コード例 #1
0
void MaximumCompositeLikelihood::UpdateTrainingLabeling(
	const std::vector<labeled_instance_type>& training_update) {
	assert(fg_orig_index.size() == comp_training_data.size());

	// For all decomposed components
	for (unsigned int cn = 0; cn < fg_orig_index.size(); ++cn) {
		// Original factor graph index
		unsigned int n = fg_orig_index[cn];
		assert(n < training_update.size());

		FactorGraph* fg = training_update[n].first;
		const FactorGraphObservation* obs = training_update[n].second;
		size_t var_count = fg->Cardinalities().size();

		// Update each component of the current decomposition
		for (unsigned int ci = 0; ci < fg_cc_count[cn]; ++ci) {
			std::vector<unsigned int> cond_var_set;
			cond_var_set.reserve(var_count);

			// Add all variables not in this component to the conditioning set
			for (size_t vi = 0; vi < var_count; ++vi) {
				if (fg_cc_var_label[cn][vi] != ci)
					cond_var_set.push_back(static_cast<unsigned int>(vi));
			}
			UpdateTrainingComponentCond(fg, obs, cond_var_set, cn);
		}
	}

	// Update fully observed components
	mle.UpdateTrainingLabeling(comp_training_data);
}
コード例 #2
0
void MaximumCompositeLikelihood::SetupTrainingData(
	const std::vector<labeled_instance_type>& training_data,
	const std::vector<InferenceMethod*> inference_methods) {
	assert(comp_training_data.size() == 0);
	assert(comp_inference_methods.size() == 0);
	assert(inference_methods.size() == training_data.size());

	// Number of times each component will be covered
	unsigned int cover_count = 1;
	assert(decomp >= -1);
	if (decomp == DecomposePseudolikelihood) {
		cover_count = 1;
	} else if (decomp > 0) {
		cover_count = decomp;
	}

	// Produce composite factor graphs
	boost::timer decomp_timer;
	int training_data_size = static_cast<int>(training_data.size());
	fg_cc_var_label.resize(cover_count * training_data_size);
	fg_cc_count.resize(cover_count * training_data_size);
	fg_orig_index.resize(cover_count * training_data_size);
	std::fill(fg_cc_count.begin(), fg_cc_count.end(), 0);
	unsigned int cn = 0;
	for (int n = 0; n < training_data_size; ++n) {
		FactorGraph* fg = training_data[n].first;
		size_t var_count = fg->Cardinalities().size();

		// Get observation
		const FactorGraphObservation* obs = training_data[n].second;

		// Obtain one or more decomposition(s)
		for (unsigned int cover_iter = 0; cover_iter < cover_count;
			++cover_iter) {
			VAcyclicDecomposition vac(fg);
			std::vector<bool> factor_is_removed;

			if (decomp == DecomposePseudolikelihood) {
				factor_is_removed.resize(fg->Factors().size());
				std::fill(factor_is_removed.begin(),
					factor_is_removed.end(), true);
			} else {
				std::vector<double> factor_weight(fg->Factors().size(), 0.0);
				if (decomp == DecomposeUniform) {
					// Use constant weights
					std::fill(factor_weight.begin(), factor_weight.end(), 1.0);
				} else {
					// Use uniform random weights
					boost::uniform_real<double> uniform_dist(0.0, 1.0);
					boost::variate_generator<boost::mt19937&,
						boost::uniform_real<double> >
						rgen(RandomSource::GlobalRandomSampler(), uniform_dist);

					for (unsigned int fi = 0; fi < factor_weight.size(); ++fi)
						factor_weight[fi] = rgen();
				}
				vac.ComputeDecompositionSP(factor_weight, factor_is_removed);
			}

			// Shatter factor graph into trees
			fg_cc_count[cn] += FactorGraphStructurizer::ConnectedComponents(
				fg, factor_is_removed, fg_cc_var_label[cn]);
#if 0
			std::cout << "MCL, instance " << n << " decomposed into " << cc_count
				<< " components" << std::endl;
#endif

			// Add each component as separate factor graph
			for (unsigned int ci = 0; ci < fg_cc_count[cn]; ++ci) {
				std::vector<unsigned int> cond_var_set;
				cond_var_set.reserve(var_count);

				// Add all variables not in this component to the conditioning set
				for (size_t vi = 0; vi < var_count; ++vi) {
					if (fg_cc_var_label[cn][vi] != ci)
						cond_var_set.push_back(static_cast<unsigned int>(vi));
				}
				AddTrainingComponentCond(fg, obs, inference_methods[n],
					cond_var_set);
			}
			fg_orig_index[cn] = n;
			cn += 1;
		}
	}
	std::cout << "MCL, decomposed " << training_data.size() << " instances "
		<< "into " << comp_training_data.size() << " instances "
		<< (decomp == DecomposeUniform ? "(uniform)" : "(randomized)")
		<< " in " << decomp_timer.elapsed() << "s." << std::endl;

	// Initialize MLE training data from created components
	SetupMLETrainingData();
}