FbxNode *WccToFbxExporter::createSphere(FbxScene *pScene, const char *pName, float size) { FbxNurbs* lNurbs = FbxNurbs::Create(pScene,pName); // Set nurbs properties. lNurbs->SetOrder(4, 4); lNurbs->SetStep(2, 2); lNurbs->InitControlPoints(8, FbxNurbs::ePeriodic, 7, FbxNurbs::eOpen); double lUKnotVector[] = { -3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0 }; memcpy(lNurbs->GetUKnotVector(), lUKnotVector, lNurbs->GetUKnotCount()*sizeof(double)); double lVKnotVector[] = { 0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0, 4.0, 4.0, 4.0 }; memcpy(lNurbs->GetVKnotVector(), lVKnotVector, lNurbs->GetVKnotCount()*sizeof(double)); FbxVector4* lVector4 = lNurbs->GetControlPoints(); int i, j; double lPi = 3.14159; double lYAngle[] = { 90.0, 90.0, 52.0, 0.0, -52.0, -90.0, -90.0 }; double lRadius[] = { 0.0, 0.283, 0.872, 1.226, 0.872, 0.283, 0.0}; for (i = 0; i < 7; i++) { for (j = 0; j < 8; j++) { double lX = size * lRadius[i] * cos(lPi/4*j); double lY = size * sin(2*lPi/360*lYAngle[i]); double lZ = size * lRadius[i] * sin(lPi/4*j); double lWeight = 1.0; lVector4[8*i + j].Set(lX, lY, lZ, lWeight); } } FbxNode* lNode = FbxNode::Create(pScene,pName); lNode->SetNodeAttribute(lNurbs); lNode->LclTranslation.Set(FbxVector4(0.0, 0.0, 0.0)); lNode->LclRotation.Set(FbxVector4(0.0, 0.0, 0.0)); lNode->LclScaling.Set(FbxVector4(1.0, 1.0, 1.0)); return lNode; }
FbxNode* ILDLMesh::CreateMesh( FbxScene* pScene, const char* pName ) { int nVerts = (int)m_vertex_list.size(); FbxMesh* lMesh = FbxMesh::Create(pScene,pName); lMesh->InitControlPoints( nVerts ); FbxVector4* lControlPoints = lMesh->GetControlPoints(); FbxGeometryElementNormal* lGeometryElementNormal= lMesh->CreateElementNormal(); lGeometryElementNormal->SetMappingMode(FbxGeometryElement::eByControlPoint); lGeometryElementNormal->SetReferenceMode(FbxGeometryElement::eDirect); int vi = 0, glidx = 0; for( ILDLVertexIter i = m_vertex_list.begin(); i != m_vertex_list.end(); ++i, vi++ ) { ILDLVertexPtr vp = (*i); vp->m_glIdx = glidx; vec3 coords = vp->getCoords(); lControlPoints[vi] = FbxVector4( coords[0], coords[1], coords[2] ); vec3 normal = vp->getNormal(); lGeometryElementNormal->GetDirectArray().Add( FbxVector4( normal[0], normal[1], normal[2] ) ); glidx++; } for( ILDLFaceIter i = m_face_list.begin(); i != m_face_list.end(); ++i ) { ILDLFacePtr fp = *i; ILDLFaceVertexPtr fvp = fp->front(); lMesh->BeginPolygon(-1, -1, -1, false); lMesh->AddPolygon( fvp->getVertexPtr()->m_glIdx ); fvp = fvp->next(); lMesh->AddPolygon( fvp->getVertexPtr()->m_glIdx ); fvp = fvp->next(); lMesh->AddPolygon( fvp->getVertexPtr()->m_glIdx ); lMesh->EndPolygon (); } FbxNode* lNode = FbxNode::Create(pScene,pName); lNode->SetNodeAttribute(lMesh); return lNode; }
int main(int argc, char** argv) { if (argc < 2) { printf("Usage: emdfbx model.emd skeleton.esk output.fbx\n Can include multiple emd and esk files into one fbx."); getchar(); return 1; } LibXenoverse::initializeDebuggingLog(); vector<string> model_filenames; vector<string> skeleton_filenames; vector<string> animation_filenames; string export_filename = ""; for (int i = 1; i < argc; i++) { string parameter = ToString(argv[i]); string extension = LibXenoverse::extensionFromFilename(parameter); if (extension == "emd") { model_filenames.push_back(parameter); } if (extension == "esk") { skeleton_filenames.push_back(parameter); } if (extension == "ean") { animation_filenames.push_back(parameter); } if (extension == "fbx") { export_filename = parameter; } } if (!export_filename.size()) { if (model_filenames.size()) { export_filename = model_filenames[0] + ".fbx"; } else if (skeleton_filenames.size()) { export_filename = skeleton_filenames[0] + ".fbx"; } else { export_filename = "Out.fbx"; } } // Create FBX Manager FbxManager *sdk_manager = FbxManager::Create(); FbxIOSettings *ios = FbxIOSettings::Create(sdk_manager, IOSROOT); ios->SetBoolProp(EXP_FBX_EMBEDDED, true); sdk_manager->SetIOSettings(ios); // Create Scene vector<FbxNode *> global_fbx_bones; global_fbx_bones.reserve(300); vector<size_t> global_fbx_bones_index; //TODO find a better way to link skeleton and animations global_fbx_bones_index.reserve(300); vector<FbxAnimCurveNode *> global_fbx_animation; global_fbx_animation.reserve(300); FbxScene *scene = FbxScene::Create(sdk_manager, "EMDFBXScene"); // Load Shaders and convert it to fx file (will be use by fbx). vector<string> shader_names; shader_names.push_back("adam_shader/shader_age_vs.emb"); //must specified vs folloxed by ps shaders shader_names.push_back("adam_shader/shader_age_ps.emb"); shader_names.push_back("adam_shader/shader_default_vs.emb"); shader_names.push_back("adam_shader/shader_default_ps.emb"); bool needs_install_shaders = false; for (size_t i = 0; i < shader_names.size(); i++) { if (!LibXenoverse::fileCheck(shader_names[i])) { needs_install_shaders = true; break; } } if (needs_install_shaders) { printf("Shaders not found. Please use Xenoviewer to prepare shaders in bin folder."); return -1; } for (size_t i = 0; i+1 < shader_names.size(); i+=2) { LibXenoverse::EMB *shader_pack_vs = new LibXenoverse::EMB(); LibXenoverse::EMB *shader_pack_ps = new LibXenoverse::EMB(); if (!shader_pack_vs->load(shader_names[i])) { delete shader_pack_vs; printf("Couldn't load Shader Pack %s. File is either missing, open by another application, or corrupt.", shader_names[i].c_str()); continue; } if (!shader_pack_ps->load(shader_names[i+1])) { delete shader_pack_vs; delete shader_pack_ps; printf("Couldn't load Shader Pack %s. File is either missing, open by another application, or corrupt.", shader_names[i].c_str()); continue; } shader_pack_vs->exportShadersToFx(shader_pack_vs, shader_pack_ps); //convert all shaders in fx file with defaults program parameters (like Ogre's version). } //build FBX skeleton for (size_t i = 0; i < skeleton_filenames.size(); i++) { LibXenoverse::ESK *esk_skeleton = new LibXenoverse::ESK(); esk_skeleton->load(skeleton_filenames[i]); vector<FbxNode *> fbx_bones = esk_skeleton->createFBXSkeleton(scene); for (size_t j = 0; j < fbx_bones.size(); j++) { global_fbx_bones.push_back(fbx_bones[j]); global_fbx_bones_index.push_back(j); //kepp index of bone to link with animations. } } //build FBX animations for (size_t i = 0; i < animation_filenames.size(); i++) { string filename = animation_filenames.at(i); string ean_name = LibXenoverse::nameFromFilenameNoExtension(filename, true); //vector<FbxAnimCurveNode *> global_fbx_animation; LibXenoverse::EAN *animation = new LibXenoverse::EAN(); if (animation->load(filename)) { std::vector<FbxAnimStack *> list_AnimStack; size_t nbAnims = animation->getAnimations().size(); for (size_t j = 0; j < nbAnims; j++) { //we create only one stack and one layer by animation. each will animate all bones of all skeleton. LibXenoverse::EANAnimation *anim_tmp = &(animation->getAnimations().at(j)); FbxAnimStack* lAnimStack = FbxAnimStack::Create(scene, anim_tmp->getName().c_str()); FbxAnimLayer* lAnimLayer = FbxAnimLayer::Create(scene, (anim_tmp->getName() + "_Layer0").c_str()); lAnimStack->AddMember(lAnimLayer); list_AnimStack.push_back(lAnimStack); } size_t k = 0; for (vector<FbxNode *>::iterator it = global_fbx_bones.begin(); it != global_fbx_bones.end(); it++) { vector<FbxAnimCurveNode *> fbx_anim = animation->exportFBXAnimations(scene, list_AnimStack, *it, global_fbx_bones_index.at(k)); for (size_t j = 0; j < fbx_anim.size(); j++) { global_fbx_animation.push_back(fbx_anim[j]); } k++; } } else { delete animation; animation = NULL; } } for (size_t i = 0; i < model_filenames.size(); i++) { string node_name = LibXenoverse::nameFromFilenameNoExtension(model_filenames[i]); string path = model_filenames[i].substr(0, model_filenames[i].size() - LibXenoverse::nameFromFilename(model_filenames[i]).size()); LibXenoverse::EMD *emd_model = new LibXenoverse::EMD(); emd_model->load(model_filenames[i]); // Fill Scene FbxNode *lMeshNode = NULL; // Create Node lMeshNode = FbxNode::Create(scene, node_name.c_str()); lMeshNode->LclTranslation.Set(FbxVector4(0, 0, 0)); lMeshNode->LclScaling.Set(FbxVector4(1, 1, 1)); lMeshNode->LclRotation.Set(FbxVector4(0, 0, 0)); // Create and attach Mesh FbxMesh *lMesh = emd_model->exportFBX(scene, lMeshNode, path); lMeshNode->SetNodeAttribute(lMesh); if (global_fbx_bones.size()) { emd_model->exportFBXSkin(scene, lMesh, global_fbx_bones, lMeshNode->EvaluateGlobalTransform()); } // Add node to scene FbxNode *lRootNode = scene->GetRootNode(); lRootNode->AddChild(lMeshNode); } // Export FBX int lFileFormat = sdk_manager->GetIOPluginRegistry()->GetNativeWriterFormat(); FbxExporter* lExporter = FbxExporter::Create(sdk_manager, ""); bool lExportStatus = lExporter->Initialize(export_filename.c_str(), lFileFormat, sdk_manager->GetIOSettings()); if (!lExportStatus) { printf("Call to FbxExporter::Initialize() failed.\n"); printf("Error returned: %s\n\n", lExporter->GetStatus().GetErrorString()); return 1; } scene->GetGlobalSettings().SetAxisSystem(FbxAxisSystem::eMax); scene->GetGlobalSettings().SetSystemUnit(FbxSystemUnit::m); // Export scene lExporter->Export(scene); lExporter->Destroy(); return 0; }
/** * Adds an Fbx Mesh to the FBX scene based on the data in the given FStaticLODModel */ FbxNode* FFbxExporter::CreateMesh(const USkeletalMesh* SkelMesh, const TCHAR* MeshName) { const FSkeletalMeshResource* SkelMeshResource = SkelMesh->GetImportedResource(); const FStaticLODModel& SourceModel = SkelMeshResource->LODModels[0]; const int32 VertexCount = SourceModel.NumVertices; // Verify the integrity of the mesh. if (VertexCount == 0) return NULL; // Copy all the vertex data from the various chunks to a single buffer. // Makes the rest of the code in this function cleaner and easier to maintain. TArray<FSoftSkinVertex> Vertices; SourceModel.GetVertices(Vertices); if (Vertices.Num() != VertexCount) return NULL; FbxMesh* Mesh = FbxMesh::Create(Scene, TCHAR_TO_UTF8(MeshName)); // Create and fill in the vertex position data source. Mesh->InitControlPoints(VertexCount); FbxVector4* ControlPoints = Mesh->GetControlPoints(); for (int32 VertIndex = 0; VertIndex < VertexCount; ++VertIndex) { FVector Position = Vertices[VertIndex].Position; ControlPoints[VertIndex] = Converter.ConvertToFbxPos(Position); } // Create Layer 0 to hold the normals FbxLayer* LayerZero = Mesh->GetLayer(0); if (LayerZero == NULL) { Mesh->CreateLayer(); LayerZero = Mesh->GetLayer(0); } // Create and fill in the per-face-vertex normal data source. // We extract the Z-tangent and drop the X/Y-tangents which are also stored in the render mesh. FbxLayerElementNormal* LayerElementNormal= FbxLayerElementNormal::Create(Mesh, ""); LayerElementNormal->SetMappingMode(FbxLayerElement::eByControlPoint); // Set the normal values for every control point. LayerElementNormal->SetReferenceMode(FbxLayerElement::eDirect); for (int32 VertIndex = 0; VertIndex < VertexCount; ++VertIndex) { FVector Normal = Vertices[VertIndex].TangentZ; FbxVector4 FbxNormal = Converter.ConvertToFbxPos(Normal); LayerElementNormal->GetDirectArray().Add(FbxNormal); } LayerZero->SetNormals(LayerElementNormal); // Create and fill in the per-face-vertex texture coordinate data source(s). // Create UV for Diffuse channel. const int32 TexCoordSourceCount = SourceModel.NumTexCoords; TCHAR UVChannelName[32]; for (int32 TexCoordSourceIndex = 0; TexCoordSourceIndex < TexCoordSourceCount; ++TexCoordSourceIndex) { FbxLayer* Layer = Mesh->GetLayer(TexCoordSourceIndex); if (Layer == NULL) { Mesh->CreateLayer(); Layer = Mesh->GetLayer(TexCoordSourceIndex); } if (TexCoordSourceIndex == 1) { FCString::Sprintf(UVChannelName, TEXT("LightMapUV")); } else { FCString::Sprintf(UVChannelName, TEXT("DiffuseUV")); } FbxLayerElementUV* UVDiffuseLayer = FbxLayerElementUV::Create(Mesh, TCHAR_TO_UTF8(UVChannelName)); UVDiffuseLayer->SetMappingMode(FbxLayerElement::eByControlPoint); UVDiffuseLayer->SetReferenceMode(FbxLayerElement::eDirect); // Create the texture coordinate data source. for (int32 TexCoordIndex = 0; TexCoordIndex < VertexCount; ++TexCoordIndex) { const FVector2D& TexCoord = Vertices[TexCoordIndex].UVs[TexCoordSourceIndex]; UVDiffuseLayer->GetDirectArray().Add(FbxVector2(TexCoord.X, -TexCoord.Y + 1.0)); } Layer->SetUVs(UVDiffuseLayer, FbxLayerElement::eTextureDiffuse); } FbxLayerElementMaterial* MatLayer = FbxLayerElementMaterial::Create(Mesh, ""); MatLayer->SetMappingMode(FbxLayerElement::eByPolygon); MatLayer->SetReferenceMode(FbxLayerElement::eIndexToDirect); LayerZero->SetMaterials(MatLayer); // Create the per-material polygons sets. TArray<uint32> Indices; SourceModel.MultiSizeIndexContainer.GetIndexBuffer(Indices); int32 SectionCount = SourceModel.Sections.Num(); for (int32 SectionIndex = 0; SectionIndex < SectionCount; ++SectionIndex) { const FSkelMeshSection& Section = SourceModel.Sections[SectionIndex]; int32 MatIndex = Section.MaterialIndex; // Static meshes contain one triangle list per element. int32 TriangleCount = Section.NumTriangles; // Copy over the index buffer into the FBX polygons set. for (int32 TriangleIndex = 0; TriangleIndex < TriangleCount; ++TriangleIndex) { Mesh->BeginPolygon(MatIndex); for (int32 PointIndex = 0; PointIndex < 3; PointIndex++) { Mesh->AddPolygon(Indices[Section.BaseIndex + ((TriangleIndex * 3) + PointIndex)]); } Mesh->EndPolygon(); } } // Create and fill in the vertex color data source. FbxLayerElementVertexColor* VertexColor = FbxLayerElementVertexColor::Create(Mesh, ""); VertexColor->SetMappingMode(FbxLayerElement::eByControlPoint); VertexColor->SetReferenceMode(FbxLayerElement::eDirect); FbxLayerElementArrayTemplate<FbxColor>& VertexColorArray = VertexColor->GetDirectArray(); LayerZero->SetVertexColors(VertexColor); for (int32 VertIndex = 0; VertIndex < VertexCount; ++VertIndex) { FLinearColor VertColor = Vertices[VertIndex].Color.ReinterpretAsLinear(); VertexColorArray.Add( FbxColor(VertColor.R, VertColor.G, VertColor.B, VertColor.A )); } FbxNode* MeshNode = FbxNode::Create(Scene, TCHAR_TO_UTF8(MeshName)); MeshNode->SetNodeAttribute(Mesh); // Add the materials for the mesh int32 MaterialCount = SkelMesh->Materials.Num(); for(int32 MaterialIndex = 0; MaterialIndex < MaterialCount; ++MaterialIndex) { UMaterialInterface* MatInterface = SkelMesh->Materials[MaterialIndex].MaterialInterface; FbxSurfaceMaterial* FbxMaterial = NULL; if(MatInterface && !FbxMaterials.Find(MatInterface)) { FbxMaterial = ExportMaterial(MatInterface); } else { // Note: The vertex data relies on there being a set number of Materials. // If you try to add the same material again it will not be added, so create a // default material with a unique name to ensure the proper number of materials TCHAR NewMaterialName[MAX_SPRINTF]=TEXT(""); FCString::Sprintf( NewMaterialName, TEXT("Fbx Default Material %i"), MaterialIndex ); FbxMaterial = FbxSurfaceLambert::Create(Scene, TCHAR_TO_UTF8(NewMaterialName)); ((FbxSurfaceLambert*)FbxMaterial)->Diffuse.Set(FbxDouble3(0.72, 0.72, 0.72)); } MeshNode->AddMaterial(FbxMaterial); } int32 SavedMaterialCount = MeshNode->GetMaterialCount(); check(SavedMaterialCount == MaterialCount); return MeshNode; }
/** * Adds FBX skeleton nodes to the FbxScene based on the skeleton in the given USkeletalMesh, and fills * the given array with the nodes created */ FbxNode* FFbxExporter::CreateSkeleton(const USkeletalMesh* SkelMesh, TArray<FbxNode*>& BoneNodes) { const FReferenceSkeleton& RefSkeleton= SkelMesh->RefSkeleton; if(RefSkeleton.GetNum() == 0) { return NULL; } // Create a list of the nodes we create for each bone, so that children can // later look up their parent BoneNodes.Reserve(RefSkeleton.GetNum()); for(int32 BoneIndex = 0; BoneIndex < RefSkeleton.GetNum(); ++BoneIndex) { const FMeshBoneInfo& CurrentBone = RefSkeleton.GetRefBoneInfo()[BoneIndex]; const FTransform& BoneTransform = RefSkeleton.GetRefBonePose()[BoneIndex]; FbxString BoneName = Converter.ConvertToFbxString(CurrentBone.ExportName); // Create the node's attributes FbxSkeleton* SkeletonAttribute = FbxSkeleton::Create(Scene, BoneName.Buffer()); if(BoneIndex) { SkeletonAttribute->SetSkeletonType(FbxSkeleton::eLimbNode); //SkeletonAttribute->Size.Set(1.0); } else { SkeletonAttribute->SetSkeletonType(FbxSkeleton::eRoot); //SkeletonAttribute->Size.Set(1.0); } // Create the node FbxNode* BoneNode = FbxNode::Create(Scene, BoneName.Buffer()); BoneNode->SetNodeAttribute(SkeletonAttribute); // Set the bone node's local orientation FVector UnrealRotation = BoneTransform.GetRotation().Euler(); FbxVector4 LocalPos = Converter.ConvertToFbxPos(BoneTransform.GetTranslation()); FbxVector4 LocalRot = Converter.ConvertToFbxRot(UnrealRotation); BoneNode->LclTranslation.Set(LocalPos); BoneNode->LclRotation.Set(LocalRot); // If this is not the root bone, attach it to its parent if(BoneIndex) { BoneNodes[CurrentBone.ParentIndex]->AddChild(BoneNode); } // Add the node to the list of nodes, in bone order BoneNodes.Push(BoneNode); } return BoneNodes[0]; }
// Converts a CC mesh to an FBX mesh static FbxNode* ToFbxMesh(ccGenericMesh* mesh, FbxScene* pScene) { if (!mesh) return 0; FbxMesh* lMesh = FbxMesh::Create(pScene, qPrintable(mesh->getName())); ccGenericPointCloud* cloud = mesh->getAssociatedCloud(); if (!cloud) return 0; unsigned vertCount = cloud->size(); unsigned faceCount = mesh->size(); // Create control points. { lMesh->InitControlPoints(vertCount); FbxVector4* lControlPoints = lMesh->GetControlPoints(); for (unsigned i=0; i<vertCount; ++i) { const CCVector3* P = cloud->getPoint(i); lControlPoints[i] = FbxVector4(P->x,P->y,P->z); } } ccMesh* asCCMesh = 0; if (mesh->isA(CC_MESH)) asCCMesh = static_cast<ccMesh*>(mesh); // normals if (mesh->hasNormals()) { FbxGeometryElementNormal* lGeometryElementNormal = lMesh->CreateElementNormal(); if (mesh->hasTriNormals()) { // We want to have one normal per vertex of each polygon, // so we set the mapping mode to eByPolygonVertex. lGeometryElementNormal->SetMappingMode(FbxGeometryElement::eByPolygonVertex); lGeometryElementNormal->SetReferenceMode(FbxGeometryElement::eIndexToDirect); lGeometryElementNormal->GetIndexArray().SetCount(faceCount*3); if (asCCMesh) { NormsIndexesTableType* triNorms = asCCMesh->getTriNormsTable(); assert(triNorms); for (unsigned i=0; i<triNorms->currentSize(); ++i) { const PointCoordinateType* N = ccNormalVectors::GetNormal(triNorms->getValue(i)); FbxVector4 Nfbx(N[0],N[1],N[2]); lGeometryElementNormal->GetDirectArray().Add(Nfbx); } for (unsigned j=0; j<faceCount; ++j) { int i1,i2,i3; asCCMesh->getTriangleNormalIndexes(j,i1,i2,i3); lGeometryElementNormal->GetIndexArray().SetAt(static_cast<int>(j)*3+0, i1); lGeometryElementNormal->GetIndexArray().SetAt(static_cast<int>(j)*3+1, i2); lGeometryElementNormal->GetIndexArray().SetAt(static_cast<int>(j)*3+2, i3); } } else { for (unsigned j=0; j<faceCount; ++j) { //we can't use the 'NormsIndexesTable' so we save all the normals of all the vertices CCVector3 Na,Nb,Nc; lGeometryElementNormal->GetDirectArray().Add(FbxVector4(Na.x,Na.y,Na.z)); lGeometryElementNormal->GetDirectArray().Add(FbxVector4(Nb.x,Nb.y,Nb.z)); lGeometryElementNormal->GetDirectArray().Add(FbxVector4(Nc.x,Nc.y,Nc.z)); mesh->getTriangleNormals(j,Na,Nb,Nc); lGeometryElementNormal->GetIndexArray().SetAt(static_cast<int>(j)*3+0, static_cast<int>(j)*3+0); lGeometryElementNormal->GetIndexArray().SetAt(static_cast<int>(j)*3+1, static_cast<int>(j)*3+1); lGeometryElementNormal->GetIndexArray().SetAt(static_cast<int>(j)*3+2, static_cast<int>(j)*3+2); } } } else { // We want to have one normal for each vertex (or control point), // so we set the mapping mode to eByControlPoint. lGeometryElementNormal->SetMappingMode(FbxGeometryElement::eByControlPoint); // The first method is to set the actual normal value // for every control point. lGeometryElementNormal->SetReferenceMode(FbxGeometryElement::eDirect); for (unsigned i=0; i<vertCount; ++i) { const PointCoordinateType* N = cloud->getPointNormal(i); FbxVector4 Nfbx(N[0],N[1],N[2]); lGeometryElementNormal->GetDirectArray().Add(Nfbx); } } } else { ccLog::Warning("[FBX] Mesh has no normal! You can manually compute them (select it then call \"Edit > Normals > Compute\")"); } // colors if (cloud->hasColors()) { FbxGeometryElementVertexColor* lGeometryElementVertexColor = lMesh->CreateElementVertexColor(); lGeometryElementVertexColor->SetMappingMode(FbxGeometryElement::eByControlPoint); lGeometryElementVertexColor->SetReferenceMode(FbxGeometryElement::eDirect); for (unsigned i=0; i<vertCount; ++i) { const colorType* C = cloud->getPointColor(i); FbxColor col( FbxDouble3( static_cast<double>(C[0])/MAX_COLOR_COMP, static_cast<double>(C[1])/MAX_COLOR_COMP, static_cast<double>(C[2])/MAX_COLOR_COMP ) ); lGeometryElementVertexColor->GetDirectArray().Add(col); } } // Set material mapping. //FbxGeometryElementMaterial* lMaterialElement = lMesh->CreateElementMaterial(); //lMaterialElement->SetMappingMode(FbxGeometryElement::eByPolygon); //lMaterialElement->SetReferenceMode(FbxGeometryElement::eIndexToDirect); // Create polygons. Assign material indices. { for (unsigned j=0; j<faceCount; ++j) { const CCLib::TriangleSummitsIndexes* tsi = mesh->getTriangleIndexes(j); lMesh->BeginPolygon(static_cast<int>(j)); lMesh->AddPolygon(tsi->i1); lMesh->AddPolygon(tsi->i2); lMesh->AddPolygon(tsi->i3); lMesh->EndPolygon(); } } FbxNode* lNode = FbxNode::Create(pScene,qPrintable(mesh->getName())); lNode->SetNodeAttribute(lMesh); //CreateMaterials(pScene, lMesh); return lNode; }
// Converts a CC mesh to an FBX mesh static FbxNode* ToFbxMesh(ccGenericMesh* mesh, FbxScene* pScene, QString filename, size_t meshIndex) { if (!mesh) return 0; FbxNode* lNode = FbxNode::Create(pScene,qPrintable(mesh->getName())); FbxMesh* lMesh = FbxMesh::Create(pScene, qPrintable(mesh->getName())); lNode->SetNodeAttribute(lMesh); ccGenericPointCloud* cloud = mesh->getAssociatedCloud(); if (!cloud) return 0; unsigned vertCount = cloud->size(); unsigned faceCount = mesh->size(); // Create control points. { lMesh->InitControlPoints(vertCount); FbxVector4* lControlPoints = lMesh->GetControlPoints(); for (unsigned i=0; i<vertCount; ++i) { const CCVector3* P = cloud->getPoint(i); lControlPoints[i] = FbxVector4(P->x,P->y,P->z); //lControlPoints[i] = FbxVector4(P->x,P->z,-P->y); //DGM: see loadFile (Y and Z are inverted) } } ccMesh* asCCMesh = 0; if (mesh->isA(CC_TYPES::MESH)) asCCMesh = static_cast<ccMesh*>(mesh); // normals if (mesh->hasNormals()) { FbxGeometryElementNormal* lGeometryElementNormal = lMesh->CreateElementNormal(); if (mesh->hasTriNormals()) { // We want to have one normal per vertex of each polygon, // so we set the mapping mode to eByPolygonVertex. lGeometryElementNormal->SetMappingMode(FbxGeometryElement::eByPolygonVertex); lGeometryElementNormal->SetReferenceMode(FbxGeometryElement::eIndexToDirect); lGeometryElementNormal->GetIndexArray().SetCount(faceCount*3); if (asCCMesh) { NormsIndexesTableType* triNorms = asCCMesh->getTriNormsTable(); assert(triNorms); for (unsigned i=0; i<triNorms->currentSize(); ++i) { const CCVector3& N = ccNormalVectors::GetNormal(triNorms->getValue(i)); FbxVector4 Nfbx(N.x,N.y,N.z); lGeometryElementNormal->GetDirectArray().Add(Nfbx); } for (unsigned j=0; j<faceCount; ++j) { int i1,i2,i3; asCCMesh->getTriangleNormalIndexes(j,i1,i2,i3); lGeometryElementNormal->GetIndexArray().SetAt(static_cast<int>(j)*3+0, i1); lGeometryElementNormal->GetIndexArray().SetAt(static_cast<int>(j)*3+1, i2); lGeometryElementNormal->GetIndexArray().SetAt(static_cast<int>(j)*3+2, i3); } } else { for (unsigned j=0; j<faceCount; ++j) { //we can't use the 'NormsIndexesTable' so we save all the normals of all the vertices CCVector3 Na,Nb,Nc; lGeometryElementNormal->GetDirectArray().Add(FbxVector4(Na.x,Na.y,Na.z)); lGeometryElementNormal->GetDirectArray().Add(FbxVector4(Nb.x,Nb.y,Nb.z)); lGeometryElementNormal->GetDirectArray().Add(FbxVector4(Nc.x,Nc.y,Nc.z)); mesh->getTriangleNormals(j,Na,Nb,Nc); lGeometryElementNormal->GetIndexArray().SetAt(static_cast<int>(j)*3+0, static_cast<int>(j)*3+0); lGeometryElementNormal->GetIndexArray().SetAt(static_cast<int>(j)*3+1, static_cast<int>(j)*3+1); lGeometryElementNormal->GetIndexArray().SetAt(static_cast<int>(j)*3+2, static_cast<int>(j)*3+2); } } } else { // We want to have one normal for each vertex (or control point), // so we set the mapping mode to eByControlPoint. lGeometryElementNormal->SetMappingMode(FbxGeometryElement::eByControlPoint); // The first method is to set the actual normal value // for every control point. lGeometryElementNormal->SetReferenceMode(FbxGeometryElement::eDirect); for (unsigned i=0; i<vertCount; ++i) { const CCVector3& N = cloud->getPointNormal(i); FbxVector4 Nfbx(N.x,N.y,N.z); lGeometryElementNormal->GetDirectArray().Add(Nfbx); } } } else { ccLog::Warning("[FBX] Mesh has no normal! You can manually compute them (select it then call \"Edit > Normals > Compute\")"); } // Set material mapping. bool hasMaterial = false; if (asCCMesh && asCCMesh->hasMaterials()) { const ccMaterialSet* matSet = asCCMesh->getMaterialSet(); size_t matCount = matSet->size(); //check if we have textures bool hasTextures = asCCMesh->hasTextures(); if (hasTextures) { //check that we actually have materials with textures as well! hasTextures = false; for (size_t i=0; i<matCount; ++i) { ccMaterial::CShared mat = matSet->at(i); if (mat->hasTexture()) { hasTextures = true; break; } } } static const char gDiffuseElementName[] = "DiffuseUV"; // Create UV for Diffuse channel if (hasTextures) { FbxGeometryElementUV* lUVDiffuseElement = lMesh->CreateElementUV(gDiffuseElementName); assert(lUVDiffuseElement != 0); lUVDiffuseElement->SetMappingMode(FbxGeometryElement::eByPolygonVertex); lUVDiffuseElement->SetReferenceMode(FbxGeometryElement::eIndexToDirect); //fill Direct Array const TextureCoordsContainer* texCoords = asCCMesh->getTexCoordinatesTable(); assert(texCoords); if (texCoords) { unsigned count = texCoords->currentSize(); lUVDiffuseElement->GetDirectArray().SetCount(static_cast<int>(count)); for (unsigned i=0; i<count; ++i) { const float* uv = texCoords->getValue(i); lUVDiffuseElement->GetDirectArray().SetAt(i,FbxVector2(uv[0],uv[1])); } } //fill Indexes Array assert(asCCMesh->hasPerTriangleTexCoordIndexes()); if (asCCMesh->hasPerTriangleTexCoordIndexes()) { unsigned triCount = asCCMesh->size(); lUVDiffuseElement->GetIndexArray().SetCount(static_cast<int>(3*triCount)); for (unsigned j=0; j<triCount; ++j) { int t1=0, t2=0, t3=0; asCCMesh->getTriangleTexCoordinatesIndexes(j, t1, t2, t3); lUVDiffuseElement->GetIndexArray().SetAt(j*3+0,t1); lUVDiffuseElement->GetIndexArray().SetAt(j*3+1,t2); lUVDiffuseElement->GetIndexArray().SetAt(j*3+2,t3); } } } //Textures used in this file QMap<QString,QString> texFilenames; //directory to save textures (if any) QFileInfo info(filename); QString textDirName = info.baseName() + QString(".fbm"); QDir baseDir = info.absoluteDir(); QDir texDir = QDir(baseDir.absolutePath() + QString("/") + textDirName); for (size_t i=0; i<matCount; ++i) { ccMaterial::CShared mat = matSet->at(i); FbxSurfacePhong *lMaterial = FbxSurfacePhong::Create(pScene, qPrintable(mat->getName())); const ccColor::Rgbaf& emission = mat->getEmission(); const ccColor::Rgbaf& ambient = mat->getAmbient(); const ccColor::Rgbaf& diffuse = mat->getDiffuseFront(); const ccColor::Rgbaf& specular = mat->getDiffuseFront(); lMaterial->Emissive.Set(FbxDouble3(emission.r,emission.g,emission.b)); lMaterial->Ambient .Set(FbxDouble3( ambient.r, ambient.g, ambient.b)); lMaterial->Diffuse .Set(FbxDouble3( diffuse.r, diffuse.g, diffuse.b)); lMaterial->Specular.Set(FbxDouble3(specular.r,specular.g,specular.b)); lMaterial->Shininess = mat->getShininessFront(); lMaterial->ShadingModel.Set("Phong"); if (hasTextures && mat->hasTexture()) { QString texFilename = mat->getTextureFilename(); //texture has not already been processed if (!texFilenames.contains(texFilename)) { //if necessary, we (try to) create a subfolder to store textures if (!texDir.exists()) { texDir = baseDir; if (texDir.mkdir(textDirName)) { texDir.cd(textDirName); } else { textDirName = QString(); ccLog::Warning("[FBX] Failed to create subfolder '%1' to store texture files (files will be stored next to the .fbx file)"); } } QFileInfo fileInfo(texFilename); QString baseTexName = fileInfo.fileName(); //add extension QString extension = QFileInfo(texFilename).suffix(); if (fileInfo.suffix().isEmpty()) baseTexName += QString(".png"); QString absoluteFilename = texDir.absolutePath() + QString("/") + baseTexName; ccLog::PrintDebug(QString("[FBX] Material '%1' texture: %2").arg(mat->getName()).arg(absoluteFilename)); texFilenames[texFilename] = absoluteFilename; } //mat.texture.save(absoluteFilename); // Set texture properties. FbxFileTexture* lTexture = FbxFileTexture::Create(pScene,"DiffuseTexture"); assert(!texFilenames[texFilename].isEmpty()); lTexture->SetFileName(qPrintable(texFilenames[texFilename])); lTexture->SetTextureUse(FbxTexture::eStandard); lTexture->SetMappingType(FbxTexture::eUV); lTexture->SetMaterialUse(FbxFileTexture::eModelMaterial); lTexture->SetSwapUV(false); lTexture->SetTranslation(0.0, 0.0); lTexture->SetScale(1.0, 1.0); lTexture->SetRotation(0.0, 0.0); lTexture->UVSet.Set(FbxString(gDiffuseElementName)); // Connect texture to the proper UV // don't forget to connect the texture to the corresponding property of the material lMaterial->Diffuse.ConnectSrcObject(lTexture); } int matIndex = lNode->AddMaterial(lMaterial); assert(matIndex == static_cast<int>(i)); } //don't forget to save the texture files { for (QMap<QString,QString>::ConstIterator it = texFilenames.begin(); it != texFilenames.end(); ++it) { const QImage image = ccMaterial::GetTexture(it.key()); image.mirrored().save(it.value()); } texFilenames.clear(); //don't need this anymore! } // Create 'triangle to material index' mapping { FbxGeometryElementMaterial* lMaterialElement = lMesh->CreateElementMaterial(); lMaterialElement->SetMappingMode(FbxGeometryElement::eByPolygon); lMaterialElement->SetReferenceMode(FbxGeometryElement::eIndexToDirect); } hasMaterial = true; } // colors if (cloud->hasColors()) { FbxGeometryElementVertexColor* lGeometryElementVertexColor = lMesh->CreateElementVertexColor(); lGeometryElementVertexColor->SetMappingMode(FbxGeometryElement::eByControlPoint); lGeometryElementVertexColor->SetReferenceMode(FbxGeometryElement::eDirect); lGeometryElementVertexColor->GetDirectArray().SetCount(vertCount); for (unsigned i=0; i<vertCount; ++i) { const colorType* C = cloud->getPointColor(i); FbxColor col( static_cast<double>(C[0])/ccColor::MAX, static_cast<double>(C[1])/ccColor::MAX, static_cast<double>(C[2])/ccColor::MAX ); lGeometryElementVertexColor->GetDirectArray().SetAt(i,col); } if (!hasMaterial) { //it seems that we have to create a fake material in order for the colors to be displayed (in Unity and FBX Review at least)! FbxSurfacePhong *lMaterial = FbxSurfacePhong::Create(pScene, "ColorMaterial"); lMaterial->Emissive.Set(FbxDouble3(0,0,0)); lMaterial->Ambient.Set(FbxDouble3(0,0,0)); lMaterial->Diffuse.Set(FbxDouble3(1,1,1)); lMaterial->Specular.Set(FbxDouble3(0,0,0)); lMaterial->Shininess = 0; lMaterial->ShadingModel.Set("Phong"); FbxGeometryElementMaterial* lMaterialElement = lMesh->CreateElementMaterial(); lMaterialElement->SetMappingMode(FbxGeometryElement::eAllSame); lMaterialElement->SetReferenceMode(FbxGeometryElement::eDirect); lNode->AddMaterial(lMaterial); } } // Create polygons { for (unsigned j=0; j<faceCount; ++j) { const CCLib::TriangleSummitsIndexes* tsi = mesh->getTriangleIndexes(j); int matIndex = hasMaterial ? asCCMesh->getTriangleMtlIndex(j) : -1; lMesh->BeginPolygon(matIndex); lMesh->AddPolygon(tsi->i1); lMesh->AddPolygon(tsi->i2); lMesh->AddPolygon(tsi->i3); lMesh->EndPolygon(); } } return lNode; }
void ExportBones(const Value& obj) { const Value& boneName = obj["BoneName"]; if (boneName.IsNull()) { return; } //string name = obj["Name"].GetString(); const Value& parentIndex = obj["ParentIndex"]; const Value& boneTransform = obj["BoneTransform"]; fbxBones.resize(boneName.Size()); for (uint32_t i = 0; i < fbxBones.size(); i++) { FbxNode* boneNode = FbxNode::Create(pScene, boneName[i].GetString()); fbxBones[i] = boneNode; double x, y, z, w; x = boneTransform[i * 7 + 0].GetDouble(); x = -x; y = boneTransform[i * 7 + 1].GetDouble(); z = boneTransform[i * 7 + 2].GetDouble(); boneNode->LclTranslation.Set(FbxDouble3(x, y, z)); x = boneTransform[i * 7 + 3].GetDouble(); y = boneTransform[i * 7 + 4].GetDouble(); z = boneTransform[i * 7 + 5].GetDouble(); w = boneTransform[i * 7 + 6].GetDouble(); FbxSkeleton* pSkeleton = FbxSkeleton::Create(pScene, boneName[i].GetString()); int parent = parentIndex[i].GetInt(); if (parent == -1) { pSkeleton->SetSkeletonType(FbxSkeleton::eRoot); } else { pSkeleton->SetSkeletonType(FbxSkeleton::eLimbNode); pSkeleton->Size.Set(0.1); } boneNode->SetNodeAttribute(pSkeleton); } for (uint32_t i = 0; i < fbxBones.size(); i++) { int parent = parentIndex[i].GetInt(); if (parent == -1) { pScene->GetRootNode()->AddChild(fbxBones[i]); } else { fbxBones[parent]->AddChild(fbxBones[i]); } } FbxPose* lPose = FbxPose::Create(pScene, boneName[0].GetString()); // default pose type is rest pose, so we need to set the type as bind pose lPose->SetIsBindPose(true); for (uint32_t i = 0; i < fbxBones.size(); i++) { FbxNode* lKFbxNode = fbxBones[i]; FbxMatrix lBindMatrix = lKFbxNode->EvaluateGlobalTransform(); lPose->Add(lKFbxNode, lBindMatrix); } pScene->AddPose(lPose); }