/*************************************** * This works by transforming a struct initializer into * a struct literal. In the future, the two should be the * same thing. */ Expression *StructInitializer::toExpression() { Expression *e; //printf("StructInitializer::toExpression() %s\n", toChars()); if (!ad) // if fwd referenced { return NULL; } StructDeclaration *sd = ad->isStructDeclaration(); if (!sd) return NULL; Expressions *elements = new Expressions(); for (size_t i = 0; i < value.dim; i++) { if (field.data[i]) goto Lno; Initializer *iz = (Initializer *)value.data[i]; if (!iz) goto Lno; Expression *ex = iz->toExpression(); if (!ex) goto Lno; elements->push(ex); } e = new StructLiteralExp(loc, sd, elements); e->type = sd->type; return e; Lno: delete elements; //error(loc, "struct initializers as expressions are not allowed"); return NULL; }
Expression *ArrayInitializer::toExpression() { Expressions *elements; Expression *e; //printf("ArrayInitializer::toExpression()\n"); //static int i; if (++i == 2) halt(); elements = new Expressions(); for (size_t i = 0; i < value.dim; i++) { if (index.data[i]) goto Lno; Initializer *iz = (Initializer *)value.data[i]; if (!iz) goto Lno; Expression *ex = iz->toExpression(); if (!ex) goto Lno; elements->push(ex); } e = new ArrayLiteralExp(loc, elements); e->type = type; return e; Lno: delete elements; //error(loc, "array initializers as expressions are not allowed"); return NULL; }
Expressions *UserAttributeDeclaration::getAttributes() { if (scope) { Scope *sc = scope; scope = NULL; arrayExpressionSemantic(atts, sc); } Expressions *exps = new Expressions(); if (userAttribDecl) exps->push(new TupleExp(Loc(), userAttribDecl->getAttributes())); if (atts && atts->dim) exps->push(new TupleExp(Loc(), atts)); return exps; }
FuncDeclaration *AggregateDeclaration::hasIdentityOpAssign(Scope *sc, Dsymbol *assign) { if (assign) { /* check identity opAssign exists */ Expression *er = new NullExp(loc, type); // dummy rvalue Expression *el = new IdentifierExp(loc, Id::p); // dummy lvalue el->type = type; Expressions ar; ar.push(er); Expressions al; al.push(el); FuncDeclaration *f = NULL; unsigned errors = global.startGagging(); // Do not report errors, even if the unsigned oldspec = global.speculativeGag; // template opAssign fbody makes it. global.speculativeGag = global.gag; sc = sc->push(); sc->speculative = true; f = resolveFuncCall(loc, sc, assign, NULL, er, &ar, 1); if (!f) f = resolveFuncCall(loc, sc, assign, NULL, er, &al, 1); sc = sc->pop(); global.speculativeGag = oldspec; global.endGagging(errors); if (f) { int varargs; Parameters *fparams = f->getParameters(&varargs); if (fparams->dim >= 1) { Parameter *arg0 = Parameter::getNth(fparams, 0); if (arg0->type->toDsymbol(NULL) != this) f = NULL; } } // BUGS: This detection mechanism cannot find some opAssign-s like follows: // struct S { void opAssign(ref immutable S) const; } return f; } return NULL; }
void visit(SliceExp *e) { Identifier *id = Identifier::generateId("p", fparams->dim); Parameter *param = new Parameter(STCconst, e->type, id, NULL); fparams->shift(param); Expression *ie = new IdentifierExp(Loc(), id); Expressions *arguments = new Expressions(); Expression *index = new IdentifierExp(Loc(), Id::p); arguments->push(index); result = new ArrayExp(Loc(), ie, arguments); }
Expression *SliceExp::buildArrayLoop(Parameters *fparams) { Identifier *id = Identifier::generateId("p", fparams->dim); Parameter *param = new Parameter(STCconst, type, id, NULL); fparams->shift(param); Expression *e = new IdentifierExp(0, id); Expressions *arguments = new Expressions(); Expression *index = new IdentifierExp(0, Id::p); arguments->push(index); e = new ArrayExp(0, e, arguments); return e; }
void UserAttributeDeclaration::setScope(Scope *sc) { //printf("UserAttributeDeclaration::setScope() %p\n", this); if (decl) { Scope *newsc = sc; #if 1 if (atts && atts->dim) { // create new one for changes newsc = new Scope(*sc); newsc->flags &= ~SCOPEfree; // Append new atts to old one if (!newsc->userAttributes || newsc->userAttributes->dim == 0) newsc->userAttributes = atts; else { // Create a tuple that combines them Expressions *exps = new Expressions(); exps->push(new TupleExp(Loc(), newsc->userAttributes)); exps->push(new TupleExp(Loc(), atts)); newsc->userAttributes = exps; } } #endif for (size_t i = 0; i < decl->dim; i++) { Dsymbol *s = (*decl)[i]; s->setScope(newsc); // yes, the only difference from semantic() } if (newsc != sc) { sc->offset = newsc->offset; newsc->pop(); } } }
Expressions *UserAttributeDeclaration::concat(Expressions *udas1, Expressions *udas2) { Expressions *udas; if (!udas1 || udas1->dim == 0) udas = udas2; else if (!udas2 || udas2->dim == 0) udas = udas1; else { /* Create a new tuple that combines them * (do not append to left operand, as this is a copy-on-write operation) */ udas = new Expressions(); udas->push(new TupleExp(Loc(), udas1)); udas->push(new TupleExp(Loc(), udas2)); } return udas; }
/*********************************** * Parse list of extended asm clobbers. * Grammar: * | Clobbers: * | StringLiteral * | StringLiteral , Clobbers * Params: * p = parser state * Returns: * array of parsed clobber expressions */ static Expressions *parseExtAsmClobbers(Parser *p) { Expressions *clobbers = NULL; while (1) { Expression *clobber; switch (p->token.value) { case TOKsemicolon: case TOKcolon: case TOKeof: return clobbers; case TOKstring: clobber = p->parsePrimaryExp(); if (!clobbers) clobbers = new Expressions(); clobbers->push(clobber); if (p->token.value == TOKcomma) p->nextToken(); break; default: p->error("expected constant string constraint for clobber name, not `%s`", p->token.toChars()); goto Lerror; } } Lerror: while (p->token.value != TOKrcurly && p->token.value != TOKsemicolon && p->token.value != TOKeof) p->nextToken(); return clobbers; }
void FuncDeclaration_toObjFile(FuncDeclaration *fd, bool multiobj) { ClassDeclaration *cd = fd->parent->isClassDeclaration(); //printf("FuncDeclaration::toObjFile(%p, %s.%s)\n", fd, fd->parent->toChars(), fd->toChars()); //if (type) printf("type = %s\n", type->toChars()); #if 0 //printf("line = %d\n", getWhere() / LINEINC); EEcontext *ee = env->getEEcontext(); if (ee->EEcompile == 2) { if (ee->EElinnum < (getWhere() / LINEINC) || ee->EElinnum > (endwhere / LINEINC) ) return; // don't compile this function ee->EEfunc = toSymbol(this); } #endif if (fd->semanticRun >= PASSobj) // if toObjFile() already run return; if (fd->type && fd->type->ty == Tfunction && ((TypeFunction *)fd->type)->next == NULL) return; // If errors occurred compiling it, such as bugzilla 6118 if (fd->type && fd->type->ty == Tfunction && ((TypeFunction *)fd->type)->next->ty == Terror) return; if (global.errors) return; if (!fd->fbody) return; UnitTestDeclaration *ud = fd->isUnitTestDeclaration(); if (ud && !global.params.useUnitTests) return; if (multiobj && !fd->isStaticDtorDeclaration() && !fd->isStaticCtorDeclaration()) { obj_append(fd); return; } if (fd->semanticRun == PASSsemanticdone) { /* What happened is this function failed semantic3() with errors, * but the errors were gagged. * Try to reproduce those errors, and then fail. */ fd->error("errors compiling the function"); return; } assert(fd->semanticRun == PASSsemantic3done); assert(fd->ident != Id::empty); for (FuncDeclaration *fd2 = fd; fd2; ) { if (fd2->inNonRoot()) return; if (fd2->isNested()) fd2 = fd2->toParent2()->isFuncDeclaration(); else break; } FuncDeclaration *fdp = fd->toParent2()->isFuncDeclaration(); if (fd->isNested()) { if (fdp && fdp->semanticRun < PASSobj) { if (fdp->semantic3Errors) return; /* Can't do unittest's out of order, they are order dependent in that their * execution is done in lexical order. */ if (UnitTestDeclaration *udp = fdp->isUnitTestDeclaration()) { udp->deferredNested.push(fd); return; } } } if (fd->isArrayOp && isDruntimeArrayOp(fd->ident)) { // Implementation is in druntime return; } // start code generation fd->semanticRun = PASSobj; if (global.params.verbose) fprintf(global.stdmsg, "function %s\n", fd->toPrettyChars()); Symbol *s = toSymbol(fd); func_t *f = s->Sfunc; // tunnel type of "this" to debug info generation if (AggregateDeclaration* ad = fd->parent->isAggregateDeclaration()) { ::type* t = Type_toCtype(ad->getType()); if (cd) t = t->Tnext; // skip reference f->Fclass = (Classsym *)t; } #if TARGET_WINDOS /* This is done so that the 'this' pointer on the stack is the same * distance away from the function parameters, so that an overriding * function can call the nested fdensure or fdrequire of its overridden function * and the stack offsets are the same. */ if (fd->isVirtual() && (fd->fensure || fd->frequire)) f->Fflags3 |= Ffakeeh; #endif #if TARGET_OSX s->Sclass = SCcomdat; #else s->Sclass = SCglobal; #endif for (Dsymbol *p = fd->parent; p; p = p->parent) { if (p->isTemplateInstance()) { s->Sclass = SCcomdat; break; } } /* Vector operations should be comdat's */ if (fd->isArrayOp) s->Sclass = SCcomdat; if (fd->isNested()) { //if (!(config.flags3 & CFG3pic)) // s->Sclass = SCstatic; f->Fflags3 |= Fnested; /* The enclosing function must have its code generated first, * in order to calculate correct frame pointer offset. */ if (fdp && fdp->semanticRun < PASSobj) { toObjFile(fdp, multiobj); } } else { const char *libname = (global.params.symdebug) ? global.params.debuglibname : global.params.defaultlibname; // Pull in RTL startup code (but only once) if (fd->isMain() && onlyOneMain(fd->loc)) { #if TARGET_LINUX || TARGET_OSX || TARGET_FREEBSD || TARGET_OPENBSD || TARGET_SOLARIS objmod->external_def("_main"); objmod->ehsections(); // initialize exception handling sections #endif #if TARGET_WINDOS if (global.params.mscoff) { objmod->external_def("main"); objmod->ehsections(); // initialize exception handling sections } else { objmod->external_def("_main"); objmod->external_def("__acrtused_con"); } #endif objmod->includelib(libname); s->Sclass = SCglobal; } else if (strcmp(s->Sident, "main") == 0 && fd->linkage == LINKc) { #if TARGET_WINDOS if (global.params.mscoff) { objmod->includelib("LIBCMT"); objmod->includelib("OLDNAMES"); } else { objmod->external_def("__acrtused_con"); // bring in C startup code objmod->includelib("snn.lib"); // bring in C runtime library } #endif s->Sclass = SCglobal; } #if TARGET_WINDOS else if (fd->isWinMain() && onlyOneMain(fd->loc)) { if (global.params.mscoff) { objmod->includelib("uuid"); objmod->includelib("LIBCMT"); objmod->includelib("OLDNAMES"); objmod->ehsections(); // initialize exception handling sections } else { objmod->external_def("__acrtused"); } objmod->includelib(libname); s->Sclass = SCglobal; } // Pull in RTL startup code else if (fd->isDllMain() && onlyOneMain(fd->loc)) { if (global.params.mscoff) { objmod->includelib("uuid"); objmod->includelib("LIBCMT"); objmod->includelib("OLDNAMES"); objmod->ehsections(); // initialize exception handling sections } else { objmod->external_def("__acrtused_dll"); } objmod->includelib(libname); s->Sclass = SCglobal; } #endif } symtab_t *symtabsave = cstate.CSpsymtab; cstate.CSpsymtab = &f->Flocsym; // Find module m for this function Module *m = NULL; for (Dsymbol *p = fd->parent; p; p = p->parent) { m = p->isModule(); if (m) break; } IRState irs(m, fd); Dsymbols deferToObj; // write these to OBJ file later irs.deferToObj = &deferToObj; symbol *shidden = NULL; Symbol *sthis = NULL; tym_t tyf = tybasic(s->Stype->Tty); //printf("linkage = %d, tyf = x%x\n", linkage, tyf); int reverse = tyrevfunc(s->Stype->Tty); assert(fd->type->ty == Tfunction); TypeFunction *tf = (TypeFunction *)fd->type; RET retmethod = retStyle(tf); if (retmethod == RETstack) { // If function returns a struct, put a pointer to that // as the first argument ::type *thidden = Type_toCtype(tf->next->pointerTo()); char hiddenparam[5+4+1]; static int hiddenparami; // how many we've generated so far sprintf(hiddenparam,"__HID%d",++hiddenparami); shidden = symbol_name(hiddenparam,SCparameter,thidden); shidden->Sflags |= SFLtrue | SFLfree; if (fd->nrvo_can && fd->nrvo_var && fd->nrvo_var->nestedrefs.dim) type_setcv(&shidden->Stype, shidden->Stype->Tty | mTYvolatile); irs.shidden = shidden; fd->shidden = shidden; } else { // Register return style cannot make nrvo. // Auto functions keep the nrvo_can flag up to here, // so we should eliminate it before entering backend. fd->nrvo_can = 0; } if (fd->vthis) { assert(!fd->vthis->csym); sthis = toSymbol(fd->vthis); irs.sthis = sthis; if (!(f->Fflags3 & Fnested)) f->Fflags3 |= Fmember; } // Estimate number of parameters, pi size_t pi = (fd->v_arguments != NULL); if (fd->parameters) pi += fd->parameters->dim; // Create a temporary buffer, params[], to hold function parameters Symbol *paramsbuf[10]; Symbol **params = paramsbuf; // allocate on stack if possible if (pi + 2 > 10) // allow extra 2 for sthis and shidden { params = (Symbol **)malloc((pi + 2) * sizeof(Symbol *)); assert(params); } // Get the actual number of parameters, pi, and fill in the params[] pi = 0; if (fd->v_arguments) { params[pi] = toSymbol(fd->v_arguments); pi += 1; } if (fd->parameters) { for (size_t i = 0; i < fd->parameters->dim; i++) { VarDeclaration *v = (*fd->parameters)[i]; //printf("param[%d] = %p, %s\n", i, v, v->toChars()); assert(!v->csym); params[pi + i] = toSymbol(v); } pi += fd->parameters->dim; } if (reverse) { // Reverse params[] entries for (size_t i = 0; i < pi/2; i++) { Symbol *sptmp = params[i]; params[i] = params[pi - 1 - i]; params[pi - 1 - i] = sptmp; } } if (shidden) { #if 0 // shidden becomes last parameter params[pi] = shidden; #else // shidden becomes first parameter memmove(params + 1, params, pi * sizeof(params[0])); params[0] = shidden; #endif pi++; } if (sthis) { #if 0 // sthis becomes last parameter params[pi] = sthis; #else // sthis becomes first parameter memmove(params + 1, params, pi * sizeof(params[0])); params[0] = sthis; #endif pi++; } if ((global.params.isLinux || global.params.isOSX || global.params.isFreeBSD || global.params.isSolaris) && fd->linkage != LINKd && shidden && sthis) { /* swap shidden and sthis */ Symbol *sp = params[0]; params[0] = params[1]; params[1] = sp; } for (size_t i = 0; i < pi; i++) { Symbol *sp = params[i]; sp->Sclass = SCparameter; sp->Sflags &= ~SFLspill; sp->Sfl = FLpara; symbol_add(sp); } // Determine register assignments if (pi) { FuncParamRegs fpr(tyf); for (size_t i = 0; i < pi; i++) { Symbol *sp = params[i]; if (fpr.alloc(sp->Stype, sp->Stype->Tty, &sp->Spreg, &sp->Spreg2)) { sp->Sclass = (config.exe == EX_WIN64) ? SCshadowreg : SCfastpar; sp->Sfl = (sp->Sclass == SCshadowreg) ? FLpara : FLfast; } } } // Done with params if (params != paramsbuf) free(params); params = NULL; if (fd->fbody) { localgot = NULL; Statement *sbody = fd->fbody; Blockx bx; memset(&bx,0,sizeof(bx)); bx.startblock = block_calloc(); bx.curblock = bx.startblock; bx.funcsym = s; bx.scope_index = -1; bx.classdec = cd; bx.member = fd; bx.module = fd->getModule(); irs.blx = &bx; /* Doing this in semantic3() caused all kinds of problems: * 1. couldn't reliably get the final mangling of the function name due to fwd refs * 2. impact on function inlining * 3. what to do when writing out .di files, or other pretty printing */ if (global.params.trace && !fd->isCMain()) { /* The profiler requires TLS, and TLS may not be set up yet when C main() * gets control (i.e. OSX), leading to a crash. */ /* Wrap the entire function body in: * trace_pro("funcname"); * try * body; * finally * _c_trace_epi(); */ StringExp *se = StringExp::create(Loc(), s->Sident); se->type = Type::tstring; se->type = se->type->semantic(Loc(), NULL); Expressions *exps = Expressions_create(); exps->push(se); FuncDeclaration *fdpro = FuncDeclaration::genCfunc(NULL, Type::tvoid, "trace_pro"); Expression *ec = VarExp::create(Loc(), fdpro); Expression *e = CallExp::create(Loc(), ec, exps); e->type = Type::tvoid; Statement *sp = ExpStatement::create(fd->loc, e); FuncDeclaration *fdepi = FuncDeclaration::genCfunc(NULL, Type::tvoid, "_c_trace_epi"); ec = VarExp::create(Loc(), fdepi); e = CallExp::create(Loc(), ec); e->type = Type::tvoid; Statement *sf = ExpStatement::create(fd->loc, e); Statement *stf; if (sbody->blockExit(fd, false) == BEfallthru) stf = CompoundStatement::create(Loc(), sbody, sf); else stf = TryFinallyStatement::create(Loc(), sbody, sf); sbody = CompoundStatement::create(Loc(), sp, stf); } buildClosure(fd, &irs); #if TARGET_WINDOS if (fd->isSynchronized() && cd && config.flags2 & CFG2seh && !fd->isStatic() && !sbody->usesEH() && !global.params.trace) { /* The "jmonitor" hack uses an optimized exception handling frame * which is a little shorter than the more general EH frame. */ s->Sfunc->Fflags3 |= Fjmonitor; } #endif Statement_toIR(sbody, &irs); bx.curblock->BC = BCret; f->Fstartblock = bx.startblock; // einit = el_combine(einit,bx.init); if (fd->isCtorDeclaration()) { assert(sthis); for (block *b = f->Fstartblock; b; b = b->Bnext) { if (b->BC == BCret) { b->BC = BCretexp; b->Belem = el_combine(b->Belem, el_var(sthis)); } } } } // If static constructor if (fd->isSharedStaticCtorDeclaration()) // must come first because it derives from StaticCtorDeclaration { ssharedctors.push(s); } else if (fd->isStaticCtorDeclaration()) { sctors.push(s); } // If static destructor if (fd->isSharedStaticDtorDeclaration()) // must come first because it derives from StaticDtorDeclaration { SharedStaticDtorDeclaration *f = fd->isSharedStaticDtorDeclaration(); assert(f); if (f->vgate) { /* Increment destructor's vgate at construction time */ esharedctorgates.push(f); } sshareddtors.shift(s); } else if (fd->isStaticDtorDeclaration()) { StaticDtorDeclaration *f = fd->isStaticDtorDeclaration(); assert(f); if (f->vgate) { /* Increment destructor's vgate at construction time */ ectorgates.push(f); } sdtors.shift(s); } // If unit test if (ud) { stests.push(s); } if (global.errors) { // Restore symbol table cstate.CSpsymtab = symtabsave; return; } writefunc(s); // Restore symbol table cstate.CSpsymtab = symtabsave; if (fd->isExport()) objmod->export_symbol(s, Para.offset); for (size_t i = 0; i < irs.deferToObj->dim; i++) { Dsymbol *s = (*irs.deferToObj)[i]; toObjFile(s, false); } if (ud) { for (size_t i = 0; i < ud->deferredNested.dim; i++) { FuncDeclaration *fd = ud->deferredNested[i]; toObjFile(fd, false); } } #if TARGET_LINUX || TARGET_OSX || TARGET_FREEBSD || TARGET_OPENBSD || TARGET_SOLARIS // A hack to get a pointer to this function put in the .dtors segment if (fd->ident && memcmp(fd->ident->toChars(), "_STD", 4) == 0) objmod->staticdtor(s); #endif if (irs.startaddress) { //printf("Setting start address\n"); objmod->startaddress(irs.startaddress); } }
void ClassDeclaration::semantic(Scope *sc) { //printf("ClassDeclaration::semantic(%s), type = %p, sizeok = %d, this = %p\n", toChars(), type, sizeok, this); //printf("\tparent = %p, '%s'\n", sc->parent, sc->parent ? sc->parent->toChars() : ""); //printf("sc->stc = %x\n", sc->stc); //{ static int n; if (++n == 20) *(char*)0=0; } if (!ident) // if anonymous class { const char *id = "__anonclass"; ident = Identifier::generateId(id); } if (!sc) sc = scope; if (!parent && sc->parent && !sc->parent->isModule()) parent = sc->parent; type = type->semantic(loc, sc); handle = type; if (!members) // if forward reference { //printf("\tclass '%s' is forward referenced\n", toChars()); return; } if (symtab) { if (sizeok == SIZEOKdone || !scope) { //printf("\tsemantic for '%s' is already completed\n", toChars()); return; // semantic() already completed } } else symtab = new DsymbolTable(); Scope *scx = NULL; if (scope) { sc = scope; scx = scope; // save so we don't make redundant copies scope = NULL; } unsigned dprogress_save = Module::dprogress; int errors = global.gaggedErrors; if (sc->stc & STCdeprecated) { isdeprecated = true; } userAttributes = sc->userAttributes; if (sc->linkage == LINKcpp) error("cannot create C++ classes"); // Expand any tuples in baseclasses[] for (size_t i = 0; i < baseclasses->dim; ) { BaseClass *b = (*baseclasses)[i]; b->type = b->type->semantic(loc, sc); Type *tb = b->type->toBasetype(); if (tb->ty == Ttuple) { TypeTuple *tup = (TypeTuple *)tb; enum PROT protection = b->protection; baseclasses->remove(i); size_t dim = Parameter::dim(tup->arguments); for (size_t j = 0; j < dim; j++) { Parameter *arg = Parameter::getNth(tup->arguments, j); b = new BaseClass(arg->type, protection); baseclasses->insert(i + j, b); } } else i++; } // See if there's a base class as first in baseclasses[] if (baseclasses->dim) { TypeClass *tc; BaseClass *b; Type *tb; b = (*baseclasses)[0]; //b->type = b->type->semantic(loc, sc); tb = b->type->toBasetype(); if (tb->ty != Tclass) { if (b->type != Type::terror) error("base type must be class or interface, not %s", b->type->toChars()); baseclasses->remove(0); } else { tc = (TypeClass *)(tb); if (tc->sym->isDeprecated()) { if (!isDeprecated()) { // Deriving from deprecated class makes this one deprecated too isdeprecated = true; tc->checkDeprecated(loc, sc); } } if (tc->sym->isInterfaceDeclaration()) ; else { for (ClassDeclaration *cdb = tc->sym; cdb; cdb = cdb->baseClass) { if (cdb == this) { error("circular inheritance"); baseclasses->remove(0); goto L7; } } if (!tc->sym->symtab || tc->sym->sizeok == SIZEOKnone) { // Try to resolve forward reference if (/*sc->mustsemantic &&*/ tc->sym->scope) tc->sym->semantic(NULL); } if (!tc->sym->symtab || tc->sym->scope || tc->sym->sizeok == SIZEOKnone) { //printf("%s: forward reference of base class %s\n", toChars(), tc->sym->toChars()); //error("forward reference of base class %s", baseClass->toChars()); // Forward reference of base class, try again later //printf("\ttry later, forward reference of base class %s\n", tc->sym->toChars()); scope = scx ? scx : new Scope(*sc); scope->setNoFree(); if (tc->sym->scope) tc->sym->scope->module->addDeferredSemantic(tc->sym); scope->module->addDeferredSemantic(this); return; } else { baseClass = tc->sym; b->base = baseClass; } L7: ; } } } // Treat the remaining entries in baseclasses as interfaces // Check for errors, handle forward references for (size_t i = (baseClass ? 1 : 0); i < baseclasses->dim; ) { TypeClass *tc; BaseClass *b; Type *tb; b = (*baseclasses)[i]; b->type = b->type->semantic(loc, sc); tb = b->type->toBasetype(); if (tb->ty == Tclass) tc = (TypeClass *)tb; else tc = NULL; if (!tc || !tc->sym->isInterfaceDeclaration()) { if (b->type != Type::terror) error("base type must be interface, not %s", b->type->toChars()); baseclasses->remove(i); continue; } else { if (tc->sym->isDeprecated()) { if (!isDeprecated()) { // Deriving from deprecated class makes this one deprecated too isdeprecated = true; tc->checkDeprecated(loc, sc); } } // Check for duplicate interfaces for (size_t j = (baseClass ? 1 : 0); j < i; j++) { BaseClass *b2 = (*baseclasses)[j]; if (b2->base == tc->sym) error("inherits from duplicate interface %s", b2->base->toChars()); } if (!tc->sym->symtab) { // Try to resolve forward reference if (/*sc->mustsemantic &&*/ tc->sym->scope) tc->sym->semantic(NULL); } b->base = tc->sym; if (!b->base->symtab || b->base->scope) { //error("forward reference of base class %s", baseClass->toChars()); // Forward reference of base, try again later //printf("\ttry later, forward reference of base %s\n", baseClass->toChars()); scope = scx ? scx : new Scope(*sc); scope->setNoFree(); if (tc->sym->scope) tc->sym->scope->module->addDeferredSemantic(tc->sym); scope->module->addDeferredSemantic(this); return; } } i++; } // If no base class, and this is not an Object, use Object as base class if (!baseClass && ident != Id::Object) { if (!object) { error("missing or corrupt object.d"); fatal(); } Type *t = object->type; t = t->semantic(loc, sc)->toBasetype(); assert(t->ty == Tclass); TypeClass *tc = (TypeClass *)t; BaseClass *b = new BaseClass(tc, PROTpublic); baseclasses->shift(b); baseClass = tc->sym; assert(!baseClass->isInterfaceDeclaration()); b->base = baseClass; } interfaces_dim = baseclasses->dim; interfaces = baseclasses->tdata(); if (baseClass) { if (baseClass->storage_class & STCfinal) error("cannot inherit from final class %s", baseClass->toChars()); interfaces_dim--; interfaces++; // Copy vtbl[] from base class vtbl.setDim(baseClass->vtbl.dim); memcpy(vtbl.tdata(), baseClass->vtbl.tdata(), sizeof(void *) * vtbl.dim); // Inherit properties from base class com = baseClass->isCOMclass(); isscope = baseClass->isscope; vthis = baseClass->vthis; storage_class |= baseClass->storage_class & STC_TYPECTOR; } else { // No base class, so this is the root of the class hierarchy vtbl.setDim(0); vtbl.push(this); // leave room for classinfo as first member } protection = sc->protection; storage_class |= sc->stc; if (sizeok == SIZEOKnone) { interfaceSemantic(sc); for (size_t i = 0; i < members->dim; i++) { Dsymbol *s = (*members)[i]; s->addMember(sc, this, 1); } /* If this is a nested class, add the hidden 'this' * member which is a pointer to the enclosing scope. */ if (vthis) // if inheriting from nested class { // Use the base class's 'this' member isnested = true; if (storage_class & STCstatic) error("static class cannot inherit from nested class %s", baseClass->toChars()); if (toParent2() != baseClass->toParent2() && (!toParent2() || !baseClass->toParent2()->getType() || !baseClass->toParent2()->getType()->isBaseOf(toParent2()->getType(), NULL))) { if (toParent2()) { error("is nested within %s, but super class %s is nested within %s", toParent2()->toChars(), baseClass->toChars(), baseClass->toParent2()->toChars()); } else { error("is not nested, but super class %s is nested within %s", baseClass->toChars(), baseClass->toParent2()->toChars()); } isnested = false; } } else if (!(storage_class & STCstatic)) { Dsymbol *s = toParent2(); if (s) { AggregateDeclaration *ad = s->isClassDeclaration(); FuncDeclaration *fd = s->isFuncDeclaration(); if (ad || fd) { isnested = true; Type *t; if (ad) t = ad->handle; else if (fd) { AggregateDeclaration *ad2 = fd->isMember2(); if (ad2) t = ad2->handle; else { t = Type::tvoidptr; } } else assert(0); if (t->ty == Tstruct) // ref to struct t = Type::tvoidptr; assert(!vthis); vthis = new ThisDeclaration(loc, t); members->push(vthis); } } } } if (storage_class & STCauto) error("storage class 'auto' is invalid when declaring a class, did you mean to use 'scope'?"); if (storage_class & STCscope) isscope = 1; if (storage_class & STCabstract) isabstract = 1; sc = sc->push(this); //sc->stc &= ~(STCfinal | STCauto | STCscope | STCstatic | STCabstract | STCdeprecated | STC_TYPECTOR | STCtls | STCgshared); //sc->stc |= storage_class & STC_TYPECTOR; sc->stc &= STCsafe | STCtrusted | STCsystem; sc->parent = this; sc->inunion = 0; if (isCOMclass()) { #if _WIN32 sc->linkage = LINKwindows; #else /* This enables us to use COM objects under Linux and * work with things like XPCOM */ sc->linkage = LINKc; #endif } sc->protection = PROTpublic; sc->explicitProtection = 0; sc->structalign = STRUCTALIGN_DEFAULT; if (baseClass) { sc->offset = baseClass->structsize; alignsize = baseClass->alignsize; // if (isnested) // sc->offset += PTRSIZE; // room for uplevel context pointer } else { sc->offset = PTRSIZE * 2; // allow room for __vptr and __monitor alignsize = PTRSIZE; } sc->userAttributes = NULL; structsize = sc->offset; Scope scsave = *sc; size_t members_dim = members->dim; sizeok = SIZEOKnone; /* Set scope so if there are forward references, we still might be able to * resolve individual members like enums. */ for (size_t i = 0; i < members_dim; i++) { Dsymbol *s = (*members)[i]; /* There are problems doing this in the general case because * Scope keeps track of things like 'offset' */ if (s->isEnumDeclaration() || (s->isAggregateDeclaration() && s->ident) || s->isTemplateMixin() || s->isAttribDeclaration() || s->isAliasDeclaration()) { //printf("[%d] setScope %s %s, sc = %p\n", i, s->kind(), s->toChars(), sc); s->setScope(sc); } } for (size_t i = 0; i < members_dim; i++) { Dsymbol *s = (*members)[i]; s->semantic(sc); } // Set the offsets of the fields and determine the size of the class unsigned offset = structsize; bool isunion = isUnionDeclaration() != NULL; for (size_t i = 0; i < members->dim; i++) { Dsymbol *s = (*members)[i]; s->setFieldOffset(this, &offset, false); } sc->offset = structsize; if (global.gag && global.gaggedErrors != errors) { // The type is no good, yet the error messages were gagged. type = Type::terror; } if (sizeok == SIZEOKfwd) // failed due to forward references { // semantic() failed due to forward references // Unwind what we did, and defer it for later for (size_t i = 0; i < fields.dim; i++) { Dsymbol *s = fields[i]; VarDeclaration *vd = s->isVarDeclaration(); if (vd) vd->offset = 0; } fields.setDim(0); structsize = 0; alignsize = 0; // structalign = 0; sc = sc->pop(); scope = scx ? scx : new Scope(*sc); scope->setNoFree(); scope->module->addDeferredSemantic(this); Module::dprogress = dprogress_save; //printf("\tsemantic('%s') failed due to forward references\n", toChars()); return; } //printf("\tsemantic('%s') successful\n", toChars()); //members->print(); /* Look for special member functions. * They must be in this class, not in a base class. */ ctor = search(0, Id::ctor, 0); #if DMDV1 if (ctor && (ctor->toParent() != this || !ctor->isCtorDeclaration())) ctor = NULL; #else if (ctor && (ctor->toParent() != this || !(ctor->isCtorDeclaration() || ctor->isTemplateDeclaration()))) ctor = NULL; // search() looks through ancestor classes #endif // dtor = (DtorDeclaration *)search(Id::dtor, 0); // if (dtor && dtor->toParent() != this) // dtor = NULL; // inv = (InvariantDeclaration *)search(Id::classInvariant, 0); // if (inv && inv->toParent() != this) // inv = NULL; // Can be in base class aggNew = (NewDeclaration *)search(0, Id::classNew, 0); aggDelete = (DeleteDeclaration *)search(0, Id::classDelete, 0); // If this class has no constructor, but base class does, create // a constructor: // this() { } if (!ctor && baseClass && baseClass->ctor) { //printf("Creating default this(){} for class %s\n", toChars()); Type *tf = new TypeFunction(NULL, NULL, 0, LINKd, 0); CtorDeclaration *ctor = new CtorDeclaration(loc, 0, 0, tf); ctor->fbody = new CompoundStatement(0, new Statements()); members->push(ctor); ctor->addMember(sc, this, 1); *sc = scsave; // why? What about sc->nofree? ctor->semantic(sc); this->ctor = ctor; defaultCtor = ctor; } #if 0 if (baseClass) { if (!aggDelete) aggDelete = baseClass->aggDelete; if (!aggNew) aggNew = baseClass->aggNew; } #endif // Allocate instance of each new interface sc->offset = structsize; for (size_t i = 0; i < vtblInterfaces->dim; i++) { BaseClass *b = (*vtblInterfaces)[i]; unsigned thissize = PTRSIZE; alignmember(STRUCTALIGN_DEFAULT, thissize, &sc->offset); assert(b->offset == 0); b->offset = sc->offset; // Take care of single inheritance offsets while (b->baseInterfaces_dim) { b = &b->baseInterfaces[0]; b->offset = sc->offset; } sc->offset += thissize; if (alignsize < thissize) alignsize = thissize; } structsize = sc->offset; sizeok = SIZEOKdone; Module::dprogress++; dtor = buildDtor(sc); if (Dsymbol *assign = search_function(this, Id::assign)) { Expression *e = new NullExp(loc, type); // dummy rvalue Expressions *arguments = new Expressions(); arguments->push(e); // check identity opAssign exists FuncDeclaration *fd = assign->isFuncDeclaration(); if (fd) { fd = fd->overloadResolve(loc, e, arguments, 1); if (fd && !(fd->storage_class & STCdisable)) goto Lassignerr; } if (TemplateDeclaration *td = assign->isTemplateDeclaration()) { fd = td->deduceFunctionTemplate(sc, loc, NULL, e, arguments, 1+2); if (fd && !(fd->storage_class & STCdisable)) goto Lassignerr; } Lassignerr: if (fd && !(fd->storage_class & STCdisable)) error("identity assignment operator overload is illegal"); } sc->pop(); #if 0 // Do not call until toObjfile() because of forward references // Fill in base class vtbl[]s for (i = 0; i < vtblInterfaces->dim; i++) { BaseClass *b = (*vtblInterfaces)[i]; //b->fillVtbl(this, &b->vtbl, 1); } #endif //printf("-ClassDeclaration::semantic(%s), type = %p\n", toChars(), type); if (deferred && !global.gag) { deferred->semantic2(sc); deferred->semantic3(sc); } }
/********************************* * Operator overloading for op= */ Expression *BinAssignExp::op_overload(Scope *sc) { //printf("BinAssignExp::op_overload() (%s)\n", toChars()); #if DMDV2 if (e1->op == TOKarray) { ArrayExp *ae = (ArrayExp *)e1; ae->e1 = ae->e1->semantic(sc); ae->e1 = resolveProperties(sc, ae->e1); AggregateDeclaration *ad = isAggregate(ae->e1->type); if (ad) { /* Rewrite a[args]+=e2 as: * a.opIndexOpAssign!("+")(e2, args); */ Dsymbol *fd = search_function(ad, Id::opIndexOpAssign); if (fd) { Expressions *a = new Expressions(); a->push(e2); for (size_t i = 0; i < ae->arguments->dim; i++) a->push(ae->arguments->tdata()[i]); Objects *targsi = opToArg(sc, op); Expression *e = new DotTemplateInstanceExp(loc, ae->e1, fd->ident, targsi); e = new CallExp(loc, e, a); e = e->semantic(sc); return e; } // Didn't find it. Forward to aliasthis if (ad->aliasthis) { /* Rewrite a[arguments] op= e2 as: * a.aliasthis[arguments] op= e2 */ Expression *e1 = ae->copy(); ((ArrayExp *)e1)->e1 = new DotIdExp(loc, ae->e1, ad->aliasthis->ident); Expression *e = copy(); ((UnaExp *)e)->e1 = e1; e = e->trySemantic(sc); return e; } } } else if (e1->op == TOKslice) { SliceExp *se = (SliceExp *)e1; se->e1 = se->e1->semantic(sc); se->e1 = resolveProperties(sc, se->e1); AggregateDeclaration *ad = isAggregate(se->e1->type); if (ad) { /* Rewrite a[lwr..upr]+=e2 as: * a.opSliceOpAssign!("+")(e2, lwr, upr); */ Dsymbol *fd = search_function(ad, Id::opSliceOpAssign); if (fd) { Expressions *a = new Expressions(); a->push(e2); if (se->lwr) { a->push(se->lwr); a->push(se->upr); } Objects *targsi = opToArg(sc, op); Expression *e = new DotTemplateInstanceExp(loc, se->e1, fd->ident, targsi); e = new CallExp(loc, e, a); e = e->semantic(sc); return e; } // Didn't find it. Forward to aliasthis if (ad->aliasthis) { /* Rewrite a[lwr..upr] op= e2 as: * a.aliasthis[lwr..upr] op= e2 */ Expression *e1 = se->copy(); ((SliceExp *)e1)->e1 = new DotIdExp(loc, se->e1, ad->aliasthis->ident); Expression *e = copy(); ((UnaExp *)e)->e1 = e1; e = e->trySemantic(sc); return e; } } } #endif BinExp::semantic(sc); e1 = resolveProperties(sc, e1); e2 = resolveProperties(sc, e2); Identifier *id = opId(); Expressions args2; AggregateDeclaration *ad1 = isAggregate(e1->type); Dsymbol *s = NULL; #if 1 // the old D1 scheme if (ad1 && id) { s = search_function(ad1, id); } #endif Objects *targsi = NULL; #if DMDV2 if (!s) { /* Try the new D2 scheme, opOpAssign */ if (ad1) s = search_function(ad1, Id::opOpAssign); // Set targsi, the template argument list, which will be the operator string if (s) { id = Id::opOpAssign; targsi = opToArg(sc, op); } } #endif if (s) { /* Try: * a.opOpAssign(b) */ args2.setDim(1); args2.tdata()[0] = e2; Match m; memset(&m, 0, sizeof(m)); m.last = MATCHnomatch; if (s) { FuncDeclaration *fd = s->isFuncDeclaration(); if (fd) { overloadResolveX(&m, fd, NULL, &args2, sc->module); } else { TemplateDeclaration *td = s->isTemplateDeclaration(); templateResolve(&m, td, sc, loc, targsi, e1, &args2); } } if (m.count > 1) { // Error, ambiguous error("overloads %s and %s both match argument list for %s", m.lastf->type->toChars(), m.nextf->type->toChars(), m.lastf->toChars()); } else if (m.last == MATCHnomatch) { m.lastf = m.anyf; if (targsi) goto L1; } // Rewrite (e1 op e2) as e1.opOpAssign(e2) return build_overload(loc, sc, e1, e2, m.lastf ? m.lastf : s); } L1: #if DMDV2 // Try alias this on first operand if (ad1 && ad1->aliasthis) { /* Rewrite (e1 op e2) as: * (e1.aliasthis op e2) */ Expression *e1 = new DotIdExp(loc, this->e1, ad1->aliasthis->ident); Expression *e = copy(); ((BinExp *)e)->e1 = e1; e = e->trySemantic(sc); return e; } // Try alias this on second operand AggregateDeclaration *ad2 = isAggregate(e2->type); if (ad2 && ad2->aliasthis) { /* Rewrite (e1 op e2) as: * (e1 op e2.aliasthis) */ Expression *e2 = new DotIdExp(loc, this->e2, ad2->aliasthis->ident); Expression *e = copy(); ((BinExp *)e)->e2 = e2; e = e->trySemantic(sc); return e; } #endif return NULL; }
Expression *UnaExp::op_overload(Scope *sc) { //printf("UnaExp::op_overload() (%s)\n", toChars()); #if DMDV2 if (e1->op == TOKarray) { ArrayExp *ae = (ArrayExp *)e1; ae->e1 = ae->e1->semantic(sc); ae->e1 = resolveProperties(sc, ae->e1); AggregateDeclaration *ad = isAggregate(ae->e1->type); if (ad) { /* Rewrite as: * a.opIndexUnary!("+")(args); */ Dsymbol *fd = search_function(ad, Id::opIndexUnary); if (fd) { Objects *targsi = opToArg(sc, op); Expression *e = new DotTemplateInstanceExp(loc, ae->e1, fd->ident, targsi); e = new CallExp(loc, e, ae->arguments); e = e->semantic(sc); return e; } // Didn't find it. Forward to aliasthis if (ad->aliasthis) { /* Rewrite op(a[arguments]) as: * op(a.aliasthis[arguments]) */ Expression *e1 = ae->copy(); ((ArrayExp *)e1)->e1 = new DotIdExp(loc, ae->e1, ad->aliasthis->ident); Expression *e = copy(); ((UnaExp *)e)->e1 = e1; e = e->trySemantic(sc); return e; } } } else if (e1->op == TOKslice) { SliceExp *se = (SliceExp *)e1; se->e1 = se->e1->semantic(sc); se->e1 = resolveProperties(sc, se->e1); AggregateDeclaration *ad = isAggregate(se->e1->type); if (ad) { /* Rewrite as: * a.opSliceUnary!("+")(lwr, upr); */ Dsymbol *fd = search_function(ad, Id::opSliceUnary); if (fd) { Expressions *a = new Expressions(); if (se->lwr) { a->push(se->lwr); a->push(se->upr); } Objects *targsi = opToArg(sc, op); Expression *e = new DotTemplateInstanceExp(loc, se->e1, fd->ident, targsi); e = new CallExp(loc, e, a); e = e->semantic(sc); return e; } // Didn't find it. Forward to aliasthis if (ad->aliasthis) { /* Rewrite op(a[lwr..upr]) as: * op(a.aliasthis[lwr..upr]) */ Expression *e1 = se->copy(); ((SliceExp *)e1)->e1 = new DotIdExp(loc, se->e1, ad->aliasthis->ident); Expression *e = copy(); ((UnaExp *)e)->e1 = e1; e = e->trySemantic(sc); return e; } } } #endif e1 = e1->semantic(sc); e1 = resolveProperties(sc, e1); AggregateDeclaration *ad = isAggregate(e1->type); if (ad) { Dsymbol *fd = NULL; #if 1 // Old way, kept for compatibility with D1 if (op != TOKpreplusplus && op != TOKpreminusminus) { fd = search_function(ad, opId()); if (fd) { if (op == TOKarray) { /* Rewrite op e1[arguments] as: * e1.fd(arguments) */ Expression *e = new DotIdExp(loc, e1, fd->ident); ArrayExp *ae = (ArrayExp *)this; e = new CallExp(loc, e, ae->arguments); e = e->semantic(sc); return e; } else { // Rewrite +e1 as e1.add() return build_overload(loc, sc, e1, NULL, fd); } } } #endif #if DMDV2 /* Rewrite as: * e1.opUnary!("+")(); */ fd = search_function(ad, Id::opUnary); if (fd) { Objects *targsi = opToArg(sc, op); Expression *e = new DotTemplateInstanceExp(loc, e1, fd->ident, targsi); e = new CallExp(loc, e); e = e->semantic(sc); return e; } // Didn't find it. Forward to aliasthis if (ad->aliasthis) { /* Rewrite op(e1) as: * op(e1.aliasthis) */ Expression *e1 = new DotIdExp(loc, this->e1, ad->aliasthis->ident); Expression *e = copy(); ((UnaExp *)e)->e1 = e1; e = e->trySemantic(sc); return e; } #endif } return NULL; }
/********************************* * Operator overloading for op= */ Expression *BinAssignExp::op_overload(Scope *sc) { //printf("BinAssignExp::op_overload() (%s)\n", toChars()); #if DMDV2 if (e1->op == TOKarray) { ArrayExp *ae = (ArrayExp *)e1; ae->e1 = ae->e1->semantic(sc); ae->e1 = resolveProperties(sc, ae->e1); AggregateDeclaration *ad = isAggregate(ae->e1->type); if (ad) { /* Rewrite a[args]+=e2 as: * a.opIndexOpAssign!("+")(e2, args); */ Dsymbol *fd = search_function(ad, Id::opIndexOpAssign); if (fd) { ae = resolveOpDollar(sc, ae); Expressions *a = (Expressions *)ae->arguments->copy(); a->insert(0, e2); Objects *tiargs = opToArg(sc, op); Expression *e = new DotTemplateInstanceExp(loc, ae->e1, fd->ident, tiargs); e = new CallExp(loc, e, a); e = e->semantic(sc); return e; } // Didn't find it. Forward to aliasthis if (ad->aliasthis && ae->e1->type != att1) { /* Rewrite a[arguments] op= e2 as: * a.aliasthis[arguments] op= e2 */ Expression *e1 = ae->copy(); ((ArrayExp *)e1)->e1 = new DotIdExp(loc, ae->e1, ad->aliasthis->ident); BinExp *be = (BinExp *)copy(); if (!be->att1 && ae->e1->type->checkAliasThisRec()) be->att1 = ae->e1->type; be->e1 = e1; if (Expression *e = be->trySemantic(sc)) return e; } att1 = NULL; } } else if (e1->op == TOKslice) { SliceExp *se = (SliceExp *)e1; se->e1 = se->e1->semantic(sc); se->e1 = resolveProperties(sc, se->e1); AggregateDeclaration *ad = isAggregate(se->e1->type); if (ad) { /* Rewrite a[lwr..upr]+=e2 as: * a.opSliceOpAssign!("+")(e2, lwr, upr); */ Dsymbol *fd = search_function(ad, Id::opSliceOpAssign); if (fd) { se = resolveOpDollar(sc, se); Expressions *a = new Expressions(); a->push(e2); assert(!se->lwr || se->upr); if (se->lwr) { a->push(se->lwr); a->push(se->upr); } Objects *tiargs = opToArg(sc, op); Expression *e = new DotTemplateInstanceExp(loc, se->e1, fd->ident, tiargs); e = new CallExp(loc, e, a); e = e->semantic(sc); return e; } // Didn't find it. Forward to aliasthis if (ad->aliasthis && se->e1->type != att1) { /* Rewrite a[lwr..upr] op= e2 as: * a.aliasthis[lwr..upr] op= e2 */ Expression *e1 = se->copy(); ((SliceExp *)e1)->e1 = new DotIdExp(loc, se->e1, ad->aliasthis->ident); BinExp *be = (BinExp *)copy(); if (!be->att1 && se->e1->type->checkAliasThisRec()) be->att1 = se->e1->type; be->e1 = e1; if (Expression *e = be->trySemantic(sc)) return e; } att1 = NULL; } } #endif BinExp::semantic(sc); e1 = resolveProperties(sc, e1); e2 = resolveProperties(sc, e2); // Don't attempt 'alias this' if an error occured if (e1->type->ty == Terror || e2->type->ty == Terror) return new ErrorExp(); Identifier *id = opId(); Expressions args2; AggregateDeclaration *ad1 = isAggregate(e1->type); Dsymbol *s = NULL; #if 1 // the old D1 scheme if (ad1 && id) { s = search_function(ad1, id); } #endif Objects *tiargs = NULL; #if DMDV2 if (!s) { /* Try the new D2 scheme, opOpAssign */ if (ad1) { s = search_function(ad1, Id::opOpAssign); if (s && !s->isTemplateDeclaration()) { error("%s.opOpAssign isn't a template", e1->toChars()); return new ErrorExp(); } } // Set tiargs, the template argument list, which will be the operator string if (s) { id = Id::opOpAssign; tiargs = opToArg(sc, op); } } #endif if (s) { /* Try: * a.opOpAssign(b) */ args2.setDim(1); args2[0] = e2; Match m; memset(&m, 0, sizeof(m)); m.last = MATCHnomatch; if (s) { FuncDeclaration *fd = s->isFuncDeclaration(); if (fd) { overloadResolveX(&m, fd, NULL, &args2); } else { TemplateDeclaration *td = s->isTemplateDeclaration(); templateResolve(&m, td, loc, sc, tiargs, e1, &args2); } } if (m.count > 1) { // Error, ambiguous error("overloads %s and %s both match argument list for %s", m.lastf->type->toChars(), m.nextf->type->toChars(), m.lastf->toChars()); } else if (m.last == MATCHnomatch) { m.lastf = m.anyf; if (tiargs) goto L1; } // Rewrite (e1 op e2) as e1.opOpAssign(e2) return build_overload(loc, sc, e1, e2, m.lastf ? m.lastf : s); } L1: #if DMDV2 // Try alias this on first operand if (ad1 && ad1->aliasthis) { /* Rewrite (e1 op e2) as: * (e1.aliasthis op e2) */ if (att1 && this->e1->type == att1) return NULL; //printf("att %s e1 = %s\n", Token::toChars(op), this->e1->type->toChars()); Expression *e1 = new DotIdExp(loc, this->e1, ad1->aliasthis->ident); BinExp *be = (BinExp *)copy(); if (!be->att1 && this->e1->type->checkAliasThisRec()) be->att1 = this->e1->type; be->e1 = e1; return be->trySemantic(sc); } // Try alias this on second operand AggregateDeclaration *ad2 = isAggregate(e2->type); if (ad2 && ad2->aliasthis) { /* Rewrite (e1 op e2) as: * (e1 op e2.aliasthis) */ if (att2 && this->e2->type == att2) return NULL; //printf("att %s e2 = %s\n", Token::toChars(op), this->e2->type->toChars()); Expression *e2 = new DotIdExp(loc, this->e2, ad2->aliasthis->ident); BinExp *be = (BinExp *)copy(); if (!be->att2 && this->e2->type->checkAliasThisRec()) be->att2 = this->e2->type; be->e2 = e2; return be->trySemantic(sc); } #endif return NULL; }
void StructDeclaration::semantic(Scope *sc) { int i; Scope *sc2; //printf("+StructDeclaration::semantic(this=%p, '%s')\n", this, toChars()); //static int count; if (++count == 20) *(char*)0=0; assert(type); if (!members) // if forward reference return; if (symtab) { if (!scope) return; // semantic() already completed } else symtab = new DsymbolTable(); Scope *scx = NULL; if (scope) { sc = scope; scx = scope; // save so we don't make redundant copies scope = NULL; } parent = sc->parent; handle = type->pointerTo(); structalign = sc->structalign; protection = sc->protection; storage_class |= sc->stc; assert(!isAnonymous()); if (sc->stc & STCabstract) error("structs, unions cannot be abstract"); if (storage_class & STCinvariant) type = type->invariantOf(); else if (storage_class & STCconst) type = type->constOf(); if (sizeok == 0) // if not already done the addMember step { for (i = 0; i < members->dim; i++) { Dsymbol *s = (Dsymbol *)members->data[i]; //printf("adding member '%s' to '%s'\n", s->toChars(), this->toChars()); s->addMember(sc, this, 1); } } sizeok = 0; sc2 = sc->push(this); sc2->stc &= storage_class & (STCconst | STCinvariant); sc2->parent = this; if (isUnionDeclaration()) sc2->inunion = 1; sc2->protection = PROTpublic; sc2->explicitProtection = 0; int members_dim = members->dim; for (i = 0; i < members_dim; i++) { Dsymbol *s = (Dsymbol *)members->data[i]; s->semantic(sc2); if (isUnionDeclaration()) sc2->offset = 0; #if 0 if (sizeok == 2) { //printf("forward reference\n"); break; } #endif } /* The TypeInfo_Struct is expecting an opEquals and opCmp with * a parameter that is a pointer to the struct. But if there * isn't one, but is an opEquals or opCmp with a value, write * another that is a shell around the value: * int opCmp(struct *p) { return opCmp(*p); } */ TypeFunction *tfeqptr; { Arguments *arguments = new Arguments; Argument *arg = new Argument(STCin, handle, Id::p, NULL); arguments->push(arg); tfeqptr = new TypeFunction(arguments, Type::tint32, 0, LINKd); tfeqptr = (TypeFunction *)tfeqptr->semantic(0, sc); } TypeFunction *tfeq; { Arguments *arguments = new Arguments; Argument *arg = new Argument(STCin, type, NULL, NULL); arguments->push(arg); tfeq = new TypeFunction(arguments, Type::tint32, 0, LINKd); tfeq = (TypeFunction *)tfeq->semantic(0, sc); } Identifier *id = Id::eq; for (int i = 0; i < 2; i++) { Dsymbol *s = search_function(this, id); FuncDeclaration *fdx = s ? s->isFuncDeclaration() : NULL; if (fdx) { FuncDeclaration *fd = fdx->overloadExactMatch(tfeqptr); if (!fd) { fd = fdx->overloadExactMatch(tfeq); if (fd) { // Create the thunk, fdptr FuncDeclaration *fdptr = new FuncDeclaration(loc, loc, fdx->ident, STCundefined, tfeqptr); Expression *e = new IdentifierExp(loc, Id::p); e = new PtrExp(loc, e); Expressions *args = new Expressions(); args->push(e); e = new IdentifierExp(loc, id); e = new CallExp(loc, e, args); fdptr->fbody = new ReturnStatement(loc, e); ScopeDsymbol *s = fdx->parent->isScopeDsymbol(); assert(s); s->members->push(fdptr); fdptr->addMember(sc, s, 1); fdptr->semantic(sc2); } } } id = Id::cmp; } dtor = buildDtor(sc2); postblit = buildPostBlit(sc2); cpctor = buildCpCtor(sc2); buildOpAssign(sc2); sc2->pop(); if (sizeok == 2) { // semantic() failed because of forward references. // Unwind what we did, and defer it for later fields.setDim(0); structsize = 0; alignsize = 0; structalign = 0; scope = scx ? scx : new Scope(*sc); scope->setNoFree(); scope->module->addDeferredSemantic(this); //printf("\tdeferring %s\n", toChars()); return; } // 0 sized struct's are set to 1 byte if (structsize == 0) { structsize = 1; alignsize = 1; } // Round struct size up to next alignsize boundary. // This will ensure that arrays of structs will get their internals // aligned properly. structsize = (structsize + alignsize - 1) & ~(alignsize - 1); sizeok = 1; Module::dprogress++; //printf("-StructDeclaration::semantic(this=%p, '%s')\n", this, toChars()); // Determine if struct is all zeros or not zeroInit = 1; for (i = 0; i < fields.dim; i++) { Dsymbol *s = (Dsymbol *)fields.data[i]; VarDeclaration *vd = s->isVarDeclaration(); if (vd && !vd->isDataseg()) { if (vd->init) { // Should examine init to see if it is really all 0's zeroInit = 0; break; } else { if (!vd->type->isZeroInit()) { zeroInit = 0; break; } } } } /* Look for special member functions. */ inv = (InvariantDeclaration *)search(0, Id::classInvariant, 0); aggNew = (NewDeclaration *)search(0, Id::classNew, 0); aggDelete = (DeleteDeclaration *)search(0, Id::classDelete, 0); if (sc->func) { semantic2(sc); semantic3(sc); } }
FuncDeclaration *StructDeclaration::buildOpEquals(Scope *sc) { Dsymbol *eq = search_function(this, Id::eq); if (eq) { /* check identity opEquals exists */ Type *tthis = type->constOf(); Expression *er = new NullExp(loc, tthis); // dummy rvalue Expression *el = new IdentifierExp(loc, Id::p); // dummy lvalue el->type = tthis; Expressions ar; ar.push(er); Expressions al; al.push(el); FuncDeclaration *f = NULL; unsigned errors = global.startGagging(); // Do not report errors, even if the unsigned oldspec = global.speculativeGag; // template opAssign fbody makes it. global.speculativeGag = global.gag; sc = sc->push(); sc->speculative = true; f = resolveFuncCall(loc, sc, eq, NULL, er, &ar, 1); if (!f) f = resolveFuncCall(loc, sc, eq, NULL, er, &al, 1); sc = sc->pop(); global.speculativeGag = oldspec; global.endGagging(errors); if (f) return (f->storage_class & STCdisable) ? NULL : f; return NULL; } if (!needOpEquals()) return NULL; //printf("StructDeclaration::buildOpEquals() %s\n", toChars()); Parameters *parameters = new Parameters; parameters->push(new Parameter(STCin, type, Id::p, NULL)); TypeFunction *tf = new TypeFunction(parameters, Type::tbool, 0, LINKd); tf->mod = MODconst; tf = (TypeFunction *)tf->semantic(loc, sc); FuncDeclaration *fop = new FuncDeclaration(loc, 0, Id::eq, STCundefined, tf); Expression *e = NULL; /* Do memberwise compare */ //printf("\tmemberwise compare\n"); for (size_t i = 0; i < fields.dim; i++) { Dsymbol *s = fields[i]; VarDeclaration *v = s->isVarDeclaration(); assert(v && v->isField()); if (v->storage_class & STCref) assert(0); // what should we do with this? // this.v == s.v; EqualExp *ec = new EqualExp(TOKequal, loc, new DotVarExp(loc, new ThisExp(loc), v, 0), new DotVarExp(loc, new IdentifierExp(loc, Id::p), v, 0)); if (e) e = new AndAndExp(loc, e, ec); else e = ec; } if (!e) e = new IntegerExp(loc, 1, Type::tbool); fop->fbody = new ReturnStatement(loc, e); members->push(fop); fop->addMember(sc, this, 1); sc = sc->push(); sc->stc = 0; sc->linkage = LINKd; fop->semantic(sc); sc->pop(); //printf("-StructDeclaration::buildOpEquals() %s\n", toChars()); return fop; }
/** * get an array of size_t values that indicate possible pointer words in memory * if interpreted as the type given as argument * the first array element is the size of the type for independent interpretation * of the array * following elements bits represent one word (4/8 bytes depending on the target * architecture). If set the corresponding memory might contain a pointer/reference. * * [T.sizeof, pointerbit0-31/63, pointerbit32/64-63/128, ...] */ Expression *pointerBitmap(TraitsExp *e) { int result = 0; if (!e->args || e->args->dim != 1) { error(e->loc, "a single type expected for trait pointerBitmap"); return new ErrorExp(); } Type *t = getType((*e->args)[0]); if (!t) { error(e->loc, "%s is not a type", (*e->args)[0]->toChars()); return new ErrorExp(); } d_uns64 sz = t->size(e->loc); if (t->ty == Tclass && !((TypeClass*)t)->sym->isInterfaceDeclaration()) sz = ((TypeClass*)t)->sym->AggregateDeclaration::size(e->loc); d_uns64 sz_size_t = Type::tsize_t->size(e->loc); d_uns64 bitsPerWord = sz_size_t * 8; d_uns64 cntptr = (sz + sz_size_t - 1) / sz_size_t; d_uns64 cntdata = (cntptr + bitsPerWord - 1) / bitsPerWord; Array<d_uns64> data; data.setDim((size_t)cntdata); data.zero(); class PointerBitmapVisitor : public Visitor { public: PointerBitmapVisitor(Array<d_uns64>* _data, d_uns64 _sz_size_t) : data(_data), offset(0), sz_size_t(_sz_size_t) {} void setpointer(d_uns64 off) { d_uns64 ptroff = off / sz_size_t; (*data)[(size_t)(ptroff / (8 * sz_size_t))] |= 1LL << (ptroff % (8 * sz_size_t)); } virtual void visit(Type *t) { Type *tb = t->toBasetype(); if (tb != t) tb->accept(this); } virtual void visit(TypeError *t) { visit((Type *)t); } virtual void visit(TypeNext *t) { assert(0); } virtual void visit(TypeBasic *t) { if (t->ty == Tvoid) setpointer(offset); } virtual void visit(TypeVector *t) { } virtual void visit(TypeArray *t) { assert(0); } virtual void visit(TypeSArray *t) { d_uns64 arrayoff = offset; d_uns64 nextsize = t->next->size(); d_uns64 dim = t->dim->toInteger(); for (d_uns64 i = 0; i < dim; i++) { offset = arrayoff + i * nextsize; t->next->accept(this); } offset = arrayoff; } virtual void visit(TypeDArray *t) { setpointer(offset + sz_size_t); } // dynamic array is {length,ptr} virtual void visit(TypeAArray *t) { setpointer(offset); } virtual void visit(TypePointer *t) { if (t->nextOf()->ty != Tfunction) // don't mark function pointers setpointer(offset); } virtual void visit(TypeReference *t) { setpointer(offset); } virtual void visit(TypeClass *t) { setpointer(offset); } virtual void visit(TypeFunction *t) { } virtual void visit(TypeDelegate *t) { setpointer(offset); } // delegate is {context, function} virtual void visit(TypeQualified *t) { assert(0); } // assume resolved virtual void visit(TypeIdentifier *t) { assert(0); } virtual void visit(TypeInstance *t) { assert(0); } virtual void visit(TypeTypeof *t) { assert(0); } virtual void visit(TypeReturn *t) { assert(0); } virtual void visit(TypeEnum *t) { visit((Type *)t); } virtual void visit(TypeTuple *t) { visit((Type *)t); } virtual void visit(TypeSlice *t) { assert(0); } virtual void visit(TypeNull *t) { assert(0); } virtual void visit(TypeStruct *t) { d_uns64 structoff = offset; for (size_t i = 0; i < t->sym->fields.dim; i++) { VarDeclaration *v = t->sym->fields[i]; offset = structoff + v->offset; if (v->type->ty == Tclass) setpointer(offset); else v->type->accept(this); } offset = structoff; } // a "toplevel" class is treated as an instance, while TypeClass fields are treated as references void visitClass(TypeClass* t) { d_uns64 classoff = offset; // skip vtable-ptr and monitor if (t->sym->baseClass) visitClass((TypeClass*)t->sym->baseClass->type); for (size_t i = 0; i < t->sym->fields.dim; i++) { VarDeclaration *v = t->sym->fields[i]; offset = classoff + v->offset; v->type->accept(this); } offset = classoff; } Array<d_uns64>* data; d_uns64 offset; d_uns64 sz_size_t; }; PointerBitmapVisitor pbv(&data, sz_size_t); if (t->ty == Tclass) pbv.visitClass((TypeClass*)t); else t->accept(&pbv); Expressions* exps = new Expressions; exps->push(new IntegerExp(e->loc, sz, Type::tsize_t)); for (d_uns64 i = 0; i < cntdata; i++) exps->push(new IntegerExp(e->loc, data[(size_t)i], Type::tsize_t)); ArrayLiteralExp* ale = new ArrayLiteralExp(e->loc, exps); ale->type = Type::tsize_t->sarrayOf(cntdata + 1); return ale; }
FuncDeclaration *StructDeclaration::buildOpEquals(Scope *sc) { Dsymbol *eq = search_function(this, Id::eq); if (eq) { for (size_t i = 0; i <= 1; i++) { Expression *e = i == 0 ? new NullExp(loc, type->constOf()) // dummy rvalue : type->constOf()->defaultInit(); // dummy lvalue Expressions *arguments = new Expressions(); arguments->push(e); // check identity opEquals exists FuncDeclaration *fd = eq->isFuncDeclaration(); if (fd) { fd = fd->overloadResolve(loc, e, arguments, 1); if (fd && !(fd->storage_class & STCdisable)) return fd; } TemplateDeclaration *td = eq->isTemplateDeclaration(); if (td) { fd = td->deduceFunctionTemplate(sc, loc, NULL, e, arguments, 1); if (fd && !(fd->storage_class & STCdisable)) return fd; } } return NULL; } if (!needOpEquals()) return NULL; //printf("StructDeclaration::buildOpEquals() %s\n", toChars()); Parameters *parameters = new Parameters; parameters->push(new Parameter(STCin, type, Id::p, NULL)); TypeFunction *tf = new TypeFunction(parameters, Type::tbool, 0, LINKd); tf->mod = MODconst; tf = (TypeFunction *)tf->semantic(loc, sc); FuncDeclaration *fop = new FuncDeclaration(loc, 0, Id::eq, STCundefined, tf); Expression *e = NULL; /* Do memberwise compare */ //printf("\tmemberwise compare\n"); for (size_t i = 0; i < fields.dim; i++) { Dsymbol *s = fields[i]; VarDeclaration *v = s->isVarDeclaration(); assert(v && v->storage_class & STCfield); if (v->storage_class & STCref) assert(0); // what should we do with this? // this.v == s.v; EqualExp *ec = new EqualExp(TOKequal, loc, new DotVarExp(loc, new ThisExp(loc), v, 0), new DotVarExp(loc, new IdentifierExp(loc, Id::p), v, 0)); if (e) e = new AndAndExp(loc, e, ec); else e = ec; } if (!e) e = new IntegerExp(loc, 1, Type::tbool); fop->fbody = new ReturnStatement(loc, e); members->push(fop); fop->addMember(sc, this, 1); sc = sc->push(); sc->stc = 0; sc->linkage = LINKd; fop->semantic(sc); sc->pop(); //printf("-StructDeclaration::buildOpEquals() %s\n", toChars()); return fop; }
Expression *TraitsExp::semantic(Scope *sc) { #if LOGSEMANTIC printf("TraitsExp::semantic() %s\n", toChars()); #endif if (ident != Id::compiles && ident != Id::isSame) TemplateInstance::semanticTiargs(loc, sc, args, 1); size_t dim = args ? args->dim : 0; Object *o; FuncDeclaration *f; #define ISTYPE(cond) \ for (size_t i = 0; i < dim; i++) \ { Type *t = getType((Object *)args->data[i]); \ if (!t) \ goto Lfalse; \ if (!(cond)) \ goto Lfalse; \ } \ if (!dim) \ goto Lfalse; \ goto Ltrue; #define ISDSYMBOL(cond) \ for (size_t i = 0; i < dim; i++) \ { Dsymbol *s = getDsymbol((Object *)args->data[i]); \ if (!s) \ goto Lfalse; \ if (!(cond)) \ goto Lfalse; \ } \ if (!dim) \ goto Lfalse; \ goto Ltrue; if (ident == Id::isArithmetic) { ISTYPE(t->isintegral() || t->isfloating()) } else if (ident == Id::isFloating) { ISTYPE(t->isfloating()) } else if (ident == Id::isIntegral) { ISTYPE(t->isintegral()) } else if (ident == Id::isScalar) { ISTYPE(t->isscalar()) } else if (ident == Id::isUnsigned) { ISTYPE(t->isunsigned()) } else if (ident == Id::isAssociativeArray) { ISTYPE(t->toBasetype()->ty == Taarray) } else if (ident == Id::isStaticArray) { ISTYPE(t->toBasetype()->ty == Tsarray) } else if (ident == Id::isAbstractClass) { ISTYPE(t->toBasetype()->ty == Tclass && ((TypeClass *)t->toBasetype())->sym->isAbstract()) } else if (ident == Id::isFinalClass) { ISTYPE(t->toBasetype()->ty == Tclass && ((TypeClass *)t->toBasetype())->sym->storage_class & STCfinal) } else if (ident == Id::isAbstractFunction) { ISDSYMBOL((f = s->isFuncDeclaration()) != NULL && f->isAbstract()) } else if (ident == Id::isVirtualFunction) { ISDSYMBOL((f = s->isFuncDeclaration()) != NULL && f->isVirtual()) } else if (ident == Id::isFinalFunction) { ISDSYMBOL((f = s->isFuncDeclaration()) != NULL && f->isFinal()) } else if (ident == Id::hasMember || ident == Id::getMember || ident == Id::getVirtualFunctions) { if (dim != 2) goto Ldimerror; Object *o = (Object *)args->data[0]; Expression *e = isExpression((Object *)args->data[1]); if (!e) { // error("expression expected as second argument of __traits %s", ident->toChars()); goto Lfalse; } e = e->optimize(WANTvalue | WANTinterpret); if (e->op != TOKstring) { // error("string expected as second argument of __traits %s instead of %s", ident->toChars(), e->toChars()); goto Lfalse; } StringExp *se = (StringExp *)e; se = se->toUTF8(sc); if (se->sz != 1) { // error("string must be chars"); goto Lfalse; } Identifier *id = Lexer::idPool((char *)se->string); Type *t = isType(o); e = isExpression(o); Dsymbol *s = isDsymbol(o); if (t) e = new TypeDotIdExp(loc, t, id); else if (e) e = new DotIdExp(loc, e, id); else if (s) { e = new DsymbolExp(loc, s); e = new DotIdExp(loc, e, id); } else { // error("invalid first argument"); goto Lfalse; } if (ident == Id::hasMember) { /* Take any errors as meaning it wasn't found */ unsigned errors = global.errors; global.gag++; e = e->semantic(sc); global.gag--; if (errors != global.errors) { if (global.gag == 0) global.errors = errors; goto Lfalse; } else goto Ltrue; } else if (ident == Id::getMember) { e = e->semantic(sc); return e; } else if (ident == Id::getVirtualFunctions) { unsigned errors = global.errors; Expression *ex = e; e = e->semantic(sc); /* if (errors < global.errors) error("%s cannot be resolved", ex->toChars()); */ /* Create tuple of virtual function overloads of e */ //e->dump(0); Expressions *exps = new Expressions(); FuncDeclaration *f; if (e->op == TOKvar) { VarExp *ve = (VarExp *)e; f = ve->var->isFuncDeclaration(); } else if (e->op == TOKdotvar) { DotVarExp *dve = (DotVarExp *)e; f = dve->var->isFuncDeclaration(); } else f = NULL; Pvirtuals p; p.exps = exps; p.e1 = e; overloadApply(f, fpvirtuals, &p); TupleExp *tup = new TupleExp(loc, exps); return tup->semantic(sc); } else assert(0); } else if (ident == Id::classInstanceSize) { if (dim != 1) goto Ldimerror; Object *o = (Object *)args->data[0]; Dsymbol *s = getDsymbol(o); ClassDeclaration *cd; if (!s || (cd = s->isClassDeclaration()) == NULL) { // error("first argument is not a class"); goto Lfalse; } return new IntegerExp(loc, cd->structsize, Type::tsize_t); } else if (ident == Id::allMembers || ident == Id::derivedMembers) { if (dim != 1) goto Ldimerror; Object *o = (Object *)args->data[0]; Dsymbol *s = getDsymbol(o); ScopeDsymbol *sd; if (!s) { // error("argument has no members"); goto Lfalse; } if ((sd = s->isScopeDsymbol()) == NULL) { // error("%s %s has no members", s->kind(), s->toChars()); goto Lfalse; } Expressions *exps = new Expressions; while (1) { size_t dim = ScopeDsymbol::dim(sd->members); for (size_t i = 0; i < dim; i++) { Dsymbol *sm = ScopeDsymbol::getNth(sd->members, i); //printf("\t[%i] %s %s\n", i, sm->kind(), sm->toChars()); if (sm->ident) { //printf("\t%s\n", sm->ident->toChars()); char *str = sm->ident->toChars(); /* Skip if already present in exps[] */ for (size_t j = 0; j < exps->dim; j++) { StringExp *se2 = (StringExp *)exps->data[j]; if (strcmp(str, (char *)se2->string) == 0) goto Lnext; } StringExp *se = new StringExp(loc, str); exps->push(se); } Lnext: ; } ClassDeclaration *cd = sd->isClassDeclaration(); if (cd && cd->baseClass && ident == Id::allMembers) sd = cd->baseClass; // do again with base class else break; } Expression *e = new ArrayLiteralExp(loc, exps); e = e->semantic(sc); return e; } else if (ident == Id::compiles) { /* Determine if all the objects - types, expressions, or symbols - * compile without error */ if (!dim) goto Lfalse; for (size_t i = 0; i < dim; i++) { Object *o = (Object *)args->data[i]; Type *t; Expression *e; Dsymbol *s; unsigned errors = global.errors; global.gag++; t = isType(o); if (t) { t->resolve(loc, sc, &e, &t, &s); if (t) t->semantic(loc, sc); else if (e) e->semantic(sc); } else { e = isExpression(o); if (e) e->semantic(sc); } global.gag--; if (errors != global.errors) { if (global.gag == 0) global.errors = errors; goto Lfalse; } } goto Ltrue; } else if (ident == Id::isSame) { /* Determine if two symbols are the same */ if (dim != 2) goto Ldimerror; TemplateInstance::semanticTiargs(loc, sc, args, 0); Object *o1 = (Object *)args->data[0]; Object *o2 = (Object *)args->data[1]; Dsymbol *s1 = getDsymbol(o1); Dsymbol *s2 = getDsymbol(o2); #if 0 printf("o1: %p\n", o1); printf("o2: %p\n", o2); if (!s1) { Expression *ea = isExpression(o1); if (ea) printf("%s\n", ea->toChars()); Type *ta = isType(o1); if (ta) printf("%s\n", ta->toChars()); goto Lfalse; } else printf("%s %s\n", s1->kind(), s1->toChars()); #endif if (!s1 && !s2) { Expression *ea1 = isExpression(o1); Expression *ea2 = isExpression(o2); if (ea1 && ea2 && ea1->equals(ea2)) goto Ltrue; } if (!s1 || !s2) goto Lfalse; s1 = s1->toAlias(); s2 = s2->toAlias(); if (s1 == s2) goto Ltrue; else goto Lfalse; } else { // error("unrecognized trait %s", ident->toChars()); goto Lfalse; } return NULL; Lnottype: // error("%s is not a type", o->toChars()); goto Lfalse; Ldimerror: // error("wrong number of arguments %d", dim); goto Lfalse; Lfalse: return new IntegerExp(loc, 0, Type::tbool); Ltrue: return new IntegerExp(loc, 1, Type::tbool); }
Expression *semanticTraits(TraitsExp *e, Scope *sc) { #if LOGSEMANTIC printf("TraitsExp::semantic() %s\n", e->toChars()); #endif if (e->ident != Id::compiles && e->ident != Id::isSame && e->ident != Id::identifier && e->ident != Id::getProtection) { if (!TemplateInstance::semanticTiargs(e->loc, sc, e->args, 1)) return new ErrorExp(); } size_t dim = e->args ? e->args->dim : 0; if (e->ident == Id::isArithmetic) { return isTypeX(e, &isTypeArithmetic); } else if (e->ident == Id::isFloating) { return isTypeX(e, &isTypeFloating); } else if (e->ident == Id::isIntegral) { return isTypeX(e, &isTypeIntegral); } else if (e->ident == Id::isScalar) { return isTypeX(e, &isTypeScalar); } else if (e->ident == Id::isUnsigned) { return isTypeX(e, &isTypeUnsigned); } else if (e->ident == Id::isAssociativeArray) { return isTypeX(e, &isTypeAssociativeArray); } else if (e->ident == Id::isStaticArray) { return isTypeX(e, &isTypeStaticArray); } else if (e->ident == Id::isAbstractClass) { return isTypeX(e, &isTypeAbstractClass); } else if (e->ident == Id::isFinalClass) { return isTypeX(e, &isTypeFinalClass); } else if (e->ident == Id::isPOD) { if (dim != 1) goto Ldimerror; RootObject *o = (*e->args)[0]; Type *t = isType(o); StructDeclaration *sd; if (!t) { e->error("type expected as second argument of __traits %s instead of %s", e->ident->toChars(), o->toChars()); goto Lfalse; } Type *tb = t->baseElemOf(); if (tb->ty == Tstruct && ((sd = (StructDeclaration *)(((TypeStruct *)tb)->sym)) != NULL)) { if (sd->isPOD()) goto Ltrue; else goto Lfalse; } goto Ltrue; } else if (e->ident == Id::isNested) { if (dim != 1) goto Ldimerror; RootObject *o = (*e->args)[0]; Dsymbol *s = getDsymbol(o); AggregateDeclaration *a; FuncDeclaration *f; if (!s) { } else if ((a = s->isAggregateDeclaration()) != NULL) { if (a->isNested()) goto Ltrue; else goto Lfalse; } else if ((f = s->isFuncDeclaration()) != NULL) { if (f->isNested()) goto Ltrue; else goto Lfalse; } e->error("aggregate or function expected instead of '%s'", o->toChars()); goto Lfalse; } else if (e->ident == Id::isAbstractFunction) { return isFuncX(e, &isFuncAbstractFunction); } else if (e->ident == Id::isVirtualFunction) { return isFuncX(e, &isFuncVirtualFunction); } else if (e->ident == Id::isVirtualMethod) { return isFuncX(e, &isFuncVirtualMethod); } else if (e->ident == Id::isFinalFunction) { return isFuncX(e, &isFuncFinalFunction); } else if (e->ident == Id::isOverrideFunction) { return isFuncX(e, &isFuncOverrideFunction); } else if (e->ident == Id::isStaticFunction) { return isFuncX(e, &isFuncStaticFunction); } else if (e->ident == Id::isRef) { return isDeclX(e, &isDeclRef); } else if (e->ident == Id::isOut) { return isDeclX(e, &isDeclOut); } else if (e->ident == Id::isLazy) { return isDeclX(e, &isDeclLazy); } else if (e->ident == Id::identifier) { // Get identifier for symbol as a string literal /* Specify 0 for bit 0 of the flags argument to semanticTiargs() so that * a symbol should not be folded to a constant. * Bit 1 means don't convert Parameter to Type if Parameter has an identifier */ if (!TemplateInstance::semanticTiargs(e->loc, sc, e->args, 2)) return new ErrorExp(); if (dim != 1) goto Ldimerror; RootObject *o = (*e->args)[0]; Parameter *po = isParameter(o); Identifier *id; if (po) { id = po->ident; assert(id); } else { Dsymbol *s = getDsymbol(o); if (!s || !s->ident) { e->error("argument %s has no identifier", o->toChars()); goto Lfalse; } id = s->ident; } StringExp *se = new StringExp(e->loc, id->toChars()); return se->semantic(sc); } else if (e->ident == Id::getProtection) { if (dim != 1) goto Ldimerror; Scope *sc2 = sc->push(); sc2->flags = sc->flags | SCOPEnoaccesscheck; bool ok = TemplateInstance::semanticTiargs(e->loc, sc2, e->args, 1); sc2->pop(); if (!ok) return new ErrorExp(); RootObject *o = (*e->args)[0]; Dsymbol *s = getDsymbol(o); if (!s) { if (!isError(o)) e->error("argument %s has no protection", o->toChars()); goto Lfalse; } if (s->scope) s->semantic(s->scope); PROT protection = s->prot(); const char *protName = Pprotectionnames[protection]; assert(protName); StringExp *se = new StringExp(e->loc, (char *) protName); return se->semantic(sc); } else if (e->ident == Id::parent) { if (dim != 1) goto Ldimerror; RootObject *o = (*e->args)[0]; Dsymbol *s = getDsymbol(o); if (s) { if (FuncDeclaration *fd = s->isFuncDeclaration()) // Bugzilla 8943 s = fd->toAliasFunc(); if (!s->isImport()) // Bugzilla 8922 s = s->toParent(); } if (!s || s->isImport()) { e->error("argument %s has no parent", o->toChars()); goto Lfalse; } if (FuncDeclaration *f = s->isFuncDeclaration()) { if (TemplateDeclaration *td = getFuncTemplateDecl(f)) { if (td->overroot) // if not start of overloaded list of TemplateDeclaration's td = td->overroot; // then get the start Expression *ex = new TemplateExp(e->loc, td, f); ex = ex->semantic(sc); return ex; } if (FuncLiteralDeclaration *fld = f->isFuncLiteralDeclaration()) { // Directly translate to VarExp instead of FuncExp Expression *ex = new VarExp(e->loc, fld, 1); return ex->semantic(sc); } } return (new DsymbolExp(e->loc, s))->semantic(sc); } else if (e->ident == Id::hasMember || e->ident == Id::getMember || e->ident == Id::getOverloads || e->ident == Id::getVirtualMethods || e->ident == Id::getVirtualFunctions) { if (dim != 2) goto Ldimerror; RootObject *o = (*e->args)[0]; Expression *ex = isExpression((*e->args)[1]); if (!ex) { e->error("expression expected as second argument of __traits %s", e->ident->toChars()); goto Lfalse; } ex = ex->ctfeInterpret(); StringExp *se = ex->toStringExp(); if (!se || se->length() == 0) { e->error("string expected as second argument of __traits %s instead of %s", e->ident->toChars(), ex->toChars()); goto Lfalse; } se = se->toUTF8(sc); if (se->sz != 1) { e->error("string must be chars"); goto Lfalse; } Identifier *id = Lexer::idPool((char *)se->string); /* Prefer dsymbol, because it might need some runtime contexts. */ Dsymbol *sym = getDsymbol(o); if (sym) { ex = new DsymbolExp(e->loc, sym); ex = new DotIdExp(e->loc, ex, id); } else if (Type *t = isType(o)) ex = typeDotIdExp(e->loc, t, id); else if (Expression *ex2 = isExpression(o)) ex = new DotIdExp(e->loc, ex2, id); else { e->error("invalid first argument"); goto Lfalse; } if (e->ident == Id::hasMember) { if (sym) { Dsymbol *sm = sym->search(e->loc, id); if (sm) goto Ltrue; } /* Take any errors as meaning it wasn't found */ Scope *sc2 = sc->push(); ex = ex->trySemantic(sc2); sc2->pop(); if (!ex) goto Lfalse; else goto Ltrue; } else if (e->ident == Id::getMember) { ex = ex->semantic(sc); return ex; } else if (e->ident == Id::getVirtualFunctions || e->ident == Id::getVirtualMethods || e->ident == Id::getOverloads) { unsigned errors = global.errors; Expression *eorig = ex; ex = ex->semantic(sc); if (errors < global.errors) e->error("%s cannot be resolved", eorig->toChars()); /* Create tuple of functions of ex */ //ex->print(); Expressions *exps = new Expressions(); FuncDeclaration *f; if (ex->op == TOKvar) { VarExp *ve = (VarExp *)ex; f = ve->var->isFuncDeclaration(); ex = NULL; } else if (ex->op == TOKdotvar) { DotVarExp *dve = (DotVarExp *)ex; f = dve->var->isFuncDeclaration(); if (dve->e1->op == TOKdottype || dve->e1->op == TOKthis) ex = NULL; else ex = dve->e1; } else f = NULL; Ptrait p; p.exps = exps; p.e1 = ex; p.ident = e->ident; overloadApply(f, &p, &fptraits); TupleExp *tup = new TupleExp(e->loc, exps); return tup->semantic(sc); } else assert(0); } else if (e->ident == Id::classInstanceSize) { if (dim != 1) goto Ldimerror; RootObject *o = (*e->args)[0]; Dsymbol *s = getDsymbol(o); ClassDeclaration *cd; if (!s || (cd = s->isClassDeclaration()) == NULL) { e->error("first argument is not a class"); goto Lfalse; } if (cd->sizeok == SIZEOKnone) { if (cd->scope) cd->semantic(cd->scope); } if (cd->sizeok != SIZEOKdone) { e->error("%s %s is forward referenced", cd->kind(), cd->toChars()); goto Lfalse; } return new IntegerExp(e->loc, cd->structsize, Type::tsize_t); } else if (e->ident == Id::getAliasThis) { if (dim != 1) goto Ldimerror; RootObject *o = (*e->args)[0]; Dsymbol *s = getDsymbol(o); AggregateDeclaration *ad; if (!s || (ad = s->isAggregateDeclaration()) == NULL) { e->error("argument is not an aggregate type"); goto Lfalse; } Expressions *exps = new Expressions(); if (ad->aliasthis) exps->push(new StringExp(e->loc, ad->aliasthis->ident->toChars())); Expression *ex = new TupleExp(e->loc, exps); ex = ex->semantic(sc); return ex; } else if (e->ident == Id::getAttributes) { if (dim != 1) goto Ldimerror; RootObject *o = (*e->args)[0]; Dsymbol *s = getDsymbol(o); if (!s) { #if 0 Expression *x = isExpression(o); Type *t = isType(o); if (x) printf("e = %s %s\n", Token::toChars(x->op), x->toChars()); if (t) printf("t = %d %s\n", t->ty, t->toChars()); #endif e->error("first argument is not a symbol"); goto Lfalse; } //printf("getAttributes %s, attrs = %p, scope = %p\n", s->toChars(), s->userAttributes, s->userAttributesScope); UserAttributeDeclaration *udad = s->userAttribDecl; TupleExp *tup = new TupleExp(e->loc, udad ? udad->getAttributes() : new Expressions()); return tup->semantic(sc); } else if (e->ident == Id::getFunctionAttributes) { /// extract all function attributes as a tuple (const/shared/inout/pure/nothrow/etc) except UDAs. if (dim != 1) goto Ldimerror; RootObject *o = (*e->args)[0]; Dsymbol *s = getDsymbol(o); Type *t = isType(o); TypeFunction *tf = NULL; if (s) { if (FuncDeclaration *f = s->isFuncDeclaration()) t = f->type; else if (VarDeclaration *v = s->isVarDeclaration()) t = v->type; } if (t) { if (t->ty == Tfunction) tf = (TypeFunction *)t; else if (t->ty == Tdelegate) tf = (TypeFunction *)t->nextOf(); else if (t->ty == Tpointer && t->nextOf()->ty == Tfunction) tf = (TypeFunction *)t->nextOf(); } if (!tf) { e->error("first argument is not a function"); goto Lfalse; } Expressions *mods = new Expressions(); PushAttributes pa; pa.mods = mods; tf->modifiersApply(&pa, &PushAttributes::fp); tf->attributesApply(&pa, &PushAttributes::fp, TRUSTformatSystem); TupleExp *tup = new TupleExp(e->loc, mods); return tup->semantic(sc); } else if (e->ident == Id::allMembers || e->ident == Id::derivedMembers) { if (dim != 1) goto Ldimerror; RootObject *o = (*e->args)[0]; Dsymbol *s = getDsymbol(o); ScopeDsymbol *sds; if (!s) { e->error("argument has no members"); goto Lfalse; } Import *import; if ((import = s->isImport()) != NULL) { // Bugzilla 9692 sds = import->mod; } else if ((sds = s->isScopeDsymbol()) == NULL) { e->error("%s %s has no members", s->kind(), s->toChars()); goto Lfalse; } // use a struct as local function struct PushIdentsDg { static int dg(void *ctx, size_t n, Dsymbol *sm) { if (!sm) return 1; //printf("\t[%i] %s %s\n", i, sm->kind(), sm->toChars()); if (sm->ident) { if (sm->ident != Id::ctor && sm->ident != Id::dtor && sm->ident != Id::_postblit && memcmp(sm->ident->string, "__", 2) == 0) { return 0; } //printf("\t%s\n", sm->ident->toChars()); Identifiers *idents = (Identifiers *)ctx; /* Skip if already present in idents[] */ for (size_t j = 0; j < idents->dim; j++) { Identifier *id = (*idents)[j]; if (id == sm->ident) return 0; #ifdef DEBUG // Avoid using strcmp in the first place due to the performance impact in an O(N^2) loop. assert(strcmp(id->toChars(), sm->ident->toChars()) != 0); #endif } idents->push(sm->ident); } else { EnumDeclaration *ed = sm->isEnumDeclaration(); if (ed) { ScopeDsymbol::foreach(NULL, ed->members, &PushIdentsDg::dg, (Identifiers *)ctx); } } return 0; } }; Identifiers *idents = new Identifiers; ScopeDsymbol::foreach(sc, sds->members, &PushIdentsDg::dg, idents); ClassDeclaration *cd = sds->isClassDeclaration(); if (cd && e->ident == Id::allMembers) { struct PushBaseMembers { static void dg(ClassDeclaration *cd, Identifiers *idents) { for (size_t i = 0; i < cd->baseclasses->dim; i++) { ClassDeclaration *cb = (*cd->baseclasses)[i]->base; ScopeDsymbol::foreach(NULL, cb->members, &PushIdentsDg::dg, idents); if (cb->baseclasses->dim) dg(cb, idents); } } }; PushBaseMembers::dg(cd, idents); } // Turn Identifiers into StringExps reusing the allocated array assert(sizeof(Expressions) == sizeof(Identifiers)); Expressions *exps = (Expressions *)idents; for (size_t i = 0; i < idents->dim; i++) { Identifier *id = (*idents)[i]; StringExp *se = new StringExp(e->loc, id->toChars()); (*exps)[i] = se; } /* Making this a tuple is more flexible, as it can be statically unrolled. * To make an array literal, enclose __traits in [ ]: * [ __traits(allMembers, ...) ] */ Expression *ex = new TupleExp(e->loc, exps); ex = ex->semantic(sc); return ex; } else if (e->ident == Id::compiles) { /* Determine if all the objects - types, expressions, or symbols - * compile without error */ if (!dim) goto Lfalse; for (size_t i = 0; i < dim; i++) { unsigned errors = global.startGagging(); unsigned oldspec = global.speculativeGag; global.speculativeGag = global.gag; Scope *sc2 = sc->push(); sc2->speculative = true; sc2->flags = sc->flags & ~SCOPEctfe | SCOPEcompile; bool err = false; RootObject *o = (*e->args)[i]; Type *t = isType(o); Expression *ex = t ? t->toExpression() : isExpression(o); if (!ex && t) { Dsymbol *s; t->resolve(e->loc, sc2, &ex, &t, &s); if (t) { t->semantic(e->loc, sc2); if (t->ty == Terror) err = true; } else if (s && s->errors) err = true; } if (ex) { ex = ex->semantic(sc2); ex = resolvePropertiesOnly(sc2, ex); ex = ex->optimize(WANTvalue); ex = checkGC(sc2, ex); if (ex->op == TOKerror) err = true; } sc2->pop(); global.speculativeGag = oldspec; if (global.endGagging(errors) || err) { goto Lfalse; } } goto Ltrue; } else if (e->ident == Id::isSame) { /* Determine if two symbols are the same */ if (dim != 2) goto Ldimerror; if (!TemplateInstance::semanticTiargs(e->loc, sc, e->args, 0)) return new ErrorExp(); RootObject *o1 = (*e->args)[0]; RootObject *o2 = (*e->args)[1]; Dsymbol *s1 = getDsymbol(o1); Dsymbol *s2 = getDsymbol(o2); //printf("isSame: %s, %s\n", o1->toChars(), o2->toChars()); #if 0 printf("o1: %p\n", o1); printf("o2: %p\n", o2); if (!s1) { Expression *ea = isExpression(o1); if (ea) printf("%s\n", ea->toChars()); Type *ta = isType(o1); if (ta) printf("%s\n", ta->toChars()); goto Lfalse; } else printf("%s %s\n", s1->kind(), s1->toChars()); #endif if (!s1 && !s2) { Expression *ea1 = isExpression(o1); Expression *ea2 = isExpression(o2); if (ea1 && ea2) { if (ea1->equals(ea2)) goto Ltrue; } } if (!s1 || !s2) goto Lfalse; s1 = s1->toAlias(); s2 = s2->toAlias(); if (s1->isFuncAliasDeclaration()) s1 = ((FuncAliasDeclaration *)s1)->toAliasFunc(); if (s2->isFuncAliasDeclaration()) s2 = ((FuncAliasDeclaration *)s2)->toAliasFunc(); if (s1 == s2) goto Ltrue; else goto Lfalse; } else if (e->ident == Id::getUnitTests) { if (dim != 1) goto Ldimerror; RootObject *o = (*e->args)[0]; Dsymbol *s = getDsymbol(o); if (!s) { e->error("argument %s to __traits(getUnitTests) must be a module or aggregate", o->toChars()); goto Lfalse; } Import *imp = s->isImport(); if (imp) // Bugzilla 10990 s = imp->mod; ScopeDsymbol* scope = s->isScopeDsymbol(); if (!scope) { e->error("argument %s to __traits(getUnitTests) must be a module or aggregate, not a %s", s->toChars(), s->kind()); goto Lfalse; } Expressions* unitTests = new Expressions(); Dsymbols* symbols = scope->members; if (global.params.useUnitTests && symbols) { // Should actually be a set AA* uniqueUnitTests = NULL; collectUnitTests(symbols, uniqueUnitTests, unitTests); } TupleExp *tup = new TupleExp(e->loc, unitTests); return tup->semantic(sc); } else if(e->ident == Id::getVirtualIndex) { if (dim != 1) goto Ldimerror; RootObject *o = (*e->args)[0]; Dsymbol *s = getDsymbol(o); FuncDeclaration *fd; if (!s || (fd = s->isFuncDeclaration()) == NULL) { e->error("first argument to __traits(getVirtualIndex) must be a function"); goto Lfalse; } fd = fd->toAliasFunc(); // Neccessary to support multiple overloads. return new IntegerExp(e->loc, fd->vtblIndex, Type::tptrdiff_t); } else { if (const char *sub = (const char *)speller(e->ident->toChars(), &trait_search_fp, NULL, idchars)) e->error("unrecognized trait '%s', did you mean '%s'?", e->ident->toChars(), sub); else e->error("unrecognized trait '%s'", e->ident->toChars()); goto Lfalse; } return NULL; Ldimerror: e->error("wrong number of arguments %d", (int)dim); goto Lfalse; Lfalse: return new IntegerExp(e->loc, 0, Type::tbool); Ltrue: return new IntegerExp(e->loc, 1, Type::tbool); }
void StructDeclaration::semantic(Scope *sc) { Scope *sc2; //printf("+StructDeclaration::semantic(this=%p, '%s', sizeok = %d)\n", this, toChars(), sizeok); //static int count; if (++count == 20) halt(); assert(type); if (!members) // if forward reference return; if (symtab) { if (sizeok == 1 || !scope) { //printf("already completed\n"); scope = NULL; return; // semantic() already completed } } else symtab = new DsymbolTable(); Scope *scx = NULL; if (scope) { sc = scope; scx = scope; // save so we don't make redundant copies scope = NULL; } unsigned dprogress_save = Module::dprogress; #ifdef IN_GCC methods.setDim(0); #endif parent = sc->parent; type = type->semantic(loc, sc); #if STRUCTTHISREF handle = type; #else handle = type->pointerTo(); #endif structalign = sc->structalign; protection = sc->protection; if (sc->stc & STCdeprecated) isdeprecated = 1; assert(!isAnonymous()); if (sc->stc & STCabstract) error("structs, unions cannot be abstract"); #if DMDV2 if (storage_class & STCimmutable) type = type->invariantOf(); else if (storage_class & STCconst) type = type->constOf(); #endif #if IN_GCC if (attributes) attributes->append(sc->attributes); else attributes = sc->attributes; #endif if (sizeok == 0) // if not already done the addMember step { for (size_t i = 0; i < members->dim; i++) { Dsymbol *s = (Dsymbol *)members->data[i]; //printf("adding member '%s' to '%s'\n", s->toChars(), this->toChars()); s->addMember(sc, this, 1); } } sizeok = 0; sc2 = sc->push(this); sc2->stc = 0; #if IN_GCC sc2->attributes = NULL; #endif sc2->parent = this; if (isUnionDeclaration()) sc2->inunion = 1; sc2->protection = PROTpublic; sc2->explicitProtection = 0; size_t members_dim = members->dim; /* Set scope so if there are forward references, we still might be able to * resolve individual members like enums. */ for (size_t i = 0; i < members_dim; i++) { Dsymbol *s = (Dsymbol *)members->data[i]; /* There are problems doing this in the general case because * Scope keeps track of things like 'offset' */ if (s->isEnumDeclaration() || (s->isAggregateDeclaration() && s->ident)) { //printf("setScope %s %s\n", s->kind(), s->toChars()); s->setScope(sc2); } } for (size_t i = 0; i < members_dim; i++) { Dsymbol *s = (Dsymbol *)members->data[i]; s->semantic(sc2); #if 0 if (sizeok == 2) { //printf("forward reference\n"); break; } #endif } #if DMDV1 /* This doesn't work for DMDV2 because (ref S) and (S) parameter * lists will overload the same. */ /* The TypeInfo_Struct is expecting an opEquals and opCmp with * a parameter that is a pointer to the struct. But if there * isn't one, but is an opEquals or opCmp with a value, write * another that is a shell around the value: * int opCmp(struct *p) { return opCmp(*p); } */ TypeFunction *tfeqptr; { Parameters *arguments = new Parameters; Parameter *arg = new Parameter(STCin, handle, Id::p, NULL); arguments->push(arg); tfeqptr = new TypeFunction(arguments, Type::tint32, 0, LINKd); tfeqptr = (TypeFunction *)tfeqptr->semantic(0, sc); } TypeFunction *tfeq; { Parameters *arguments = new Parameters; Parameter *arg = new Parameter(STCin, type, NULL, NULL); arguments->push(arg); tfeq = new TypeFunction(arguments, Type::tint32, 0, LINKd); tfeq = (TypeFunction *)tfeq->semantic(0, sc); } Identifier *id = Id::eq; for (int i = 0; i < 2; i++) { Dsymbol *s = search_function(this, id); FuncDeclaration *fdx = s ? s->isFuncDeclaration() : NULL; if (fdx) { FuncDeclaration *fd = fdx->overloadExactMatch(tfeqptr); if (!fd) { fd = fdx->overloadExactMatch(tfeq); if (fd) { // Create the thunk, fdptr FuncDeclaration *fdptr = new FuncDeclaration(loc, loc, fdx->ident, STCundefined, tfeqptr); Expression *e = new IdentifierExp(loc, Id::p); e = new PtrExp(loc, e); Expressions *args = new Expressions(); args->push(e); e = new IdentifierExp(loc, id); e = new CallExp(loc, e, args); fdptr->fbody = new ReturnStatement(loc, e); ScopeDsymbol *s = fdx->parent->isScopeDsymbol(); assert(s); s->members->push(fdptr); fdptr->addMember(sc, s, 1); fdptr->semantic(sc2); } } } id = Id::cmp; } #endif #if DMDV2 /* Try to find the opEquals function. Build it if necessary. */ TypeFunction *tfeqptr; { // bool opEquals(const T*) const; Parameters *parameters = new Parameters; #if STRUCTTHISREF // bool opEquals(ref const T) const; Parameter *param = new Parameter(STCref, type->constOf(), NULL, NULL); #else // bool opEquals(const T*) const; Parameter *param = new Parameter(STCin, type->pointerTo(), NULL, NULL); #endif parameters->push(param); tfeqptr = new TypeFunction(parameters, Type::tbool, 0, LINKd); tfeqptr->mod = MODconst; tfeqptr = (TypeFunction *)tfeqptr->semantic(0, sc2); Dsymbol *s = search_function(this, Id::eq); FuncDeclaration *fdx = s ? s->isFuncDeclaration() : NULL; if (fdx) { eq = fdx->overloadExactMatch(tfeqptr); if (!eq) fdx->error("type signature should be %s not %s", tfeqptr->toChars(), fdx->type->toChars()); } TemplateDeclaration *td = s ? s->isTemplateDeclaration() : NULL; // BUG: should also check that td is a function template, not just a template if (!eq && !td) eq = buildOpEquals(sc2); } dtor = buildDtor(sc2); postblit = buildPostBlit(sc2); cpctor = buildCpCtor(sc2); buildOpAssign(sc2); #endif sc2->pop(); if (sizeok == 2) { // semantic() failed because of forward references. // Unwind what we did, and defer it for later fields.setDim(0); structsize = 0; alignsize = 0; structalign = 0; scope = scx ? scx : new Scope(*sc); scope->setNoFree(); scope->module->addDeferredSemantic(this); Module::dprogress = dprogress_save; //printf("\tdeferring %s\n", toChars()); return; } // 0 sized struct's are set to 1 byte if (structsize == 0) { structsize = 1; alignsize = 1; } // Round struct size up to next alignsize boundary. // This will ensure that arrays of structs will get their internals // aligned properly. structsize = (structsize + alignsize - 1) & ~(alignsize - 1); sizeok = 1; Module::dprogress++; //printf("-StructDeclaration::semantic(this=%p, '%s')\n", this, toChars()); // Determine if struct is all zeros or not zeroInit = 1; for (size_t i = 0; i < fields.dim; i++) { Dsymbol *s = (Dsymbol *)fields.data[i]; VarDeclaration *vd = s->isVarDeclaration(); if (vd && !vd->isDataseg()) { if (vd->init) { // Should examine init to see if it is really all 0's zeroInit = 0; break; } else { if (!vd->type->isZeroInit(loc)) { zeroInit = 0; break; } } } } /* Look for special member functions. */ #if DMDV2 ctor = search(0, Id::ctor, 0); #endif inv = (InvariantDeclaration *)search(0, Id::classInvariant, 0); aggNew = (NewDeclaration *)search(0, Id::classNew, 0); aggDelete = (DeleteDeclaration *)search(0, Id::classDelete, 0); if (sc->func) { semantic2(sc); semantic3(sc); } }
void PragmaDeclaration::semantic(Scope *sc) { // Should be merged with PragmaStatement Scope sc_save; //printf("\tPragmaDeclaration::semantic '%s'\n",toChars()); if (ident == Id::msg) { if (args) { for (size_t i = 0; i < args->dim; i++) { Expression *e = args->tdata()[i]; e = e->semantic(sc); e = e->optimize(WANTvalue | WANTinterpret); StringExp *se = e->toString(); if (se) { fprintf(stdmsg, "%.*s", (int)se->len, (char *)se->string); } else fprintf(stdmsg, "%s", e->toChars()); } fprintf(stdmsg, "\n"); } goto Lnodecl; } else if (ident == Id::lib) { if (!args || args->dim != 1) error("string expected for library name"); else { Expression *e = args->tdata()[0]; e = e->semantic(sc); e = e->optimize(WANTvalue | WANTinterpret); args->tdata()[0] = e; if (e->op == TOKerror) goto Lnodecl; StringExp *se = e->toString(); if (!se) error("string expected for library name, not '%s'", e->toChars()); else if (global.params.verbose) { char *name = (char *)mem.malloc(se->len + 1); memcpy(name, se->string, se->len); name[se->len] = 0; printf("library %s\n", name); mem.free(name); } } goto Lnodecl; } #if IN_GCC else if (ident == Id::GNU_asm) { if (! args || args->dim != 2) error("identifier and string expected for asm name"); else { Expression *e; Declaration *d = NULL; StringExp *s = NULL; e = (Expression *)args->data[0]; e = e->semantic(sc); if (e->op == TOKvar) { d = ((VarExp *)e)->var; if (! d->isFuncDeclaration() && ! d->isVarDeclaration()) d = NULL; } if (!d) error("first argument of GNU_asm must be a function or variable declaration"); e = args->tdata()[1]; e = e->semantic(sc); e = e->optimize(WANTvalue); e = e->toString(); if (e && ((StringExp *)e)->sz == 1) s = ((StringExp *)e); else error("second argument of GNU_asm must be a character string"); if (d && s) d->c_ident = Lexer::idPool((char*) s->string); } goto Lnodecl; } else if (ident == Id::GNU_attribute || ident == Id::_GNU_attribute) { if (!global.params.useDeprecated && ident == Id::_GNU_attribute) error("pragma(GNU_attribute) is deprecated, use pragma(attribute) instead"); sc_save = *sc; // An empty list is allowed. if (args && args->dim) { Expressions * a; if (sc->attributes) a = (Expressions *) sc->attributes->copy(); else a = new Expressions; sc->attributes = a; for (unsigned i = 0; i < args->dim; i++) { Expression * e = args->tdata()[i]; //e = e->semantic(sc); if (e->op == TOKidentifier) ; // ok else if (e->op == TOKcall) { CallExp * c = (CallExp *) e; if (c->e1->op != TOKidentifier) error("identifier or call expression expected for attribute"); if (c->arguments) for (int unsigned ai = 0; ai < c->arguments->dim; ai++) { Expression * ea = c->arguments->tdata()[ai]; ea = ea->semantic(sc); ea = ea->optimize(WANTvalue | WANTinterpret); c->arguments->tdata()[ai] = ea; } } else { error("identifier or call expression expected for attribute"); continue; } a->push(e); } } } else if (ident == Id::GNU_set_attribute || ident == Id::_GNU_set_attribute) { if (!global.params.useDeprecated && ident == Id::_GNU_set_attribute) error("pragma(GNU_set_attribute) is deprecated, use pragma(set_attribute) instead"); if (!args || args->dim < 1) error("declaration expected for setting attributes"); else { Expressions ** p_attributes = NULL; // list of existing attributes { Expression * e = args->tdata()[0]; e = e->semantic(sc); if (e->op == TOKvar) { Declaration * d = ((VarExp *)e)->var; if (d->isFuncDeclaration() || d->isVarDeclaration()) p_attributes = & d->attributes; } else if (e->op == TOKtype) { Type * t = ((TypeExp *)e)->type; if (t->ty == Ttypedef) p_attributes = & ((TypeTypedef *) t)->sym->attributes; else if (t->ty == Tenum) p_attributes = & ((TypeEnum *) t)->sym->attributes; else if (t->ty == Tstruct) p_attributes = & ((TypeStruct *) t)->sym->attributes; else if (t->ty == Tclass) p_attributes = & ((TypeClass *) t)->sym->attributes; } if (p_attributes == NULL) error("first argument must be a function, variable, or type declaration"); } Expressions * new_attrs = new Expressions; for (unsigned i = 1; i < args->dim; i++) { Expression * e = args->tdata()[i]; //e = e->semantic(sc); if (e->op == TOKidentifier) ; // ok else if (e->op == TOKcall) { CallExp * c = (CallExp *) e; if (c->e1->op != TOKidentifier) error("identifier or call expression expected for attribute"); if (c->arguments) for (int unsigned ai = 0; ai < c->arguments->dim; ai++) { Expression * ea = c->arguments->tdata()[ai]; ea = ea->semantic(sc); ea = ea->optimize(WANTvalue | WANTinterpret); c->arguments->tdata()[ai] = ea; } } else { error("identifier or call expression expected for attribute"); continue; } new_attrs->push(e); } if (p_attributes) { if (*p_attributes) { *p_attributes = (Expressions *) (*p_attributes)->copy(); (*p_attributes)->append(new_attrs); } else *p_attributes = new_attrs; } } goto Lnodecl; } #endif #if DMDV2 else if (ident == Id::startaddress) { if (!args || args->dim != 1) error("function name expected for start address"); else { Expression *e = (Expression *)args->data[0]; e = e->semantic(sc); e = e->optimize(WANTvalue | WANTinterpret); args->data[0] = (void *)e; Dsymbol *sa = getDsymbol(e); if (!sa || !sa->isFuncDeclaration()) error("function name expected for start address, not '%s'", e->toChars()); } goto Lnodecl; } #endif #if TARGET_NET else if (ident == Lexer::idPool("assembly")) { } #endif // TARGET_NET else if (global.params.ignoreUnsupportedPragmas) { if (global.params.verbose) { /* Print unrecognized pragmas */ printf("pragma %s", ident->toChars()); if (args) { for (size_t i = 0; i < args->dim; i++) { Expression *e = (Expression *)args->data[i]; e = e->semantic(sc); e = e->optimize(WANTvalue | WANTinterpret); if (i == 0) printf(" ("); else printf(","); printf("%s", e->toChars()); } if (args->dim) printf(")"); } printf("\n"); } goto Lnodecl; } else error("unrecognized pragma(%s)", ident->toChars()); if (decl) { for (unsigned i = 0; i < decl->dim; i++) { Dsymbol *s = decl->tdata()[i]; s->semantic(sc); } } #if IN_GCC if (decl) if (ident == Id::GNU_attribute || ident == Id::_GNU_attribute) *sc = sc_save; #endif return; Lnodecl: if (decl) error("pragma is missing closing ';'"); }
void StructDeclaration::semantic(Scope *sc) { Scope *sc2; //printf("+StructDeclaration::semantic(this=%p, %s '%s', sizeok = %d)\n", this, parent->toChars(), toChars(), sizeok); //static int count; if (++count == 20) halt(); assert(type); if (!members) // if opaque declaration { return; } if (symtab) { if (sizeok == SIZEOKdone || !scope) { //printf("already completed\n"); scope = NULL; return; // semantic() already completed } } else symtab = new DsymbolTable(); Scope *scx = NULL; if (scope) { sc = scope; scx = scope; // save so we don't make redundant copies scope = NULL; } int errors = global.errors; unsigned dprogress_save = Module::dprogress; parent = sc->parent; type = type->semantic(loc, sc); handle = type; protection = sc->protection; alignment = sc->structalign; storage_class |= sc->stc; if (sc->stc & STCdeprecated) isdeprecated = true; assert(!isAnonymous()); if (sc->stc & STCabstract) error("structs, unions cannot be abstract"); userAttributes = sc->userAttributes; if (sizeok == SIZEOKnone) // if not already done the addMember step { for (size_t i = 0; i < members->dim; i++) { Dsymbol *s = (*members)[i]; //printf("adding member '%s' to '%s'\n", s->toChars(), this->toChars()); s->addMember(sc, this, 1); } } sizeok = SIZEOKnone; sc2 = sc->push(this); sc2->stc &= STCsafe | STCtrusted | STCsystem; sc2->parent = this; if (isUnionDeclaration()) sc2->inunion = 1; sc2->protection = PROTpublic; sc2->explicitProtection = 0; sc2->structalign = STRUCTALIGN_DEFAULT; sc2->userAttributes = NULL; /* Set scope so if there are forward references, we still might be able to * resolve individual members like enums. */ for (size_t i = 0; i < members->dim; i++) { Dsymbol *s = (*members)[i]; /* There are problems doing this in the general case because * Scope keeps track of things like 'offset' */ //if (s->isEnumDeclaration() || (s->isAggregateDeclaration() && s->ident)) { //printf("struct: setScope %s %s\n", s->kind(), s->toChars()); s->setScope(sc2); } } for (size_t i = 0; i < members->dim; i++) { Dsymbol *s = (*members)[i]; /* If this is the last member, see if we can finish setting the size. * This could be much better - finish setting the size after the last * field was processed. The problem is the chicken-and-egg determination * of when that is. See Bugzilla 7426 for more info. */ if (i + 1 == members->dim) { if (sizeok == SIZEOKnone && s->isAliasDeclaration()) finalizeSize(sc2); } // Ungag errors when not speculative unsigned oldgag = global.gag; if (global.isSpeculativeGagging() && !isSpeculative()) { global.gag = 0; } s->semantic(sc2); global.gag = oldgag; } finalizeSize(sc2); if (sizeok == SIZEOKfwd) { // semantic() failed because of forward references. // Unwind what we did, and defer it for later for (size_t i = 0; i < fields.dim; i++) { Dsymbol *s = fields[i]; VarDeclaration *vd = s->isVarDeclaration(); if (vd) vd->offset = 0; } fields.setDim(0); structsize = 0; alignsize = 0; // structalign = 0; scope = scx ? scx : new Scope(*sc); scope->setNoFree(); scope->module->addDeferredSemantic(this); Module::dprogress = dprogress_save; //printf("\tdeferring %s\n", toChars()); return; } Module::dprogress++; //printf("-StructDeclaration::semantic(this=%p, '%s')\n", this, toChars()); // Determine if struct is all zeros or not zeroInit = 1; for (size_t i = 0; i < fields.dim; i++) { Dsymbol *s = fields[i]; VarDeclaration *vd = s->isVarDeclaration(); if (vd && !vd->isDataseg()) { if (vd->init) { // Should examine init to see if it is really all 0's zeroInit = 0; break; } else { if (!vd->type->isZeroInit(loc)) { zeroInit = 0; break; } } } } #if DMDV1 /* This doesn't work for DMDV2 because (ref S) and (S) parameter * lists will overload the same. */ /* The TypeInfo_Struct is expecting an opEquals and opCmp with * a parameter that is a pointer to the struct. But if there * isn't one, but is an opEquals or opCmp with a value, write * another that is a shell around the value: * int opCmp(struct *p) { return opCmp(*p); } */ TypeFunction *tfeqptr; { Parameters *arguments = new Parameters; Parameter *arg = new Parameter(STCin, handle, Id::p, NULL); arguments->push(arg); tfeqptr = new TypeFunction(arguments, Type::tint32, 0, LINKd); tfeqptr = (TypeFunction *)tfeqptr->semantic(Loc(), sc); } TypeFunction *tfeq; { Parameters *arguments = new Parameters; Parameter *arg = new Parameter(STCin, type, NULL, NULL); arguments->push(arg); tfeq = new TypeFunction(arguments, Type::tint32, 0, LINKd); tfeq = (TypeFunction *)tfeq->semantic(Loc(), sc); } Identifier *id = Id::eq; for (int i = 0; i < 2; i++) { Dsymbol *s = search_function(this, id); FuncDeclaration *fdx = s ? s->isFuncDeclaration() : NULL; if (fdx) { FuncDeclaration *fd = fdx->overloadExactMatch(tfeqptr); if (!fd) { fd = fdx->overloadExactMatch(tfeq); if (fd) { // Create the thunk, fdptr FuncDeclaration *fdptr = new FuncDeclaration(loc, loc, fdx->ident, STCundefined, tfeqptr); Expression *e = new IdentifierExp(loc, Id::p); e = new PtrExp(loc, e); Expressions *args = new Expressions(); args->push(e); e = new IdentifierExp(loc, id); e = new CallExp(loc, e, args); fdptr->fbody = new ReturnStatement(loc, e); ScopeDsymbol *s = fdx->parent->isScopeDsymbol(); assert(s); s->members->push(fdptr); fdptr->addMember(sc, s, 1); fdptr->semantic(sc2); } } } id = Id::cmp; } #endif #if DMDV2 dtor = buildDtor(sc2); postblit = buildPostBlit(sc2); cpctor = buildCpCtor(sc2); buildOpAssign(sc2); buildOpEquals(sc2); #endif inv = buildInv(sc2); sc2->pop(); /* Look for special member functions. */ #if DMDV2 ctor = search(Loc(), Id::ctor, 0); #endif aggNew = (NewDeclaration *)search(Loc(), Id::classNew, 0); aggDelete = (DeleteDeclaration *)search(Loc(), Id::classDelete, 0); TypeTuple *tup = type->toArgTypes(); size_t dim = tup->arguments->dim; if (dim >= 1) { assert(dim <= 2); arg1type = (*tup->arguments)[0]->type; if (dim == 2) arg2type = (*tup->arguments)[1]->type; } if (sc->func) { semantic2(sc); semantic3(sc); } if (global.errors != errors) { // The type is no good. type = Type::terror; } if (deferred && !global.gag) { deferred->semantic2(sc); deferred->semantic3(sc); } #if 0 if (type->ty == Tstruct && ((TypeStruct *)type)->sym != this) { printf("this = %p %s\n", this, this->toChars()); printf("type = %d sym = %p\n", type->ty, ((TypeStruct *)type)->sym); } #endif assert(type->ty != Tstruct || ((TypeStruct *)type)->sym == this); }
void StructDeclaration::semantic(Scope *sc) { Scope *sc2; //printf("+StructDeclaration::semantic(this=%p, %s '%s', sizeok = %d)\n", this, parent->toChars(), toChars(), sizeok); //static int count; if (++count == 20) halt(); assert(type); if (!members) // if forward reference return; if (symtab) { if (sizeok == 1 || !scope) { //printf("already completed\n"); scope = NULL; return; // semantic() already completed } } else symtab = new DsymbolTable(); Scope *scx = NULL; if (scope) { sc = scope; scx = scope; // save so we don't make redundant copies scope = NULL; } int errors = global.gaggedErrors; unsigned dprogress_save = Module::dprogress; parent = sc->parent; type = type->semantic(loc, sc); #if STRUCTTHISREF handle = type; #else handle = type->pointerTo(); #endif structalign = sc->structalign; protection = sc->protection; storage_class |= sc->stc; if (sc->stc & STCdeprecated) isdeprecated = true; assert(!isAnonymous()); if (sc->stc & STCabstract) error("structs, unions cannot be abstract"); #if DMDV2 if (storage_class & STCimmutable) type = type->addMod(MODimmutable); if (storage_class & STCconst) type = type->addMod(MODconst); if (storage_class & STCshared) type = type->addMod(MODshared); #endif if (sizeok == 0) // if not already done the addMember step { int hasfunctions = 0; for (size_t i = 0; i < members->dim; i++) { Dsymbol *s = members->tdata()[i]; //printf("adding member '%s' to '%s'\n", s->toChars(), this->toChars()); s->addMember(sc, this, 1); if (s->isFuncDeclaration()) hasfunctions = 1; } // If nested struct, add in hidden 'this' pointer to outer scope if (hasfunctions && !(storage_class & STCstatic)) { Dsymbol *s = toParent2(); if (s) { AggregateDeclaration *ad = s->isAggregateDeclaration(); FuncDeclaration *fd = s->isFuncDeclaration(); TemplateInstance *ti; if (ad && (ti = ad->parent->isTemplateInstance()) != NULL && ti->isnested || fd) { isnested = 1; Type *t; if (ad) t = ad->handle; else if (fd) { AggregateDeclaration *ad = fd->isMember2(); if (ad) t = ad->handle; else t = Type::tvoidptr; } else assert(0); if (t->ty == Tstruct) t = Type::tvoidptr; // t should not be a ref type assert(!vthis); vthis = new ThisDeclaration(loc, t); //vthis->storage_class |= STCref; members->push(vthis); } } } } sizeok = 0; sc2 = sc->push(this); sc2->stc &= STCsafe | STCtrusted | STCsystem; sc2->parent = this; if (isUnionDeclaration()) sc2->inunion = 1; sc2->protection = PROTpublic; sc2->explicitProtection = 0; size_t members_dim = members->dim; /* Set scope so if there are forward references, we still might be able to * resolve individual members like enums. */ for (size_t i = 0; i < members_dim; i++) { Dsymbol *s = (*members)[i]; /* There are problems doing this in the general case because * Scope keeps track of things like 'offset' */ if (s->isEnumDeclaration() || (s->isAggregateDeclaration() && s->ident)) { //printf("setScope %s %s\n", s->kind(), s->toChars()); s->setScope(sc2); } } for (size_t i = 0; i < members_dim; i++) { Dsymbol *s = (*members)[i]; /* If this is the last member, see if we can finish setting the size. * This could be much better - finish setting the size after the last * field was processed. The problem is the chicken-and-egg determination * of when that is. See Bugzilla 7426 for more info. */ if (i + 1 == members_dim) { if (sizeok == 0 && s->isAliasDeclaration()) finalizeSize(); } // Ungag errors when not speculative unsigned oldgag = global.gag; if (global.isSpeculativeGagging() && !isSpeculative()) global.gag = 0; s->semantic(sc2); global.gag = oldgag; } if (sizeok == 2) { // semantic() failed because of forward references. // Unwind what we did, and defer it for later fields.setDim(0); structsize = 0; alignsize = 0; structalign = 0; scope = scx ? scx : new Scope(*sc); scope->setNoFree(); scope->module->addDeferredSemantic(this); Module::dprogress = dprogress_save; //printf("\tdeferring %s\n", toChars()); return; } finalizeSize(); Module::dprogress++; //printf("-StructDeclaration::semantic(this=%p, '%s')\n", this, toChars()); // Determine if struct is all zeros or not zeroInit = 1; for (size_t i = 0; i < fields.dim; i++) { Dsymbol *s = fields.tdata()[i]; VarDeclaration *vd = s->isVarDeclaration(); if (vd && !vd->isDataseg()) { if (vd->init) { // Should examine init to see if it is really all 0's zeroInit = 0; break; } else { if (!vd->type->isZeroInit(loc)) { zeroInit = 0; break; } } } } #if DMDV1 /* This doesn't work for DMDV2 because (ref S) and (S) parameter * lists will overload the same. */ /* The TypeInfo_Struct is expecting an opEquals and opCmp with * a parameter that is a pointer to the struct. But if there * isn't one, but is an opEquals or opCmp with a value, write * another that is a shell around the value: * int opCmp(struct *p) { return opCmp(*p); } */ TypeFunction *tfeqptr; { Parameters *arguments = new Parameters; Parameter *arg = new Parameter(STCin, handle, Id::p, NULL); arguments->push(arg); tfeqptr = new TypeFunction(arguments, Type::tint32, 0, LINKd); tfeqptr = (TypeFunction *)tfeqptr->semantic(0, sc); } TypeFunction *tfeq; { Parameters *arguments = new Parameters; Parameter *arg = new Parameter(STCin, type, NULL, NULL); arguments->push(arg); tfeq = new TypeFunction(arguments, Type::tint32, 0, LINKd); tfeq = (TypeFunction *)tfeq->semantic(0, sc); } Identifier *id = Id::eq; for (int i = 0; i < 2; i++) { Dsymbol *s = search_function(this, id); FuncDeclaration *fdx = s ? s->isFuncDeclaration() : NULL; if (fdx) { FuncDeclaration *fd = fdx->overloadExactMatch(tfeqptr); if (!fd) { fd = fdx->overloadExactMatch(tfeq); if (fd) { // Create the thunk, fdptr FuncDeclaration *fdptr = new FuncDeclaration(loc, loc, fdx->ident, STCundefined, tfeqptr); Expression *e = new IdentifierExp(loc, Id::p); e = new PtrExp(loc, e); Expressions *args = new Expressions(); args->push(e); e = new IdentifierExp(loc, id); e = new CallExp(loc, e, args); fdptr->fbody = new ReturnStatement(loc, e); ScopeDsymbol *s = fdx->parent->isScopeDsymbol(); assert(s); s->members->push(fdptr); fdptr->addMember(sc, s, 1); fdptr->semantic(sc2); } } } id = Id::cmp; } #endif #if DMDV2 dtor = buildDtor(sc2); postblit = buildPostBlit(sc2); cpctor = buildCpCtor(sc2); buildOpAssign(sc2); hasIdentityEquals = (buildOpEquals(sc2) != NULL); xeq = buildXopEquals(sc2); #endif sc2->pop(); /* Look for special member functions. */ #if DMDV2 ctor = search(0, Id::ctor, 0); #endif inv = (InvariantDeclaration *)search(0, Id::classInvariant, 0); aggNew = (NewDeclaration *)search(0, Id::classNew, 0); aggDelete = (DeleteDeclaration *)search(0, Id::classDelete, 0); if (sc->func) { semantic2(sc); semantic3(sc); } if (global.gag && global.gaggedErrors != errors) { // The type is no good, yet the error messages were gagged. type = Type::terror; } if (deferred && !global.gag) { deferred->semantic2(sc); deferred->semantic3(sc); } }