コード例 #1
0
// on a segment
void featureMapping(MixtureServer & ms, FeatureServer & fs,Seg * seg,Config &config) {
  unsigned long begin=seg->begin()+fs.getFirstFeatureIndexOfASource(seg->sourceName()); // Idx of the first frame of the current file in the feature server
  fs.seekFeature(begin);
  Feature f;
  for (unsigned long idxFrame=0;idxFrame<seg->length();idxFrame++){                          // for all the features of the segment
    fs.readFeature(f,0); 		
    featureMapping(ms,f,config);
    fs.writeFeature(f);
  }
}
コード例 #2
0
// ----------------------------------------------------------------------------------------------------------
// Feature Warping giving a source(tab of histo, one by coeff) and a target distribution 
// for a segment and cluster (segment is the minimum time unit to perform this)
void computeWarp(Histo *histoT,Histo &destH,FeatureServer & fs,unsigned long begin, unsigned long length,Config &config) {  
  unsigned long vectsize=fs.getVectSize();                                       // Get the vect size (number of coeff)
  Feature f;
  fs.seekFeature(begin);
  for (unsigned long idxFrame=0;idxFrame<length;idxFrame++){                     // for all the features of the segment
    fs.readFeature(f,0);  
    // Get the feature;
    for (unsigned int i = 0; i < vectsize; i++){    // For each coeff
      f[i]=warping(f[i],histoT[i],destH);           // Apply the warping function
    }
    fs.writeFeature(f);
  }
}
コード例 #3
0
// ----------------------------------------------------------------------------------------------------------
// Feature Mean subtraction and Cov reduction for a segment and cluster (segment is considerred to be the minimum time unit to perform this).
void computeZeroOne(const DoubleVector &featureMean,const DoubleVector &featureStd,FeatureServer & fs,unsigned long begin, unsigned long length,Config &config) {
  unsigned long vectsize=fs.getVectSize();                                       // Get the vect size (number of coeff)
  Feature f;
  fs.seekFeature(begin);
  for (unsigned long idxFrame=0;idxFrame<length;idxFrame++){                     // for all the features of the segment
    fs.readFeature(f,0);  
    // Get the feature;
    for (unsigned int i = 0; i < vectsize; i++)       {                  // For each coeff
      f[i]=(f[i]-featureMean[i])/featureStd[i];    // Apply the 0 mean 1 cov normalisation
    }
    fs.writeFeature(f);
  }
}
コード例 #4
0
ファイル: FactorAnalysis.cpp プロジェクト: ftahmed/LIA_RAL
/// Normalize features with a smooth mixture transformation o't=ot-sum(P(c|ot)Uc.x)
void FactorAnalysisStat::normalizeFeatures(SegCluster &selectedSegments,FeatureServer &fs,Config & config){
	if (verbose) cout << "(FactorAnalysisStat) Normalize Features" << endl;	
	MixtureGD & clientMixture=_ms.getMixtureGD(1); // copy the UBM mixture		
	unsigned long nt=0;	
	RealVector <double> m_xh_1; m_xh_1.setSize(_supervsize); 	
	double *_m_xh_1=m_xh_1.getArray();
	Seg *seg;          // current selectd segment
	selectedSegments.rewind();
	String currentSource="";
	while((seg=selectedSegments.getSeg())!=NULL){                	
		unsigned long begin=seg->begin()+fs.getFirstFeatureIndexOfASource(seg->sourceName()); 
		if (currentSource!=seg->sourceName()) {
			currentSource=seg->sourceName();
			this->getUX(m_xh_1,currentSource);
			this->getSpeakerModel(clientMixture,currentSource);			
			if (verbose)cout << "Processing speaker["<<currentSource<<"]"<< endl;	
		}		
		fs.seekFeature(begin);
		Feature f;
		if (!_topGauss) {
			for (unsigned long idxFrame=0;idxFrame<seg->length();idxFrame++){
				fs.readFeature(f,0);
				double *ff=f.getDataVector();				
				double sum=0.0;
				RealVector <double> P;
				P.setSize(_mixsize);
				double *Prob=P.getArray();
				for(unsigned long k=0;k<_mixsize;k++) {
					Prob[k]=clientMixture.weight(k)*clientMixture.getDistrib(k).computeLK(f);
					sum+=Prob[k];
					}
				for(unsigned long k=0;k<_mixsize;k++) 
					Prob[k]/=sum; 
				for(unsigned long k=0;k<_mixsize;k++) {
					for (unsigned long i=0;i<_vsize;i++) 
						ff[i]-= Prob[k]*_m_xh_1[k*_vsize+i];
					}
				fs.writeFeature(f);
				nt++;		
			}	
		}
		else {
			throw Exception("no topgauss yet",__FILE__,__LINE__);
		}
	}
};