コード例 #1
0
ファイル: VelocityStencil.cpp プロジェクト: muyan93/Euler-EOF
void VelocityStencil::apply ( FlowField & flowField, int i, int j, int k ){

    const FLOAT dt = _parameters.timestep.dt;
    const int obstacle = flowField.getFlags().getValue(i, j, k);
    VectorField & velocity = flowField.getVelocity();

    if ((obstacle & OBSTACLE_SELF) == 0) {
        if ((obstacle & OBSTACLE_RIGHT) == 0) {
            const FLOAT dx = 0.5*(_parameters.meshsize->getDx(i,j,k)+_parameters.meshsize->getDx(i+1,j,k));
            velocity.getVector(i,j,k)[0] = flowField.getFGH().getVector(i,j,k)[0] - dt/dx *
                (flowField.getPressure().getScalar(i+1,j,k) - flowField.getPressure().getScalar(i,j,k));
        } else {
            velocity.getVector(i, j, k)[0] = 0.0;
        }
        if ((obstacle & OBSTACLE_TOP) == 0) {
            const FLOAT dy = 0.5*(_parameters.meshsize->getDy(i,j,k)+_parameters.meshsize->getDy(i,j+1,k));
            velocity.getVector(i,j,k)[1] = flowField.getFGH().getVector(i,j,k)[1] - dt/dy *
                (flowField.getPressure().getScalar(i,j+1,k) - flowField.getPressure().getScalar(i,j,k));
        } else {
            velocity.getVector(i, j, k)[1] = 0.0;
        }
        if ((obstacle & OBSTACLE_BACK) == 0) {
            const FLOAT dz = 0.5*(_parameters.meshsize->getDz(i,j,k)+_parameters.meshsize->getDz(i,j,k+1));
            velocity.getVector(i,j,k)[2] = flowField.getFGH().getVector(i,j,k)[2] - dt/dz *
                (flowField.getPressure().getScalar(i,j,k+1) - flowField.getPressure().getScalar(i,j,k));
        } else {
            velocity.getVector(i, j, k)[2] = 0.0;
        }
    }
}
コード例 #2
0
ファイル: VelocityStencil.cpp プロジェクト: muyan93/Euler-EOF
void VelocityStencil::apply ( FlowField & flowField, int i, int j ){

    const FLOAT dt = _parameters.timestep.dt;
    const int obstacle = flowField.getFlags().getValue(i, j);
    VectorField & velocity = flowField.getVelocity();

    if ((obstacle & OBSTACLE_SELF) == 0){ // If this is a fluid cell
        if ((obstacle & OBSTACLE_RIGHT) == 0){  // Check whether the neighbor is also fluid
            // we require a spatial finite difference expression for the pressure gradient, evaluated
            // at the location of the u-component. We therefore compute the distance of neighbouring
            // pressure values (dx) and use this as sort-of central difference expression. This will
            // yield second-order accuracy for uniform meshsizes.
            const FLOAT dx = 0.5*(_parameters.meshsize->getDx(i,j)+_parameters.meshsize->getDx(i+1,j));
            velocity.getVector(i,j)[0] = flowField.getFGH().getVector(i,j)[0] - dt/dx *
                (flowField.getPressure().getScalar(i+1,j) - flowField.getPressure().getScalar(i,j));

        } else {    // Otherwise, set to zero
            velocity.getVector(i,j)[0] = 0;
        }   // Note that we only set one direction per cell. The neighbor at the left is
            // responsible for the other side
        if ((obstacle & OBSTACLE_TOP) == 0){
            const FLOAT dy = 0.5*(_parameters.meshsize->getDy(i,j)+_parameters.meshsize->getDy(i,j+1));
            velocity.getVector(i,j)[1] = flowField.getFGH().getVector(i,j)[1] - dt/dy *
                (flowField.getPressure().getScalar(i,j+1) - flowField.getPressure().getScalar(i,j));

        } else {
            velocity.getVector(i,j)[1] = 0;
        }
    } 
}
コード例 #3
0
void VTKStencil:: apply ( FlowField & flowField, int i, int j, int k ){

	if (i==1 || j==1 || k==1){return;}	

	int flag_value=flowField.getFlags().getValue(i,j,k);
	FLOAT velocity[3];
	FLOAT pressure; 
	flowField.getPressureAndVelocity(pressure,velocity,i,j,k);

	if (flag_value & OBSTACLE_SELF){
		if(output_flag == 0){			
			*(this->_outputFile)<<"0.0"<<std::endl;
		}else{
			*(this->_outputFile)<<"0.0 0.0 0.0"<<std::endl;			
		}
	}else{
		if(output_flag == 0){			
			*(this->_outputFile)<< pressure <<std::endl;
		}else{
			*(this->_outputFile)<< velocity[0] << " " << velocity[1] << " " << velocity[2] <<std::endl;			
		}	}
	return ;
}