0; i < n_peaks; i++) {
    V3D hkl(peaks[i].getH(), peaks[i].getK(), peaks[i].getL());
    if (Geometry::IndexingUtils::ValidIndex(hkl, 1.0)) {
      peak_q = peaks[i].getQLabFrame();
      std::vector<double> axes_radii;
      Mantid::Geometry::PeakShape_const_sptr shape =
          integrator.ellipseIntegrateEvents(
              E1Vec, peak_q, specify_size, peak_radius, back_inner_radius,
              back_outer_radius, axes_radii, inti, sigi);
      peaks[i].setIntensity(inti);
      peaks[i].setSigmaIntensity(sigi);
      peaks[i].setPeakShape(shape);
      if (axes_radii.size() == 3) {
        if (inti / sigi > cutoffIsigI || cutoffIsigI == EMPTY_DBL()) {
          principalaxis1.push_back(axes_radii[0]);
          principalaxis2.push_back(axes_radii[1]);
          principalaxis3.push_back(axes_radii[2]);
        }
      }
    } else {
      peaks[i].setIntensity(0.0);
      peaks[i].setSigmaIntensity(0.0);
    }
  }
  if (principalaxis1.size() > 1) {
    size_t histogramNumber = 3;
    Workspace_sptr wsProfile = WorkspaceFactory::Instance().create(
        "Workspace2D", histogramNumber, principalaxis1.size(),
        principalaxis1.size());
    Workspace2D_sptr wsProfile2D =
        boost::dynamic_pointer_cast<Workspace2D>(wsProfile);
    AnalysisDataService::Instance().addOrReplace("EllipsoidAxes", wsProfile2D);
    for (size_t j = 0; j < principalaxis1.size(); j++) {
      wsProfile2D->dataX(0)[j] = static_cast<double>(j);
      wsProfile2D->dataY(0)[j] = principalaxis1[j];
      wsProfile2D->dataE(0)[j] = std::sqrt(principalaxis1[j]);
      wsProfile2D->dataX(1)[j] = static_cast<double>(j);
      wsProfile2D->dataY(1)[j] = principalaxis2[j];
      wsProfile2D->dataE(1)[j] = std::sqrt(principalaxis2[j]);
      wsProfile2D->dataX(2)[j] = static_cast<double>(j);
      wsProfile2D->dataY(2)[j] = principalaxis3[j];
      wsProfile2D->dataE(2)[j] = std::sqrt(principalaxis3[j]);
    }
    Statistics stats1 = getStatistics(principalaxis1);
    g_log.notice() << "principalaxis1: "
                   << " mean " << stats1.mean << " standard_deviation "
                   << stats1.standard_deviation << " minimum " << stats1.minimum
                   << " maximum " << stats1.maximum << " median "
                   << stats1.median << "\n";
    Statistics stats2 = getStatistics(principalaxis2);
    g_log.notice() << "principalaxis2: "
                   << " mean " << stats2.mean << " standard_deviation "
                   << stats2.standard_deviation << " minimum " << stats2.minimum
                   << " maximum " << stats2.maximum << " median "
                   << stats2.median << "\n";
    Statistics stats3 = getStatistics(principalaxis3);
    g_log.notice() << "principalaxis3: "
                   << " mean " << stats3.mean << " standard_deviation "
                   << stats3.standard_deviation << " minimum " << stats3.minimum
                   << " maximum " << stats3.maximum << " median "
                   << stats3.median << "\n";
    if (cutoffIsigI != EMPTY_DBL()) {
      principalaxis1.clear();
      principalaxis2.clear();
      principalaxis3.clear();
      specify_size = true;
      peak_radius = std::max(std::max(stats1.mean, stats2.mean), stats3.mean) +
                    numSigmas * std::max(std::max(stats1.standard_deviation,
                                                  stats2.standard_deviation),
                                         stats3.standard_deviation);
      back_inner_radius = peak_radius;
      back_outer_radius =
          peak_radius *
          1.25992105; // A factor of 2 ^ (1/3) will make the background
      // shell volume equal to the peak region volume.
      V3D peak_q;
      for (size_t i = 0; i < n_peaks; i++) {
        V3D hkl(peaks[i].getH(), peaks[i].getK(), peaks[i].getL());
        if (Geometry::IndexingUtils::ValidIndex(hkl, 1.0)) {
          peak_q = peaks[i].getQLabFrame();
          std::vector<double> axes_radii;
          integrator.ellipseIntegrateEvents(
              E1Vec, peak_q, specify_size, peak_radius, back_inner_radius,
              back_outer_radius, axes_radii, inti, sigi);
          peaks[i].setIntensity(inti);
          peaks[i].setSigmaIntensity(sigi);
          if (axes_radii.size() == 3) {
            principalaxis1.push_back(axes_radii[0]);
            principalaxis2.push_back(axes_radii[1]);
            principalaxis3.push_back(axes_radii[2]);
          }
        } else {
          peaks[i].setIntensity(0.0);
          peaks[i].setSigmaIntensity(0.0);
        }
      }
      if (principalaxis1.size() > 1) {
        size_t histogramNumber = 3;
        Workspace_sptr wsProfile2 = WorkspaceFactory::Instance().create(
            "Workspace2D", histogramNumber, principalaxis1.size(),
            principalaxis1.size());
        Workspace2D_sptr wsProfile2D2 =
            boost::dynamic_pointer_cast<Workspace2D>(wsProfile2);
        AnalysisDataService::Instance().addOrReplace("EllipsoidAxes_2ndPass",
                                                     wsProfile2D2);
        for (size_t j = 0; j < principalaxis1.size(); j++) {
          wsProfile2D2->dataX(0)[j] = static_cast<double>(j);
          wsProfile2D2->dataY(0)[j] = principalaxis1[j];
          wsProfile2D2->dataE(0)[j] = std::sqrt(principalaxis1[j]);
          wsProfile2D2->dataX(1)[j] = static_cast<double>(j);
          wsProfile2D2->dataY(1)[j] = principalaxis2[j];
          wsProfile2D2->dataE(1)[j] = std::sqrt(principalaxis2[j]);
          wsProfile2D2->dataX(2)[j] = static_cast<double>(j);
          wsProfile2D2->dataY(2)[j] = principalaxis3[j];
          wsProfile2D2->dataE(2)[j] = std::sqrt(principalaxis3[j]);
        }
      }
    }
  }

  // This flag is used by the PeaksWorkspace to evaluate whether it has been
  // integrated.
  peak_ws->mutableRun().addProperty("PeaksIntegrated", 1, true);
  // These flags are specific to the algorithm.
  peak_ws->mutableRun().addProperty("PeakRadius", PeakRadiusVector, true);
  peak_ws->mutableRun().addProperty("BackgroundInnerRadius",
                                    BackgroundInnerRadiusVector, true);
  peak_ws->mutableRun().addProperty("BackgroundOuterRadius",
                                    BackgroundOuterRadiusVector, true);

  setProperty("OutputWorkspace", peak_ws);
}
コード例 #27
0
ファイル: LoadLiveData.cpp プロジェクト: rosswhitfield/mantid
/** Execute the algorithm.
 */
void LoadLiveData::exec() {
  // The full, post-processed output workspace
  m_outputWS = this->getProperty("OutputWorkspace");

  // Validate inputs
  if (this->hasPostProcessing()) {
    if (this->getPropertyValue("AccumulationWorkspace").empty())
      throw std::invalid_argument("Must specify the AccumulationWorkspace "
                                  "parameter if using PostProcessing.");

    // The accumulated but not post-processed output workspace
    m_accumWS = this->getProperty("AccumulationWorkspace");
  } else {
    // No post-processing, so the accumulation and output are the same
    m_accumWS = m_outputWS;
  }

  // Get or create the live listener
  ILiveListener_sptr listener = this->getLiveListener();

  // Do we need to reset the data?
  bool dataReset = listener->dataReset();

  // The listener returns a MatrixWorkspace containing the chunk of live data.
  Workspace_sptr chunkWS;
  bool dataNotYetGiven = true;
  while (dataNotYetGiven) {
    try {
      chunkWS = listener->extractData();
      dataNotYetGiven = false;
    } catch (Exception::NotYet &ex) {
      g_log.warning() << "The " << listener->name()
                      << " is not ready to return data: " << ex.what() << "\n";
      g_log.warning()
          << "Trying again in 10 seconds - cancel the algorithm to stop.\n";
      const int tenSeconds = 40;
      for (int i = 0; i < tenSeconds; ++i) {
        Poco::Thread::sleep(10000 / tenSeconds); // 250 ms
        this->interruption_point();
      }
    }
  }

  // TODO: Have the ILiveListener tell me exactly the time stamp
  DateAndTime lastTimeStamp = DateAndTime::getCurrentTime();
  this->setPropertyValue("LastTimeStamp", lastTimeStamp.toISO8601String());

  // Now we process the chunk
  Workspace_sptr processed = this->processChunk(chunkWS);

  bool PreserveEvents = this->getProperty("PreserveEvents");
  EventWorkspace_sptr processedEvent =
      boost::dynamic_pointer_cast<EventWorkspace>(processed);
  if (!PreserveEvents && processedEvent) {
    // Convert the monitor workspace, if there is one and it's necessary
    MatrixWorkspace_sptr monitorWS = processedEvent->monitorWorkspace();
    auto monitorEventWS =
        boost::dynamic_pointer_cast<EventWorkspace>(monitorWS);
    if (monitorEventWS) {
      auto monAlg = this->createChildAlgorithm("ConvertToMatrixWorkspace");
      monAlg->setProperty("InputWorkspace", monitorEventWS);
      monAlg->executeAsChildAlg();
      if (!monAlg->isExecuted())
        g_log.error(
            "Failed to convert monitors from events to histogram form.");
      monitorWS = monAlg->getProperty("OutputWorkspace");
    }

    // Now do the main workspace
    Algorithm_sptr alg = this->createChildAlgorithm("ConvertToMatrixWorkspace");
    alg->setProperty("InputWorkspace", processedEvent);
    std::string outputName = "__anonymous_livedata_convert_" +
                             this->getPropertyValue("OutputWorkspace");
    alg->setPropertyValue("OutputWorkspace", outputName);
    alg->execute();
    if (!alg->isExecuted())
      throw std::runtime_error("Error when calling ConvertToMatrixWorkspace "
                               "(since PreserveEvents=False). See log.");
    // Replace the "processed" workspace with the converted one.
    MatrixWorkspace_sptr temp = alg->getProperty("OutputWorkspace");
    if (monitorWS)
      temp->setMonitorWorkspace(monitorWS); // Set back the monitor workspace
    processed = temp;
  }

  // How do we accumulate the data?
  std::string accum = this->getPropertyValue("AccumulationMethod");

  // If the AccumulationWorkspace does not exist, we always replace the
  // AccumulationWorkspace.
  // Also, if the listener said we are resetting the data, then we clear out the
  // old.
  if (!m_accumWS || dataReset)
    accum = "Replace";

  g_log.notice() << "Performing the " << accum << " operation.\n";

  // Perform the accumulation and set the AccumulationWorkspace workspace
  if (accum == "Replace")
    this->replaceChunk(processed);
  else if (accum == "Append")
    this->appendChunk(processed);
  else
    // Default to Add.
    this->addChunk(processed);

  // At this point, m_accumWS is set.

  if (this->hasPostProcessing()) {
    // ----------- Run post-processing -------------
    this->runPostProcessing();
    // Set both output workspaces
    this->setProperty("AccumulationWorkspace", m_accumWS);
    this->setProperty("OutputWorkspace", m_outputWS);
    doSortEvents(m_outputWS);
  } else {
    // ----------- No post-processing -------------
    m_outputWS = m_accumWS;
    // We DO NOT set AccumulationWorkspace.
    this->setProperty("OutputWorkspace", m_outputWS);
  }

  // Output group requires some additional handling
  WorkspaceGroup_sptr out_gws =
      boost::dynamic_pointer_cast<WorkspaceGroup>(m_outputWS);
  if (out_gws) {
    size_t n = static_cast<size_t>(out_gws->getNumberOfEntries());
    for (size_t i = 0; i < n; ++i) {
      auto ws = out_gws->getItem(i);
      std::string itemName = ws->name();
      std::string wsName =
          getPropertyValue("OutputWorkspace") + "_" + std::to_string(i + 1);
      if (wsName != itemName) {
        if (AnalysisDataService::Instance().doesExist(itemName)) {
          // replace the temporary name with the proper one
          AnalysisDataService::Instance().rename(itemName, wsName);
        }
      } else {
        // touch the workspace in the ADS to issue a notification to update the
        // GUI
        AnalysisDataService::Instance().addOrReplace(itemName, ws);
      }
    }
  }
}
コード例 #28
0
/** Executes the algorithm
*
*  @throw runtime_error Thrown if algorithm cannot execute
*/
void DiffractionEventCalibrateDetectors::exec() {
  // Try to retrieve optional properties
  const int maxIterations = getProperty("MaxIterations");
  const double peakOpt = getProperty("LocationOfPeakToOptimize");

  // Get the input workspace
  EventWorkspace_sptr inputW = getProperty("InputWorkspace");

  // retrieve the properties
  const std::string rb_params = getProperty("Params");

  // Get some stuff from the input workspace
  Instrument_const_sptr inst = inputW->getInstrument();

  // Build a list of Rectangular Detectors
  std::vector<boost::shared_ptr<RectangularDetector>> detList;
  // --------- Loading only one bank ----------------------------------
  std::string onebank = getProperty("BankName");
  bool doOneBank = (onebank != "");
  for (int i = 0; i < inst->nelements(); i++) {
    boost::shared_ptr<RectangularDetector> det;
    boost::shared_ptr<ICompAssembly> assem;
    boost::shared_ptr<ICompAssembly> assem2;

    det = boost::dynamic_pointer_cast<RectangularDetector>((*inst)[i]);
    if (det) {
      if (det->getName().compare(onebank) == 0)
        detList.push_back(det);
      if (!doOneBank)
        detList.push_back(det);
    } else {
      // Also, look in the first sub-level for RectangularDetectors (e.g. PG3).
      // We are not doing a full recursive search since that will be very long
      // for lots of pixels.
      assem = boost::dynamic_pointer_cast<ICompAssembly>((*inst)[i]);
      if (assem) {
        for (int j = 0; j < assem->nelements(); j++) {
          det = boost::dynamic_pointer_cast<RectangularDetector>((*assem)[j]);
          if (det) {
            if (det->getName().compare(onebank) == 0)
              detList.push_back(det);
            if (!doOneBank)
              detList.push_back(det);

          } else {
            // Also, look in the second sub-level for RectangularDetectors (e.g.
            // PG3).
            // We are not doing a full recursive search since that will be very
            // long for lots of pixels.
            assem2 = boost::dynamic_pointer_cast<ICompAssembly>((*assem)[j]);
            if (assem2) {
              for (int k = 0; k < assem2->nelements(); k++) {
                det = boost::dynamic_pointer_cast<RectangularDetector>(
                    (*assem2)[k]);
                if (det) {
                  if (det->getName().compare(onebank) == 0)
                    detList.push_back(det);
                  if (!doOneBank)
                    detList.push_back(det);
                }
              }
            }
          }
        }
      }
    }
  }

  // set-up minimizer

  std::string inname = getProperty("InputWorkspace");
  std::string outname = inname + "2"; // getProperty("OutputWorkspace");

  IAlgorithm_sptr algS = createChildAlgorithm("SortEvents");
  algS->setProperty("InputWorkspace", inputW);
  algS->setPropertyValue("SortBy", "X Value");
  algS->executeAsChildAlg();

  // Write DetCal File
  std::string filename = getProperty("DetCalFilename");
  std::fstream outfile;
  outfile.open(filename.c_str(), std::ios::out);

  if (detList.size() > 1) {
    outfile << "#\n";
    outfile << "#  Mantid Optimized .DetCal file for SNAP with TWO detector "
               "panels\n";
    outfile << "#  Old Panel, nominal size and distance at -90 degrees.\n";
    outfile << "#  New Panel, nominal size and distance at +90 degrees.\n";
    outfile << "#\n";
    outfile << "# Lengths are in centimeters.\n";
    outfile << "# Base and up give directions of unit vectors for a local\n";
    outfile << "# x,y coordinate system on the face of the detector.\n";
    outfile << "#\n";
    outfile << "# " << DateAndTime::getCurrentTime().toFormattedString("%c")
            << "\n";
    outfile << "#\n";
    outfile << "6         L1     T0_SHIFT\n";
    IComponent_const_sptr source = inst->getSource();
    IComponent_const_sptr sample = inst->getSample();
    outfile << "7  " << source->getDistance(*sample) * 100 << "            0\n";
    outfile << "4 DETNUM  NROWS  NCOLS  WIDTH   HEIGHT   DEPTH   DETD   "
               "CenterX   CenterY   CenterZ    BaseX    BaseY    BaseZ      "
               "UpX      UpY      UpZ\n";
  }

  Progress prog(this, 0.0, 1.0, detList.size());
  for (int det = 0; det < static_cast<int>(detList.size()); det++) {
    std::string par[6];
    par[0] = detList[det]->getName();
    par[1] = inname;
    par[2] = outname;
    std::ostringstream strpeakOpt;
    strpeakOpt << peakOpt;
    par[3] = strpeakOpt.str();
    par[4] = rb_params;

    // --- Create a GroupingWorkspace for this detector name ------
    CPUTimer tim;
    IAlgorithm_sptr alg2 =
        AlgorithmFactory::Instance().create("CreateGroupingWorkspace", 1);
    alg2->initialize();
    alg2->setProperty("InputWorkspace", inputW);
    alg2->setPropertyValue("GroupNames", detList[det]->getName());
    std::string groupWSName = "group_" + detList[det]->getName();
    alg2->setPropertyValue("OutputWorkspace", groupWSName);
    alg2->executeAsChildAlg();
    par[5] = groupWSName;
    std::cout << tim << " to CreateGroupingWorkspace\n";

    const gsl_multimin_fminimizer_type *T = gsl_multimin_fminimizer_nmsimplex;
    gsl_multimin_fminimizer *s = nullptr;
    gsl_vector *ss, *x;
    gsl_multimin_function minex_func;

    // finally do the fitting

    int nopt = 6;
    int iter = 0;
    int status = 0;

    /* Starting point */
    x = gsl_vector_alloc(nopt);
    gsl_vector_set(x, 0, 0.0);
    gsl_vector_set(x, 1, 0.0);
    gsl_vector_set(x, 2, 0.0);
    gsl_vector_set(x, 3, 0.0);
    gsl_vector_set(x, 4, 0.0);
    gsl_vector_set(x, 5, 0.0);

    /* Set initial step sizes to 0.1 */
    ss = gsl_vector_alloc(nopt);
    gsl_vector_set_all(ss, 0.1);

    /* Initialize method and iterate */
    minex_func.n = nopt;
    minex_func.f = &Mantid::Algorithms::gsl_costFunction;
    minex_func.params = &par;

    s = gsl_multimin_fminimizer_alloc(T, nopt);
    gsl_multimin_fminimizer_set(s, &minex_func, x, ss);

    do {
      iter++;
      status = gsl_multimin_fminimizer_iterate(s);

      if (status)
        break;

      double size = gsl_multimin_fminimizer_size(s);
      status = gsl_multimin_test_size(size, 1e-2);

    } while (status == GSL_CONTINUE && iter < maxIterations &&
             s->fval != -0.000);

    // Output summary to log file
    if (s->fval != -0.000)
      movedetector(gsl_vector_get(s->x, 0), gsl_vector_get(s->x, 1),
                   gsl_vector_get(s->x, 2), gsl_vector_get(s->x, 3),
                   gsl_vector_get(s->x, 4), gsl_vector_get(s->x, 5), par[0],
                   getProperty("InputWorkspace"));
    else {
      gsl_vector_set(s->x, 0, 0.0);
      gsl_vector_set(s->x, 1, 0.0);
      gsl_vector_set(s->x, 2, 0.0);
      gsl_vector_set(s->x, 3, 0.0);
      gsl_vector_set(s->x, 4, 0.0);
      gsl_vector_set(s->x, 5, 0.0);
    }

    std::string reportOfDiffractionEventCalibrateDetectors =
        gsl_strerror(status);
    if (s->fval == -0.000)
      reportOfDiffractionEventCalibrateDetectors = "No events";

    g_log.information() << "Detector = " << det << "\n"
                        << "Method used = "
                        << "Simplex"
                        << "\n"
                        << "Iteration = " << iter << "\n"
                        << "Status = "
                        << reportOfDiffractionEventCalibrateDetectors << "\n"
                        << "Minimize PeakLoc-" << peakOpt << " = " << s->fval
                        << "\n";
    // Move in cm for small shifts
    g_log.information() << "Move (X)   = " << gsl_vector_get(s->x, 0) * 0.01
                        << "  \n";
    g_log.information() << "Move (Y)   = " << gsl_vector_get(s->x, 1) * 0.01
                        << "  \n";
    g_log.information() << "Move (Z)   = " << gsl_vector_get(s->x, 2) * 0.01
                        << "  \n";
    g_log.information() << "Rotate (X) = " << gsl_vector_get(s->x, 3) << "  \n";
    g_log.information() << "Rotate (Y) = " << gsl_vector_get(s->x, 4) << "  \n";
    g_log.information() << "Rotate (Z) = " << gsl_vector_get(s->x, 5) << "  \n";

    Kernel::V3D CalCenter =
        V3D(gsl_vector_get(s->x, 0) * 0.01, gsl_vector_get(s->x, 1) * 0.01,
            gsl_vector_get(s->x, 2) * 0.01);
    Kernel::V3D Center = detList[det]->getPos() + CalCenter;
    int pixmax = detList[det]->xpixels() - 1;
    int pixmid = (detList[det]->ypixels() - 1) / 2;
    BoundingBox box;
    detList[det]->getAtXY(pixmax, pixmid)->getBoundingBox(box);
    double baseX = box.xMax();
    double baseY = box.yMax();
    double baseZ = box.zMax();
    Kernel::V3D Base = V3D(baseX, baseY, baseZ) + CalCenter;
    pixmid = (detList[det]->xpixels() - 1) / 2;
    pixmax = detList[det]->ypixels() - 1;
    detList[det]->getAtXY(pixmid, pixmax)->getBoundingBox(box);
    double upX = box.xMax();
    double upY = box.yMax();
    double upZ = box.zMax();
    Kernel::V3D Up = V3D(upX, upY, upZ) + CalCenter;
    Base -= Center;
    Up -= Center;
    // Rotate around x
    baseX = Base[0];
    baseY = Base[1];
    baseZ = Base[2];
    double deg2rad = M_PI / 180.0;
    double angle = gsl_vector_get(s->x, 3) * deg2rad;
    Base = V3D(baseX, baseY * cos(angle) - baseZ * sin(angle),
               baseY * sin(angle) + baseZ * cos(angle));
    upX = Up[0];
    upY = Up[1];
    upZ = Up[2];
    Up = V3D(upX, upY * cos(angle) - upZ * sin(angle),
             upY * sin(angle) + upZ * cos(angle));
    // Rotate around y
    baseX = Base[0];
    baseY = Base[1];
    baseZ = Base[2];
    angle = gsl_vector_get(s->x, 4) * deg2rad;
    Base = V3D(baseZ * sin(angle) + baseX * cos(angle), baseY,
               baseZ * cos(angle) - baseX * sin(angle));
    upX = Up[0];
    upY = Up[1];
    upZ = Up[2];
    Up = V3D(upZ * cos(angle) - upX * sin(angle), upY,
             upZ * sin(angle) + upX * cos(angle));
    // Rotate around z
    baseX = Base[0];
    baseY = Base[1];
    baseZ = Base[2];
    angle = gsl_vector_get(s->x, 5) * deg2rad;
    Base = V3D(baseX * cos(angle) - baseY * sin(angle),
               baseX * sin(angle) + baseY * cos(angle), baseZ);
    upX = Up[0];
    upY = Up[1];
    upZ = Up[2];
    Up = V3D(upX * cos(angle) - upY * sin(angle),
             upX * sin(angle) + upY * cos(angle), upZ);
    Base.normalize();
    Up.normalize();
    Center *= 100.0;
    // << det+1  << "  "
    outfile << "5  " << detList[det]->getName().substr(4) << "  "
            << detList[det]->xpixels() << "  " << detList[det]->ypixels()
            << "  " << 100.0 * detList[det]->xsize() << "  "
            << 100.0 * detList[det]->ysize() << "  "
            << "0.2000"
            << "  " << Center.norm() << "  ";
    Center.write(outfile);
    outfile << "  ";
    Base.write(outfile);
    outfile << "  ";
    Up.write(outfile);
    outfile << "\n";

    // clean up dynamically allocated gsl stuff
    gsl_vector_free(x);
    gsl_vector_free(ss);
    gsl_multimin_fminimizer_free(s);

    // Remove the now-unneeded grouping workspace
    AnalysisDataService::Instance().remove(groupWSName);
    prog.report(detList[det]->getName());
  }

  // Closing
  outfile.close();
}
コード例 #29
0
/** Executes the algorithm
 *  @throw Exception::FileError If the grouping file cannot be opened or read
 * successfully
 *  @throw runtime_error If unable to run one of the Child Algorithms
 * successfully
 */
void AlignAndFocusPowder::exec() {
  // retrieve the properties
  m_inputW = getProperty("InputWorkspace");
  m_inputEW = boost::dynamic_pointer_cast<EventWorkspace>(m_inputW);
  m_instName = m_inputW->getInstrument()->getName();
  m_instName =
      Kernel::ConfigService::Instance().getInstrument(m_instName).shortName();
  std::string calFilename = getPropertyValue("CalFileName");
  std::string groupFilename = getPropertyValue("GroupFilename");
  m_calibrationWS = getProperty("CalibrationWorkspace");
  m_maskWS = getProperty("MaskWorkspace");
  m_groupWS = getProperty("GroupingWorkspace");
  DataObjects::TableWorkspace_sptr maskBinTableWS = getProperty("MaskBinTable");
  m_l1 = getProperty("PrimaryFlightPath");
  specids = getProperty("SpectrumIDs");
  l2s = getProperty("L2");
  tths = getProperty("Polar");
  phis = getProperty("Azimuthal");
  m_params = getProperty("Params");
  dspace = getProperty("DSpacing");
  auto dmin = getVecPropertyFromPmOrSelf("DMin", m_dmins);
  auto dmax = getVecPropertyFromPmOrSelf("DMax", m_dmaxs);
  LRef = getProperty("UnwrapRef");
  DIFCref = getProperty("LowResRef");
  minwl = getProperty("CropWavelengthMin");
  maxwl = getProperty("CropWavelengthMax");
  if (maxwl == 0.)
    maxwl = EMPTY_DBL(); // python can only specify 0 for unused
  tmin = getProperty("TMin");
  tmax = getProperty("TMax");
  m_preserveEvents = getProperty("PreserveEvents");
  m_resampleX = getProperty("ResampleX");
  // determine some bits about d-space and binning
  if (m_resampleX != 0) {
    m_params.clear(); // ignore the normal rebin parameters
  } else if (m_params.size() == 1) {
    if (dmax > 0.)
      dspace = true;
    else
      dspace = false;
  }
  if (dspace) {
    if (m_params.size() == 1 && dmax > 0) {
      double step = m_params[0];
      m_params.clear();
      if (step > 0 || dmin > 0) {
        m_params.push_back(dmin);
        m_params.push_back(step);
        m_params.push_back(dmax);
        g_log.information() << "d-Spacing Binning: " << m_params[0] << "  "
                            << m_params[1] << "  " << m_params[2] << "\n";
      }
    }
  } else {
    if (m_params.size() == 1 && tmax > 0) {
      double step = m_params[0];
      if (step > 0 || tmin > 0) {
        m_params[0] = tmin;
        m_params.push_back(step);
        m_params.push_back(tmax);
        g_log.information() << "TOF Binning: " << m_params[0] << "  "
                            << m_params[1] << "  " << m_params[2] << "\n";
      }
    }
  }
  xmin = 0.;
  xmax = 0.;
  if (tmin > 0.) {
    xmin = tmin;
  }
  if (tmax > 0.) {
    xmax = tmax;
  }
  if (!dspace && m_params.size() == 3) {
    xmin = m_params[0];
    xmax = m_params[2];
  }

  // Low resolution
  int lowresoffset = getProperty("LowResSpectrumOffset");
  if (lowresoffset < 0) {
    m_processLowResTOF = false;
  } else {
    m_processLowResTOF = true;
    m_lowResSpecOffset = static_cast<size_t>(lowresoffset);
  }

  loadCalFile(calFilename, groupFilename);

  // Now setup the output workspace
  m_outputW = getProperty("OutputWorkspace");
  if (m_inputEW) {
    if (m_outputW != m_inputW) {
      m_outputEW = m_inputEW->clone();
    }
    m_outputEW = boost::dynamic_pointer_cast<EventWorkspace>(m_outputW);
  } else {
    if (m_outputW != m_inputW) {
      m_outputW = WorkspaceFactory::Instance().create(m_inputW);
    }
  }

  if (m_processLowResTOF) {
    if (!m_inputEW) {
      throw std::runtime_error(
          "Input workspace is not EventWorkspace.  It is not supported now.");
    } else {
      // Make a brand new EventWorkspace
      m_lowResEW = boost::dynamic_pointer_cast<EventWorkspace>(
          WorkspaceFactory::Instance().create(
              "EventWorkspace", m_inputEW->getNumberHistograms(), 2, 1));

      // Cast to the matrixOutputWS and save it
      m_lowResW = boost::dynamic_pointer_cast<MatrixWorkspace>(m_lowResEW);
      // m_lowResW->setName(lowreswsname);
    }
  }

  // set up a progress bar with the "correct" number of steps
  m_progress = new Progress(this, 0., 1., 22);

  if (m_inputEW) {
    double tolerance = getProperty("CompressTolerance");
    if (tolerance > 0.) {
      g_log.information() << "running CompressEvents(Tolerance=" << tolerance
                          << ") started at "
                          << Kernel::DateAndTime::getCurrentTime() << "\n";
      API::IAlgorithm_sptr compressAlg = createChildAlgorithm("CompressEvents");
      compressAlg->setProperty("InputWorkspace", m_outputEW);
      compressAlg->setProperty("OutputWorkspace", m_outputEW);
      compressAlg->setProperty("OutputWorkspace", m_outputEW);
      compressAlg->setProperty("Tolerance", tolerance);
      compressAlg->executeAsChildAlg();
      m_outputEW = compressAlg->getProperty("OutputWorkspace");
      m_outputW = boost::dynamic_pointer_cast<MatrixWorkspace>(m_outputEW);
    } else {
      g_log.information() << "Not compressing event list\n";
      doSortEvents(m_outputW); // still sort to help some thing out
    }
  }
  m_progress->report();

  if (xmin > 0. || xmax > 0.) {
    double tempmin;
    double tempmax;
    m_outputW->getXMinMax(tempmin, tempmax);

    g_log.information() << "running CropWorkspace(TOFmin=" << xmin
                        << ", TOFmax=" << xmax << ") started at "
                        << Kernel::DateAndTime::getCurrentTime() << "\n";
    API::IAlgorithm_sptr cropAlg = createChildAlgorithm("CropWorkspace");
    cropAlg->setProperty("InputWorkspace", m_outputW);
    cropAlg->setProperty("OutputWorkspace", m_outputW);
    if ((xmin > 0.) && (xmin > tempmin))
      cropAlg->setProperty("Xmin", xmin);
    if ((xmax > 0.) && (xmax < tempmax))
      cropAlg->setProperty("Xmax", xmax);
    cropAlg->executeAsChildAlg();
    m_outputW = cropAlg->getProperty("OutputWorkspace");
    m_outputEW = boost::dynamic_pointer_cast<EventWorkspace>(m_outputW);
  }
  m_progress->report();

  // filter the input events if appropriate
  double removePromptPulseWidth = getProperty("RemovePromptPulseWidth");
  if (removePromptPulseWidth > 0.) {
    m_outputEW = boost::dynamic_pointer_cast<EventWorkspace>(m_outputW);
    if (m_outputEW->getNumberEvents() > 0) {
      g_log.information() << "running RemovePromptPulse(Width="
                          << removePromptPulseWidth << ") started at "
                          << Kernel::DateAndTime::getCurrentTime() << "\n";
      API::IAlgorithm_sptr filterPAlg =
          createChildAlgorithm("RemovePromptPulse");
      filterPAlg->setProperty("InputWorkspace", m_outputW);
      filterPAlg->setProperty("OutputWorkspace", m_outputW);
      filterPAlg->setProperty("Width", removePromptPulseWidth);
      filterPAlg->executeAsChildAlg();
      m_outputW = filterPAlg->getProperty("OutputWorkspace");
      m_outputEW = boost::dynamic_pointer_cast<EventWorkspace>(m_outputW);
    } else {
      g_log.information("skipping RemovePromptPulse on empty EventWorkspace");
    }
  }
  m_progress->report();

  if (maskBinTableWS) {
    g_log.information() << "running MaskBinsFromTable started at "
                        << Kernel::DateAndTime::getCurrentTime() << "\n";
    API::IAlgorithm_sptr alg = createChildAlgorithm("MaskBinsFromTable");
    alg->setProperty("InputWorkspace", m_outputW);
    alg->setProperty("OutputWorkspace", m_outputW);
    alg->setProperty("MaskingInformation", maskBinTableWS);
    alg->executeAsChildAlg();
    m_outputW = alg->getProperty("OutputWorkspace");
    m_outputEW = boost::dynamic_pointer_cast<EventWorkspace>(m_outputW);
  }
  m_progress->report();

  if (m_maskWS) {
    g_log.information() << "running MaskDetectors started at "
                        << Kernel::DateAndTime::getCurrentTime() << "\n";
    API::IAlgorithm_sptr maskAlg = createChildAlgorithm("MaskDetectors");
    maskAlg->setProperty("Workspace", m_outputW);
    maskAlg->setProperty("MaskedWorkspace", m_maskWS);
    maskAlg->executeAsChildAlg();
    Workspace_sptr tmpW = maskAlg->getProperty("Workspace");
    m_outputW = boost::dynamic_pointer_cast<MatrixWorkspace>(tmpW);
    m_outputEW = boost::dynamic_pointer_cast<EventWorkspace>(m_outputW);
  }
  m_progress->report();

  if (!dspace)
    m_outputW = rebin(m_outputW);
  m_progress->report();

  if (m_calibrationWS) {
    g_log.information() << "running AlignDetectors started at "
                        << Kernel::DateAndTime::getCurrentTime() << "\n";
    API::IAlgorithm_sptr alignAlg = createChildAlgorithm("AlignDetectors");
    alignAlg->setProperty("InputWorkspace", m_outputW);
    alignAlg->setProperty("OutputWorkspace", m_outputW);
    alignAlg->setProperty("CalibrationWorkspace", m_calibrationWS);
    alignAlg->executeAsChildAlg();
    m_outputW = alignAlg->getProperty("OutputWorkspace");
  } else {
    m_outputW = convertUnits(m_outputW, "dSpacing");
  }
  m_progress->report();

  if (LRef > 0. || minwl > 0. || DIFCref > 0. || (!isEmpty(maxwl))) {
    m_outputW = convertUnits(m_outputW, "TOF");
  }
  m_progress->report();

  // Beyond this point, low resolution TOF workspace is considered.
  if (LRef > 0.) {
    g_log.information() << "running UnwrapSNS(LRef=" << LRef << ",Tmin=" << tmin
                        << ",Tmax=" << tmax << ") started at "
                        << Kernel::DateAndTime::getCurrentTime() << "\n";
    API::IAlgorithm_sptr removeAlg = createChildAlgorithm("UnwrapSNS");
    removeAlg->setProperty("InputWorkspace", m_outputW);
    removeAlg->setProperty("OutputWorkspace", m_outputW);
    removeAlg->setProperty("LRef", LRef);
    if (tmin > 0.)
      removeAlg->setProperty("Tmin", tmin);
    if (tmax > tmin)
      removeAlg->setProperty("Tmax", tmax);
    removeAlg->executeAsChildAlg();
    m_outputW = removeAlg->getProperty("OutputWorkspace");
  }
  m_progress->report();

  if (minwl > 0. || (!isEmpty(maxwl))) { // just crop the worksapce
    // turn off the low res stuff
    m_processLowResTOF = false;

    EventWorkspace_sptr ews =
        boost::dynamic_pointer_cast<EventWorkspace>(m_outputW);
    if (ews)
      g_log.information() << "Number of events = " << ews->getNumberEvents()
                          << ". ";
    g_log.information("\n");

    m_outputW = convertUnits(m_outputW, "Wavelength");

    g_log.information() << "running CropWorkspace(WavelengthMin=" << minwl;
    if (!isEmpty(maxwl))
      g_log.information() << ", WavelengthMax=" << maxwl;
    g_log.information() << ") started at "
                        << Kernel::DateAndTime::getCurrentTime() << "\n";

    API::IAlgorithm_sptr removeAlg = createChildAlgorithm("CropWorkspace");
    removeAlg->setProperty("InputWorkspace", m_outputW);
    removeAlg->setProperty("OutputWorkspace", m_outputW);
    removeAlg->setProperty("XMin", minwl);
    removeAlg->setProperty("XMax", maxwl);
    removeAlg->executeAsChildAlg();
    m_outputW = removeAlg->getProperty("OutputWorkspace");
    if (ews)
      g_log.information() << "Number of events = " << ews->getNumberEvents()
                          << ".\n";
  } else if (DIFCref > 0.) {
    g_log.information() << "running RemoveLowResTof(RefDIFC=" << DIFCref
                        << ",K=3.22) started at "
                        << Kernel::DateAndTime::getCurrentTime() << "\n";
    EventWorkspace_sptr ews =
        boost::dynamic_pointer_cast<EventWorkspace>(m_outputW);
    if (ews)
      g_log.information() << "Number of events = " << ews->getNumberEvents()
                          << ". ";
    g_log.information("\n");

    API::IAlgorithm_sptr removeAlg = createChildAlgorithm("RemoveLowResTOF");
    removeAlg->setProperty("InputWorkspace", m_outputW);
    removeAlg->setProperty("OutputWorkspace", m_outputW);
    removeAlg->setProperty("ReferenceDIFC", DIFCref);
    removeAlg->setProperty("K", 3.22);
    if (tmin > 0.)
      removeAlg->setProperty("Tmin", tmin);
    if (m_processLowResTOF)
      removeAlg->setProperty("LowResTOFWorkspace", m_lowResW);

    removeAlg->executeAsChildAlg();
    m_outputW = removeAlg->getProperty("OutputWorkspace");
    if (m_processLowResTOF)
      m_lowResW = removeAlg->getProperty("LowResTOFWorkspace");
  }
  m_progress->report();

  EventWorkspace_sptr ews =
      boost::dynamic_pointer_cast<EventWorkspace>(m_outputW);
  if (ews) {
    size_t numhighevents = ews->getNumberEvents();
    if (m_processLowResTOF) {
      EventWorkspace_sptr lowes =
          boost::dynamic_pointer_cast<EventWorkspace>(m_lowResW);
      size_t numlowevents = lowes->getNumberEvents();
      g_log.information() << "Number of high TOF events = " << numhighevents
                          << "; "
                          << "Number of low TOF events = " << numlowevents
                          << ".\n";
    }
  }
  m_progress->report();

  // Convert units
  if (LRef > 0. || minwl > 0. || DIFCref > 0. || (!isEmpty(maxwl))) {
    m_outputW = convertUnits(m_outputW, "dSpacing");
    if (m_processLowResTOF)
      m_lowResW = convertUnits(m_lowResW, "dSpacing");
  }
  m_progress->report();

  if (dspace) {
    m_outputW = rebin(m_outputW);
    if (m_processLowResTOF)
      m_lowResW = rebin(m_lowResW);
  }
  m_progress->report();

  doSortEvents(m_outputW);
  if (m_processLowResTOF)
    doSortEvents(m_lowResW);
  m_progress->report();

  // Diffraction focus
  m_outputW = diffractionFocus(m_outputW);
  if (m_processLowResTOF)
    m_lowResW = diffractionFocus(m_lowResW);
  m_progress->report();

  doSortEvents(m_outputW);
  if (m_processLowResTOF)
    doSortEvents(m_lowResW);
  m_progress->report();

  // this next call should probably be in for rebin as well
  // but it changes the system tests
  if (dspace && m_resampleX != 0) {
    m_outputW = rebin(m_outputW);
    if (m_processLowResTOF)
      m_lowResW = rebin(m_lowResW);
  }
  m_progress->report();

  // edit the instrument geometry
  if (m_groupWS &&
      (m_l1 > 0 || !tths.empty() || !l2s.empty() || !phis.empty())) {
    size_t numreg = m_outputW->getNumberHistograms();

    try {
      // set up the vectors for doing everything
      auto specidsSplit = splitVectors(specids, numreg, "specids");
      auto tthsSplit = splitVectors(tths, numreg, "two-theta");
      auto l2sSplit = splitVectors(l2s, numreg, "L2");
      auto phisSplit = splitVectors(phis, numreg, "phi");

      // Edit instrument
      m_outputW = editInstrument(m_outputW, tthsSplit.reg, specidsSplit.reg,
                                 l2sSplit.reg, phisSplit.reg);

      if (m_processLowResTOF) {
        m_lowResW = editInstrument(m_lowResW, tthsSplit.low, specidsSplit.low,
                                   l2sSplit.low, phisSplit.low);
      }
    } catch (std::runtime_error &e) {
      g_log.warning("Not editing instrument geometry:");
      g_log.warning(e.what());
    }
  }
  m_progress->report();

  // Conjoin 2 workspaces if there is low resolution
  if (m_processLowResTOF) {
    m_outputW = conjoinWorkspaces(m_outputW, m_lowResW, m_lowResSpecOffset);
  }
  m_progress->report();

  // Convert units to TOF
  m_outputW = convertUnits(m_outputW, "TOF");
  m_progress->report();

  // compress again if appropriate
  double tolerance = getProperty("CompressTolerance");
  m_outputEW = boost::dynamic_pointer_cast<EventWorkspace>(m_outputW);
  if ((m_outputEW) && (tolerance > 0.)) {
    g_log.information() << "running CompressEvents(Tolerance=" << tolerance
                        << ") started at "
                        << Kernel::DateAndTime::getCurrentTime() << "\n";
    API::IAlgorithm_sptr compressAlg = createChildAlgorithm("CompressEvents");
    compressAlg->setProperty("InputWorkspace", m_outputEW);
    compressAlg->setProperty("OutputWorkspace", m_outputEW);
    compressAlg->setProperty("OutputWorkspace", m_outputEW);
    compressAlg->setProperty("Tolerance", tolerance);
    compressAlg->executeAsChildAlg();
    m_outputEW = compressAlg->getProperty("OutputWorkspace");
    m_outputW = boost::dynamic_pointer_cast<MatrixWorkspace>(m_outputEW);
  }
  m_progress->report();

  if ((!m_params.empty()) && (m_params.size() != 1)) {
    m_params.erase(m_params.begin());
    m_params.pop_back();
  }
  if (!m_dmins.empty())
    m_dmins.clear();
  if (!m_dmaxs.empty())
    m_dmaxs.clear();

  m_outputW = rebin(m_outputW);
  m_progress->report();

  // return the output workspace
  setProperty("OutputWorkspace", m_outputW);
}
コード例 #30
0
ファイル: LoadEventPreNexus.cpp プロジェクト: nimgould/mantid
/** Execute the algorithm */
void LoadEventPreNexus::exec() {
  // Check 'chunk' properties are valid, if set
  const int chunks = getProperty("TotalChunks");
  if (!isEmpty(chunks) && int(getProperty("ChunkNumber")) > chunks) {
    throw std::out_of_range("ChunkNumber cannot be larger than TotalChunks");
  }

  prog = new Progress(this, 0.0, 1.0, 100);

  // what spectra (pixel ID's) to load
  this->spectra_list = this->getProperty(PID_PARAM);

  // the event file is needed in case the pulseid fileanme is empty
  string event_filename = this->getPropertyValue(EVENT_PARAM);
  string pulseid_filename = this->getPropertyValue(PULSEID_PARAM);
  bool throwError = true;
  if (pulseid_filename.empty()) {
    pulseid_filename = generatePulseidName(event_filename);
    if (!pulseid_filename.empty()) {
      if (Poco::File(pulseid_filename).exists()) {
        this->g_log.information() << "Found pulseid file " << pulseid_filename
                                  << std::endl;
        throwError = false;
      } else {
        pulseid_filename = "";
      }
    }
  }

  prog->report("Loading Pulse ID file");
  this->readPulseidFile(pulseid_filename, throwError);

  this->openEventFile(event_filename);

  prog->report("Creating output workspace");
  // prep the output workspace
  EventWorkspace_sptr localWorkspace =
      EventWorkspace_sptr(new EventWorkspace());
  // Make sure to initialize.
  //   We can use dummy numbers for arguments, for event workspace it doesn't
  //   matter
  localWorkspace->initialize(1, 1, 1);

  // Set the units
  localWorkspace->getAxis(0)->unit() = UnitFactory::Instance().create("TOF");
  localWorkspace->setYUnit("Counts");
  // TODO localWorkspace->setTitle(title);

  // Add the run_start property
  // Use the first pulse as the run_start time.
  if (this->num_pulses > 0) {
    // add the start of the run as a ISO8601 date/time string. The start = the
    // first pulse.
    // (this is used in LoadInstrument to find the right instrument file to
    // use).
    localWorkspace->mutableRun().addProperty(
        "run_start", pulsetimes[0].toISO8601String(), true);
  }

  // determine the run number and add it to the run object
  localWorkspace->mutableRun().addProperty("run_number",
                                           getRunnumber(event_filename));

  // Get the instrument!
  prog->report("Loading Instrument");
  this->runLoadInstrument(event_filename, localWorkspace);

  // load the mapping file
  prog->report("Loading Mapping File");
  string mapping_filename = this->getPropertyValue(MAP_PARAM);
  if (mapping_filename.empty()) {
    mapping_filename = generateMappingfileName(localWorkspace);
    if (!mapping_filename.empty())
      this->g_log.information() << "Found mapping file \"" << mapping_filename
                                << "\"" << std::endl;
  }
  this->loadPixelMap(mapping_filename);

  // Process the events into pixels
  this->procEvents(localWorkspace);

  // Save output
  this->setProperty<IEventWorkspace_sptr>(OUT_PARAM, localWorkspace);

  // Cleanup
  delete prog;
}