コード例 #1
0
int main(int argc, char *argv[]) {
#include <MueLu_UseShortNames.hpp>

  using Teuchos::RCP;
  Teuchos::GlobalMPISession mpiSession(&argc, &argv, NULL);

  typedef Teuchos::ScalarTraits<SC> ST;

  bool success = false;
  bool verbose = true;
  try {
    RCP< const Teuchos::Comm<int> > comm = Teuchos::DefaultComm<int>::getComm();
    //
    // Parameters
    //

    Teuchos::CommandLineProcessor clp(false);
    Galeri::Xpetra::Parameters<GO> matrixParameters(clp, 8748);
    Xpetra::Parameters xpetraParameters(clp);

    bool optRecycling           = true;  clp.setOption("recycling",             "no-recycling",             &optRecycling,           "Enable recycling of the multigrid preconditioner");

    /* DO NOT WORK YET
       bool optRecyclingRAPpattern = true;  clp.setOption("recycling-rap-pattern", "no-recycling-rap-pattern", &optRecyclingRAPpattern, "Enable recycling of Ac=RAP pattern");
       bool optRecyclingAPpattern  = false; clp.setOption("recycling-ap-pattern",  "no-recycling-ap-pattern",  &optRecyclingAPpattern,  "Enable recycling of AP pattern");
       */
    bool optRecyclingRAPpattern = false;
    bool optRecyclingAPpattern  = false;

    switch (clp.parse(argc, argv)) {
      case Teuchos::CommandLineProcessor::PARSE_HELP_PRINTED:        return EXIT_SUCCESS; break;
      case Teuchos::CommandLineProcessor::PARSE_ERROR:
      case Teuchos::CommandLineProcessor::PARSE_UNRECOGNIZED_OPTION: return EXIT_FAILURE; break;
      case Teuchos::CommandLineProcessor::PARSE_SUCCESSFUL:                               break;
    }

    // option dependencies
    if (optRecycling == false) {
      optRecyclingRAPpattern = false;
      optRecyclingAPpattern  = false;
    }

    //
    // Construct the problems
    //

    RCP<const Map> map = MapFactory::Build(xpetraParameters.GetLib(), matrixParameters.GetNumGlobalElements(), 0, comm);
    Teuchos::RCP<Galeri::Xpetra::Problem<Map,CrsMatrixWrap,MultiVector> > Pr =
      Galeri::Xpetra::BuildProblem<SC,LO,GO,Map,CrsMatrixWrap,MultiVector>(matrixParameters.GetMatrixType(), map, matrixParameters.GetParameterList());
    RCP<Matrix> A1 = Pr->BuildMatrix();

    RCP<Matrix> A2 = Pr->BuildMatrix(); // TODO: generate another problem would be more meaningful (ex: scale A1)

    //
    // First solve
    //

    FactoryManager M;

    Hierarchy H(A1);

    if (optRecycling) {
      // Configuring "Keep" options before running the first setup.

      // Note: "Keep" flags should not be set on the default factories provided by the FactoryManager because in the current
      // implementation of FactoryManager, those factories are freed and reallocated between Hierarchy::Setup() calls (see FactoryManager::Clean() and Hierarchy::Setup()).
      // So we define our own factories here.

      // AGGREGATES:
      // Note: aggregates are only used to build Ptent, so it is not useful to keep them. Keeping Ptent is enough.
      // RCP<Factory> AggFact   = rcp(new CoupledAggregationFactory());
      // M.SetFactory("Aggregates", AggFact);
      // H.Keep("Aggregates", AggFact.get());

      // PTENT:
      RCP<Factory> PtentFact = rcp(new TentativePFactory());
      M.SetFactory("Ptent", PtentFact);
      H.Keep("P",           PtentFact.get());
    }

    RCP<Factory> AcFact = rcp(new RAPFactory());
    M.SetFactory("A", AcFact);

    if (optRecyclingRAPpattern) {
      H.Keep("RAP graph", AcFact.get());
    }
    if (optRecyclingAPpattern) {
      H.Keep("AP graph", AcFact.get());
    }
    //

    H.Setup(M);

    {
      RCP<Vector> X = VectorFactory::Build(map);
      RCP<Vector> B = VectorFactory::Build(map);

      X->putScalar((Scalar) 0.0);
      B->setSeed(846930886); B->randomize();

      int nIts = 9;
      H.Iterate(*B, *X, nIts);

      ST::magnitudeType residualNorms = Utilities::ResidualNorm(*A1, *X, *B)[0];
      if (comm->getRank() == 0)
        std::cout << "||Residual|| = " << residualNorms << std::endl;
    }

    //
    // Second solve
    //

    std::cout << "Status of the preconditioner between runs:" << std::endl;
    H.print(*getFancyOStream(Teuchos::rcpFromRef(std::cout)), MueLu::High);

    // Change the problem
    RCP<Level> finestLevel = H.GetLevel(0);
    finestLevel->Set("A", A2);

    if (optRecycling) {
      // Optional: this makes sure that the aggregates are never requested (and built) during the second run.
      // If someone request the aggregates, an exception will be thrown.
      M.SetFactory("Aggregates", MueLu::NoFactory::getRCP());
    }

    // Redo the setup
    H.Setup(M);

    {
      RCP<Vector> X = VectorFactory::Build(map);
      RCP<Vector> B = VectorFactory::Build(map);

      X->putScalar((Scalar) 0.0);
      B->setSeed(846930886); B->randomize();

      int nIts = 9;
      H.Iterate(*B, *X, nIts);

      ST::magnitudeType residualNorms = Utilities::ResidualNorm(*A2, *X, *B)[0];
      if (comm->getRank() == 0)
        std::cout << "||Residual|| = " << residualNorms << std::endl;
    }

    //
    // Clean-up
    //

    // Remove kept data from the preconditioner. This will force recomputation on future runs. "Keep" flags are also removed.

    if (optRecycling) {
      //if aggregates explicitly kept: H.Delete("Aggregates", M.GetFactory("Aggregates").get());
      H.Delete("P",           M.GetFactory("Ptent").get());
    }
    if (optRecyclingRAPpattern) {
      H.Delete("RAP graph", M.GetFactory("A").get());
    }
    if (optRecyclingAPpattern) {
      H.Delete("AP graph", M.GetFactory("A").get());
    }

    std::cout << "Status of the preconditioner at the end:" << std::endl;
    H.print(*getFancyOStream(Teuchos::rcpFromRef(std::cout)), MueLu::High);

    success = true;
  }
  TEUCHOS_STANDARD_CATCH_STATEMENTS(verbose, std::cerr, success);

  return ( success ? EXIT_SUCCESS : EXIT_FAILURE );
}
コード例 #2
0
ファイル: ScalingTest.cpp プロジェクト: 00liujj/trilinos
int main(int argc, char *argv[]) {
#include "MueLu_UseShortNames.hpp"

  using Teuchos::RCP; using Teuchos::rcp;
  using Teuchos::TimeMonitor;
  //using Galeri::Xpetra::CreateCartesianCoordinates;

  Teuchos::oblackholestream blackhole;
  Teuchos::GlobalMPISession mpiSession(&argc, &argv, &blackhole);

  RCP<const Teuchos::Comm<int> > comm = Teuchos::DefaultComm<int>::getComm();
  RCP<Teuchos::FancyOStream> out = Teuchos::fancyOStream(Teuchos::rcpFromRef(std::cout));
  out->setOutputToRootOnly(0);
  *out << MueLu::MemUtils::PrintMemoryUsage() << std::endl;

  // out->setOutputToRootOnly(-1);
  // out->precision(12);

  //FIXME we need a HAVE_MUELU_LONG_LONG_INT option
  //#ifndef HAVE_TEUCHOS_LONG_LONG_INT
  *out << "Warning: scaling test was not compiled with long long int support" << std::endl;
  //#endif

  //
  // SET TEST PARAMETERS
  //
  // Note: use --help to list available options.
  Teuchos::CommandLineProcessor clp(false);

  // Default is Laplace1D with nx = 8748.
  // It's a nice size for 1D and perfect aggregation. (6561 = 3^8)
  //Nice size for 1D and perfect aggregation on small numbers of processors. (8748 = 4*3^7)
  Galeri::Xpetra::Parameters<GO> matrixParameters(clp, 8748); // manage parameters of the test case
  Xpetra::Parameters xpetraParameters(clp);                   // manage parameters of xpetra

  // Custom command line parameters
  // - Debug
  int optDebug   = 0;                     clp.setOption("debug",          &optDebug,              "pause to attach debugger");
  int optDump    = 0;                     clp.setOption("dump",           &optDump,               "write matrix to file");
  int optTimings = 0;                     clp.setOption("timings",        &optTimings,            "print timings to screen");

  // - Levels
  LO  optMaxLevels     = 10;              clp.setOption("maxLevels",      &optMaxLevels,          "maximum number of levels allowed");
  int optMaxCoarseSize = 50;              clp.setOption("maxCoarseSize",  &optMaxCoarseSize,      "maximum #dofs in coarse operator"); //FIXME clp doesn't like long long int

  // - Smoothed-Aggregation
  Scalar optSaDamping = 4./3;             clp.setOption("saDamping",      &optSaDamping,          "prolongator damping factor");

  // - Aggregation
  std::string optAggOrdering = "natural"; clp.setOption("aggOrdering",    &optAggOrdering,        "aggregation ordering strategy (natural, random, graph)");
  int optMinPerAgg = 2;                   clp.setOption("minPerAgg",      &optMinPerAgg,          "minimum #DOFs per aggregate");
  int optMaxNbrSel = 0;                   clp.setOption("maxNbrSel",      &optMaxNbrSel,          "maximum # of nbrs allowed to be in other aggregates");

  // - R
  int optExplicitR = 1;                   clp.setOption("explicitR",      &optExplicitR,          "restriction will be explicitly stored as transpose of prolongator");

  // - Smoothers
  std::string optSmooType = "sgs";        clp.setOption("smooType",       &optSmooType,           "smoother type ('l1-sgs', 'sgs 'or 'cheby')");
  int optSweeps = 2;                      clp.setOption("sweeps",         &optSweeps,             "sweeps to be used in SGS (or Chebyshev degree)");

  // - Repartitioning
#if defined(HAVE_MPI) && defined(HAVE_MUELU_ZOLTAN)
  int optRepartition = 1;                 clp.setOption("repartition",    &optRepartition,        "enable repartitioning (0=no repartitioning, 1=Zoltan RCB, 2=Isorropia+Zoltan PHG");
  LO optMinRowsPerProc = 2000;            clp.setOption("minRowsPerProc", &optMinRowsPerProc,     "min #rows allowable per proc before repartitioning occurs");
  double optNnzImbalance = 1.2;           clp.setOption("nnzImbalance",   &optNnzImbalance,       "max allowable nonzero imbalance before repartitioning occurs");
#else
  int optRepartition = 0;
#endif // HAVE_MPI && HAVE_MUELU_ZOLTAN

  // - Solve
  int    optFixPoint = 1;                 clp.setOption("fixPoint",       &optFixPoint,           "apply multigrid as solver");
  int    optPrecond  = 1;                 clp.setOption("precond",        &optPrecond,            "apply multigrid as preconditioner");
  LO     optIts      = 10;                clp.setOption("its",            &optIts,                "number of multigrid cycles");
  double optTol      = 1e-7;              clp.setOption("tol",            &optTol,                "stopping tolerance for Krylov method");

  switch (clp.parse(argc, argv)) {
  case Teuchos::CommandLineProcessor::PARSE_HELP_PRINTED:        return EXIT_SUCCESS; break;
  case Teuchos::CommandLineProcessor::PARSE_ERROR:
  case Teuchos::CommandLineProcessor::PARSE_UNRECOGNIZED_OPTION: return EXIT_FAILURE; break;
  case Teuchos::CommandLineProcessor::PARSE_SUCCESSFUL:                               break;
  }

  RCP<TimeMonitor> globalTimeMonitor = rcp (new TimeMonitor(*TimeMonitor::getNewTimer("ScalingTest: S - Global Time")));

  if (optDebug) {
    Utils::PauseForDebugger();
  }

  matrixParameters.check();
  xpetraParameters.check();
  // TODO: check custom parameters
  std::transform(optSmooType.begin(), optSmooType.end(), optSmooType.begin(), ::tolower);
  Xpetra::UnderlyingLib lib = xpetraParameters.GetLib();

  if (comm->getRank() == 0) {
    std::cout << xpetraParameters << matrixParameters;
    // TODO: print custom parameters // Or use paramList::print()!
  }

  //
  // CREATE INITIAL MATRIX                                                          */
  //
  RCP<const Map> map;
  RCP<Matrix> A;

  RCP<MultiVector> coordinates;
  {
    TimeMonitor tm(*TimeMonitor::getNewTimer("ScalingTest: 1 - Matrix Build"));

    map = MapFactory::Build(lib, matrixParameters.GetNumGlobalElements(), 0, comm);
    Teuchos::RCP<Galeri::Xpetra::Problem<Map,CrsMatrixWrap,MultiVector> > Pr =
        Galeri::Xpetra::BuildProblem<SC,LO,GO,Map,CrsMatrixWrap,MultiVector>(matrixParameters.GetMatrixType(), map, matrixParameters.GetParameterList()); //TODO: Matrix vs. CrsMatrixWrap
    A = Pr->BuildMatrix();

    if (matrixParameters.GetMatrixType() == "Laplace1D") {
      coordinates = Galeri::Xpetra::Utils::CreateCartesianCoordinates<SC, LO, GO, Map, MultiVector>("1D", map, matrixParameters.GetParameterList());
    }
    else if (matrixParameters.GetMatrixType() == "Laplace2D") {
      coordinates = Galeri::Xpetra::Utils::CreateCartesianCoordinates<SC, LO, GO, Map, MultiVector>("2D", map, matrixParameters.GetParameterList());
    }
    else if (matrixParameters.GetMatrixType() == "Laplace3D") {
      coordinates = Galeri::Xpetra::Utils::CreateCartesianCoordinates<SC, LO, GO, Map, MultiVector>("3D", map, matrixParameters.GetParameterList());
    }
  }

  //
  //
  //

  // dump matrix to file
  if (optDump) {
    std::string fileName = "Amat.mm";
    Utils::Write(fileName, *A);
  }

  RCP<MultiVector> nullspace = MultiVectorFactory::Build(map, 1);
  nullspace->putScalar( (SC) 1.0);
  Teuchos::Array<Teuchos::ScalarTraits<SC>::magnitudeType> norms(1);

  nullspace->norm1(norms);
  if (comm->getRank() == 0)
    std::cout << "||NS|| = " << norms[0] << std::endl;

  RCP<MueLu::Hierarchy<SC, LO, GO, NO, LMO> > H;

  //
  //
  // SETUP
  //
  //

  {
    TimeMonitor tm(*TimeMonitor::getNewTimer("ScalingTest: 2 - MueLu Setup"));

    //
    // Hierarchy
    //

    H = rcp(new Hierarchy());
    H->setDefaultVerbLevel(Teuchos::VERB_HIGH);
    H->SetMaxCoarseSize((GO) optMaxCoarseSize);

    //
    // Finest level
    //

    RCP<Level> Finest = H->GetLevel();
    Finest->setDefaultVerbLevel(Teuchos::VERB_HIGH);
    Finest->Set("A",           A);
    Finest->Set("Nullspace",   nullspace);
    Finest->Set("Coordinates", coordinates); //FIXME: XCoordinates, YCoordinates, ..

    //
    // FactoryManager
    //

    FactoryManager M;

    //
    //
    // Aggregation
    //

    {
      RCP<UncoupledAggregationFactory> AggregationFact = rcp(new UncoupledAggregationFactory());
      *out << "========================= Aggregate option summary =========================" << std::endl;
      *out << "min DOFs per aggregate :                " << optMinPerAgg << std::endl;
      *out << "min # of root nbrs already aggregated : " << optMaxNbrSel << std::endl;
      AggregationFact->SetMinNodesPerAggregate(optMinPerAgg);  //TODO should increase if run anything othpermRFacter than 1D
      AggregationFact->SetMaxNeighAlreadySelected(optMaxNbrSel);
      std::transform(optAggOrdering.begin(), optAggOrdering.end(), optAggOrdering.begin(), ::tolower);
      if (optAggOrdering == "natural") {
        *out << "aggregate ordering :                    NATURAL" << std::endl;
        AggregationFact->SetOrdering(MueLu::AggOptions::NATURAL);
      } else if (optAggOrdering == "random") {
        *out << "aggregate ordering :                    RANDOM" << std::endl;
        AggregationFact->SetOrdering(MueLu::AggOptions::RANDOM);
      } else if (optAggOrdering == "graph") {
        *out << "aggregate ordering :                    GRAPH" << std::endl;
        AggregationFact->SetOrdering(MueLu::AggOptions::GRAPH);
      } else {
        std::string msg = "main: bad aggregation option """ + optAggOrdering + """.";
        throw(MueLu::Exceptions::RuntimeError(msg));
      }
      //AggregationFact->SetPhase3AggCreation(0.5);
      M.SetFactory("Aggregates", AggregationFact);

    *out << "=============================================================================" << std::endl;
    }

    //
    // Transfer
    //

    {
      //
      // Non rebalanced factories
      //

      RCP<SaPFactory> PFact = rcp(new SaPFactory());
      PFact->SetDampingFactor(optSaDamping);

      RCP<Factory>    RFact = rcp(new TransPFactory());

      RCP<RAPFactory> AFact = rcp(new RAPFactory());
      AFact->setVerbLevel(Teuchos::VERB_HIGH);
      if (!optExplicitR) {
        H->SetImplicitTranspose(true);
        ParameterList Aclist = *(AFact->GetValidParameterList());
        Aclist.set("implicit transpose", true);
        AFact->SetParameterList(Aclist);
        if (comm->getRank() == 0) std::cout << "\n\n* ***** USING IMPLICIT RESTRICTION OPERATOR ***** *\n" << std::endl;
      }

      //
      // Repartitioning (if needed)
      //

      if (optRepartition == 0) {
        // No repartitioning

        // Configure FactoryManager
        M.SetFactory("P", PFact);
        M.SetFactory("R", RFact);
        M.SetFactory("A", AFact);

      } else {
#if defined(HAVE_MPI) && defined(HAVE_MUELU_ZOLTAN)
        // Repartitioning

        // The Factory Manager will be configured to return the rebalanced versions of P, R, A by default.
        // Everytime we want to use the non-rebalanced versions, we need to explicitly define the generating factory.
        RFact->SetFactory("P", PFact);
        //
        AFact->SetFactory("P", PFact);
        AFact->SetFactory("R", RFact);

        // Transfer coordinates
        RCP<CoordinatesTransferFactory> TransferCoordinatesFact = rcp(new CoordinatesTransferFactory());
        AFact->AddTransferFactory(TransferCoordinatesFact); // FIXME REMOVE

        // Compute partition (creates "Partition" object)
        if(optRepartition == 1) { // use plain Zoltan Interface

        } else if (optRepartition == 2) { // use Isorropia + Zoltan interface

        }

        // Repartitioning (creates "Importer" from "Partition")
        RCP<Factory> RepartitionFact = rcp(new RepartitionFactory());
        {
          Teuchos::ParameterList paramList;
          paramList.set("minRowsPerProcessor", optMinRowsPerProc);
          paramList.set("nonzeroImbalance", optNnzImbalance);
          RepartitionFact->SetParameterList(paramList);
        }
        RepartitionFact->SetFactory("A", AFact);

        if(optRepartition == 1) {
          RCP<Factory> ZoltanFact = rcp(new ZoltanInterface());
          ZoltanFact->SetFactory("A", AFact);
          ZoltanFact->SetFactory("Coordinates", TransferCoordinatesFact);
          RepartitionFact->SetFactory("Partition", ZoltanFact);
        }
        else if(optRepartition == 2) {
#if defined(HAVE_MPI) && defined(HAVE_MUELU_ISORROPIA)
          RCP<MueLu::IsorropiaInterface<LO, GO, NO, LMO> > isoInterface = rcp(new MueLu::IsorropiaInterface<LO, GO, NO, LMO>());
          isoInterface->SetFactory("A", AFact);
          // we don't need Coordinates here!
          RepartitionFact->SetFactory("Partition", isoInterface);
#else
          if (comm->getRank() == 0)
            std::cout << "Please recompile Trilinos with Isorropia support enabled." << std::endl;
          return EXIT_FAILURE;
#endif
        }


        // Reordering of the transfer operators
        RCP<Factory> RebalancedPFact = rcp(new RebalanceTransferFactory());
        RebalancedPFact->SetParameter("type", Teuchos::ParameterEntry(std::string("Interpolation")));
        RebalancedPFact->SetFactory("P", PFact);
        RebalancedPFact->SetFactory("Coordinates", TransferCoordinatesFact);
        RebalancedPFact->SetFactory("Nullspace", M.GetFactory("Ptent")); // TODO

        RCP<Factory> RebalancedRFact = rcp(new RebalanceTransferFactory());
        RebalancedRFact->SetParameter("type", Teuchos::ParameterEntry(std::string("Restriction")));
        RebalancedRFact->SetFactory("R", RFact);

        // Compute Ac from rebalanced P and R
        RCP<Factory> RebalancedAFact = rcp(new RebalanceAcFactory());
        RebalancedAFact->SetFactory("A", AFact);

        // Configure FactoryManager
        M.SetFactory("A", RebalancedAFact);
        M.SetFactory("P", RebalancedPFact);
        M.SetFactory("R", RebalancedRFact);
        M.SetFactory("Nullspace",   RebalancedPFact);
        M.SetFactory("Coordinates", RebalancedPFact);
        M.SetFactory("Importer",    RepartitionFact);

#else
        TEUCHOS_TEST_FOR_EXCEPT(true);
#endif
      } // optRepartition

    } // Transfer

    //
    // Smoothers
    //

    {
      std::string ifpackType;
      Teuchos::ParameterList ifpackList;
      ifpackList.set("relaxation: sweeps", (LO) optSweeps);
      ifpackList.set("relaxation: damping factor", (SC) 1.0);
      if (optSmooType == "sgs") {
        ifpackType = "RELAXATION";
        ifpackList.set("relaxation: type", "Symmetric Gauss-Seidel");
      }
      else if (optSmooType == "l1-sgs") {
        ifpackType = "RELAXATION";
        ifpackList.set("relaxation: type", "Symmetric Gauss-Seidel");
        ifpackList.set("relaxation: use l1", true);
      } else if (optSmooType == "cheby") {
        ifpackType = "CHEBYSHEV";
        ifpackList.set("chebyshev: degree", (LO) optSweeps);

        if (matrixParameters.GetMatrixType() == "Laplace1D") {
          ifpackList.set("chebyshev: ratio eigenvalue", (SC) 3);
        }
        else if (matrixParameters.GetMatrixType() == "Laplace2D") {
          ifpackList.set("chebyshev: ratio eigenvalue", (SC) 7);
        }
        else if (matrixParameters.GetMatrixType() == "Laplace3D") {
          ifpackList.set("chebyshev: ratio eigenvalue", (SC) 20);
        }
        // ifpackList.set("chebyshev: max eigenvalue", (double) -1.0);
        // ifpackList.set("chebyshev: min eigenvalue", (double) 1.0);
      }

      RCP<SmootherPrototype> smootherPrototype = rcp(new TrilinosSmoother(ifpackType, ifpackList));
      M.SetFactory("Smoother", rcp(new SmootherFactory(smootherPrototype)));
    }

    //
    // Setup preconditioner
    //

    int startLevel = 0;
    //      std::cout << startLevel << " " << optMaxLevels << std::endl;
    H->Setup(M, startLevel, optMaxLevels);

  } // end of Setup TimeMonitor

  /*{ // some debug output
    // print out content of levels
    std::cout << "FINAL CONTENT of multigrid levels" << std::endl;
    for(LO l = 0; l < H->GetNumLevels(); l++) {
      RCP<Level> coarseLevel = H->GetLevel(l);
      coarseLevel->print(*out);
    }
    std::cout << "END FINAL CONTENT of multigrid levels" << std::endl;
  } // end debug output*/

  //
  //
  // SOLVE
  //
  //

  // Define X, B
  RCP<MultiVector> X = MultiVectorFactory::Build(map, 1);
  RCP<MultiVector> B = MultiVectorFactory::Build(map, 1);

  X->setSeed(846930886);
  X->randomize();
  A->apply(*X, *B, Teuchos::NO_TRANS, (SC)1.0, (SC)0.0);
  B->norm2(norms);
  B->scale(1.0/norms[0]);

  //
  // Use AMG directly as an iterative method
  //

  if (optFixPoint) {

    X->putScalar( (SC) 0.0);

    TimeMonitor tm(*TimeMonitor::getNewTimer("ScalingTest: 3 - Fixed Point Solve"));

    H->IsPreconditioner(false);
    H->Iterate(*B, *X, optIts);

  } // optFixedPt

  //
  // Use AMG as a preconditioner in Belos
  //

#ifdef HAVE_MUELU_BELOS

  if (optPrecond) {

    RCP<TimeMonitor> tm;
    tm = rcp (new TimeMonitor(*TimeMonitor::getNewTimer("ScalingTest: 5 - Belos Solve")));
    // Operator and Multivector type that will be used with Belos
    typedef MultiVector          MV;
    typedef Belos::OperatorT<MV> OP;
    H->IsPreconditioner(true);

    // Define Operator and Preconditioner
    Teuchos::RCP<OP> belosOp   = Teuchos::rcp(new Belos::XpetraOp<SC, LO, GO, NO, LMO>(A)); // Turns a Xpetra::Operator object into a Belos operator
    Teuchos::RCP<OP> belosPrec = Teuchos::rcp(new Belos::MueLuOp<SC, LO, GO, NO, LMO>(H));  // Turns a MueLu::Hierarchy object into a Belos operator

    // Construct a Belos LinearProblem object
    RCP< Belos::LinearProblem<SC, MV, OP> > belosProblem = rcp(new Belos::LinearProblem<SC, MV, OP>(belosOp, X, B));
    belosProblem->setLeftPrec(belosPrec);

    bool set = belosProblem->setProblem();
    if (set == false) {
      if (comm->getRank() == 0)
        std::cout << std::endl << "ERROR:  Belos::LinearProblem failed to set up correctly!" << std::endl;
      return EXIT_FAILURE;
    }

    // Belos parameter list
    int maxIts = 100;
    Teuchos::ParameterList belosList;
    belosList.set("Maximum Iterations",    maxIts); // Maximum number of iterations allowed
    belosList.set("Convergence Tolerance", optTol);    // Relative convergence tolerance requested
    //belosList.set("Verbosity", Belos::Errors + Belos::Warnings + Belos::TimingDetails + Belos::StatusTestDetails);
    belosList.set("Verbosity", Belos::Errors + Belos::Warnings + Belos::StatusTestDetails);
    belosList.set("Output Frequency", 1);
    belosList.set("Output Style", Belos::Brief);

    // Create an iterative solver manager
    RCP< Belos::SolverManager<SC, MV, OP> > solver = rcp(new Belos::BlockCGSolMgr<SC, MV, OP>(belosProblem, rcp(&belosList, false)));

    // Perform solve
    Belos::ReturnType ret = Belos::Unconverged;
    try {
      {
        TimeMonitor tm2(*TimeMonitor::getNewTimer("ScalingTest: 5bis - Belos Internal Solve"));
        ret = solver->solve();
      } // end of TimeMonitor

      // Get the number of iterations for this solve.
      if (comm->getRank() == 0)
        std::cout << "Number of iterations performed for this solve: " << solver->getNumIters() << std::endl;

      // Compute actual residuals.
      int numrhs = 1;
      std::vector<double> actual_resids( numrhs ); //TODO: double?
      std::vector<double> rhs_norm( numrhs );
      RCP<MultiVector> resid = MultiVectorFactory::Build(map, numrhs);

      typedef Belos::OperatorTraits<SC, MV, OP>  OPT;
      typedef Belos::MultiVecTraits<SC, MV>     MVT;

      OPT::Apply( *belosOp, *X, *resid );
      MVT::MvAddMv( -1.0, *resid, 1.0, *B, *resid );
      MVT::MvNorm( *resid, actual_resids );
      MVT::MvNorm( *B, rhs_norm );
      *out<< "---------- Actual Residuals (normalized) ----------"<<std::endl<<std::endl;
      for ( int i = 0; i<numrhs; i++) {
        double actRes = actual_resids[i]/rhs_norm[i];
        *out<<"Problem "<<i<<" : \t"<< actRes <<std::endl;
        //if (actRes > tol) { badRes = true; }
      }

    } //try

    catch(...) {
      if (comm->getRank() == 0)
        std::cout << std::endl << "ERROR:  Belos threw an error! " << std::endl;
    }

    // Check convergence
    if (ret != Belos::Converged) {
      if (comm->getRank() == 0) std::cout << std::endl << "ERROR:  Belos did not converge! " << std::endl;
    } else {
      if (comm->getRank() == 0) std::cout << std::endl << "SUCCESS:  Belos converged!" << std::endl;
    }
    tm = Teuchos::null;

  } //if (optPrecond)

#endif // HAVE_MUELU_BELOS

  //
  // Timer final summaries
  //

  globalTimeMonitor = Teuchos::null; // stop this timer before summary

  if (optTimings)
    TimeMonitor::summarize();

  //

  return EXIT_SUCCESS;
}
コード例 #3
0
ファイル: Emin.cpp プロジェクト: yunkb/trilinos
int main(int argc, char *argv[]) {
#include "MueLu_UseShortNames.hpp"

  Teuchos::oblackholestream blackhole;
  Teuchos::GlobalMPISession mpiSession(&argc,&argv,&blackhole);
  RCP<const Teuchos::Comm<int> > comm = Teuchos::DefaultComm<int>::getComm();

  /**********************************************************************************/
  /* SET TEST PARAMETERS                                                            */
  /**********************************************************************************/
  // Note: use --help to list available options.
  Teuchos::CommandLineProcessor clp(false);

  // Default is Laplace1D with nx = 8748.
  // It's a nice size for 1D and perfect aggregation. (6561=3^8)
  //Nice size for 1D and perfect aggregation on small numbers of processors. (8748=4*3^7)
  Galeri::Xpetra::Parameters<GO> matrixParameters(clp, 8748); // manage parameters of the test case
  Xpetra::Parameters xpetraParameters(clp);             // manage parameters of xpetra

  // custom parameters
  int nSmoothers=2;
  LO maxLevels = 3;
  LO its=10;
  std::string coarseSolver="ifpack2";
  // std::string coarseSolver="amesos2";
  int pauseForDebugger=0;
  clp.setOption("nSmoothers",&nSmoothers,"number of Gauss-Seidel smoothers in the MergedSmootehrs");
  clp.setOption("maxLevels",&maxLevels,"maximum number of levels allowed. If 1, then a MergedSmoother is used on the coarse grid");
  clp.setOption("its",&its,"number of multigrid cycles");
  clp.setOption("coarseSolver",&coarseSolver,"amesos2 or ifpack2 (Tpetra specific. Ignored for Epetra)");
  clp.setOption("debug",&pauseForDebugger,"pause to attach debugger");

  switch (clp.parse(argc,argv)) {
    case Teuchos::CommandLineProcessor::PARSE_HELP_PRINTED:        return EXIT_SUCCESS; break;
    case Teuchos::CommandLineProcessor::PARSE_ERROR:
    case Teuchos::CommandLineProcessor::PARSE_UNRECOGNIZED_OPTION: return EXIT_FAILURE; break;
    case Teuchos::CommandLineProcessor::PARSE_SUCCESSFUL:                               break;
  }

  matrixParameters.check();
  xpetraParameters.check();
  // TODO: check custom parameters

  if (comm->getRank() == 0) {
    // matrixParameters.print();
    // xpetraParameters.print();
    // TODO: print custom parameters
  }

  if (pauseForDebugger) {
    Utils::PauseForDebugger();
  }

  /**********************************************************************************/
  /* CREATE INITIAL MATRIX                                                          */
  /**********************************************************************************/
  const RCP<const Map> map = MapFactory::Build(xpetraParameters.GetLib(), matrixParameters.GetNumGlobalElements(), 0, comm);
  RCP<Galeri::Xpetra::Problem<Map,CrsMatrixWrap,MultiVector> > Pr =
      Galeri::Xpetra::BuildProblem<SC,LO,GO,Map,CrsMatrixWrap,MultiVector>(matrixParameters.GetMatrixType(), map, matrixParameters.GetParameterList()); //TODO: Matrix vs. CrsMatrixWrap
  RCP<Matrix> Op = Pr->BuildMatrix();

#ifdef NEUMANN
  // Tranform matrix to Neumann b.c.
  // Essentially, we need to update two diagonal elements

  // TODO: calls to getLocalRowView not really needed

  Op->resumeFill();

  Teuchos::ArrayView<const LO> indices;
  Teuchos::ArrayView<const SC> values;
  Teuchos::Array<SC> newValues(2, 0.0);

  size_t myRank = Op->getRowMap()->getComm()->getRank();
  size_t nCpus  = Op->getRowMap()->getComm()->getSize();
  if (myRank == 0) { // JG TODO: can we use rowMap->isNodeLocalElement(0) instead for more genericity?
    //LO firstRow = 0;
    newValues[0] = 1.0; newValues[1] = -1.0;
    Op->getLocalRowView(0, indices, values);
    Op->replaceLocalValues(0, indices, newValues);
  }
  if (myRank == nCpus-1) { // JG TODO: can we use rowMap->isNodeLocalElement(lastRow) instead for more genericity?
    LO lastRow = Op->getNodeNumRows()-1;
    newValues[0] = -1.0; newValues[1] = 1.0;
    Op->getLocalRowView(lastRow, indices, values);
    Op->replaceLocalValues(lastRow, indices, newValues);
  }

  Op->fillComplete();
#endif // NEUMANN

  /**********************************************************************************/
  /*                                                                                */
  /**********************************************************************************/

  RCP<MultiVector> nullSpace = MultiVectorFactory::Build(map,1);
  nullSpace->putScalar( (SC) 1.0);
  Teuchos::Array<Teuchos::ScalarTraits<SC>::magnitudeType> norms(1);
  nullSpace->norm1(norms);
  if (comm->getRank() == 0)
    std::cout << "||NS|| = " << norms[0] << std::endl;

  RCP<MueLu::Hierarchy<SC,LO,GO,NO,LMO> > H = rcp( new Hierarchy() );
  H->SetDefaultVerbLevel(MueLu::Extreme);
  H->IsPreconditioner(false);

  RCP<MueLu::Level> Finest = H->GetLevel();
  Finest->setDefaultVerbLevel(Teuchos::VERB_HIGH);
  Finest->Set("A", Op);
  Finest->Set("Nullspace", nullSpace);

  FactoryManager M;

  M.SetFactory("Aggregates", rcp(new CoupledAggregationFactory()));
  M.SetFactory("Ptent",      rcp(new TentativePFactory()));
  M.SetFactory("P",          rcp(new SaPFactory()));

#ifdef EMIN
  // Energy-minimization
  RCP<PatternFactory> PatternFact = rcp(new PatternFactory());
#if 0
  PatternFact->SetFactory("P", M.GetFactory("Ptent"));
#else
  PatternFact->SetFactory("P", M.GetFactory("P"));
#endif
  M.SetFactory("Ppattern",   PatternFact);

  RCP<EminPFactory> EminPFact = rcp(new EminPFactory());
  EminPFact->SetFactory("P", M.GetFactory("Ptent"));
  M.SetFactory("P",          EminPFact);

  RCP<NullspacePresmoothFactory> NullPreFact = rcp(new NullspacePresmoothFactory());
  NullPreFact->SetFactory("Nullspace", M.GetFactory("Nullspace"));
  M.SetFactory("Nullspace",  NullPreFact);
#endif

  RCP<SmootherPrototype> smooProto = gimmeMergedSmoother(nSmoothers, xpetraParameters.GetLib(), coarseSolver, comm->getRank());
  M.SetFactory("Smoother",   rcp(new SmootherFactory(smooProto)));

  Teuchos::ParameterList status;

  RCP<SmootherPrototype> coarseProto;
  if (maxLevels != 1)
    coarseProto = gimmeCoarseProto(xpetraParameters.GetLib(), coarseSolver, comm->getRank());
  else
    coarseProto = gimmeMergedSmoother(nSmoothers, xpetraParameters.GetLib(), coarseSolver, comm->getRank());

  if (coarseProto == Teuchos::null)
    return EXIT_FAILURE;

#ifdef NEUMANN
  // Use coarse level projection solver
  RCP<SmootherPrototype> projectedSolver = rcp(new ProjectorSmoother(coarseProto));
  RCP<SmootherFactory> coarseSolveFact   = rcp(new SmootherFactory(projectedSolver));
#else
  RCP<SmootherFactory> coarseSolveFact   = rcp(new SmootherFactory(coarseProto));
#endif
  M.SetFactory("CoarseSolver", coarseSolveFact);

  H->EnableGraphDumping("graph.dot", 2);

  H->Setup(M, 0, maxLevels);
  //if (comm->getRank() == 0) {
  //  std::cout  << "======================\n Multigrid statistics \n======================" << std::endl;
  //  status.print(std::cout,Teuchos::ParameterList::PrintOptions().indent(2));
  //}

  // Define RHS
  RCP<MultiVector> X = MultiVectorFactory::Build(map,1);
  RCP<MultiVector> RHS = MultiVectorFactory::Build(map,1);

  X->setSeed(846930886);
  X->randomize();
  X->norm2(norms);
  if (comm->getRank() == 0)
    std::cout << "||X_true|| = " << std::setiosflags(std::ios::fixed) << std::setprecision(10) << norms[0] << std::endl;


  Op->apply(*X,*RHS,Teuchos::NO_TRANS,(SC)1.0,(SC)0.0);

  // Use AMG directly as an iterative method
  {
    X->putScalar( (SC) 0.0);

    H->Iterate(*RHS,its,*X);

    X->norm2(norms);
    if (comm->getRank() == 0)
      std::cout << "||X_" << std::setprecision(2) << its << "|| = " << std::setiosflags(std::ios::fixed) << std::setprecision(10) << norms[0] << std::endl;
  }

  return EXIT_SUCCESS;

}