/// <summary> /// The example shows /// - how to load a pretrained model and evaluate several nodes by combining their outputs /// Note: The example uses the model trained by <CNTK>/Examples/Image/Classification/ResNet/Python/TrainResNet_CIFAR10.py /// Please see README.md in <CNTK>/Examples/Image/Classification/ResNet about how to train the model. /// The parameter 'modelFilePath' specifies the path to the model. /// </summary> void EvaluateCombinedOutputs(const wchar_t* modelFilePath, const DeviceDescriptor& device) { printf("\n===== Evaluate combined outputs =====\n"); // Load the model. FunctionPtr modelFunc = Function::Load(modelFilePath, device); // Get node of interest std::wstring intermediateLayerName = L"final_avg_pooling"; FunctionPtr interLayerPrimitiveFunc = modelFunc->FindByName(intermediateLayerName); Variable poolingOutput = interLayerPrimitiveFunc->Output(); // Create a function which combine outputs from the node "final_avg_polling" and the final layer of the model. FunctionPtr evalFunc = Combine( { modelFunc->Output(), poolingOutput }); Variable inputVar = evalFunc->Arguments()[0]; // Prepare input data. // For evaluating an image, you first need to perform some image preprocessing to make sure that the input image has the correct size and layout // that match the model inputs. // Please note that the model used by this example expects the CHW image layout. // inputVar.Shape[0] is image width, inputVar.Shape[1] is image height, and inputVar.Shape[2] is channels. // For simplicity and avoiding external dependencies, we skip the preprocessing step here, and just use some artificially created data as input. std::vector<float> inputData(inputVar.Shape().TotalSize()); for (size_t i = 0; i < inputData.size(); ++i) { inputData[i] = static_cast<float>(i % 255); } // Create input value and input data map ValuePtr inputVal = Value::CreateBatch(inputVar.Shape(), inputData, device); std::unordered_map<Variable, ValuePtr> inputDataMap = { { inputVar, inputVal } }; // Create output data map. Using null as Value to indicate using system allocated memory. // Alternatively, create a Value object and add it to the data map. Variable modelOutput = evalFunc->Outputs()[0]; Variable interLayerOutput = evalFunc->Outputs()[1]; std::unordered_map<Variable, ValuePtr> outputDataMap = { { modelOutput, nullptr }, { interLayerOutput, nullptr } }; // Start evaluation on the device evalFunc->Evaluate(inputDataMap, outputDataMap, device); // Get evaluate result as dense outputs for(auto & outputVariableValuePair : outputDataMap) { auto variable = outputVariableValuePair.first; auto value = outputVariableValuePair.second; std::vector<std::vector<float>> outputData; value->CopyVariableValueTo(variable, outputData); PrintOutput<float>(variable.Shape().TotalSize(), outputData); } }
/// <summary> /// The example shows /// - how to load model. /// - how to prepare input data for a batch of samples. /// - how to prepare input and output data map. /// - how to evaluate a model. /// - how to retrieve evaluation result and retrieve output data in dense format. /// Note: The example uses the model trained by <CNTK>/Examples/Image/Classification/ResNet/Python/TrainResNet_CIFAR10.py /// Please see README.md in <CNTK>/Examples/Image/Classification/ResNet about how to train the model. /// The parameter 'modelFile' specifies the path to the model. /// </summary> void EvaluationBatchUsingDense(const wchar_t* modelFile, const DeviceDescriptor& device) { printf("\n===== Evaluate batch of samples using dense format.\n"); // The number of samples in the batch. size_t sampleCount = 3; // Load the model. // The model is trained by <CNTK>/Examples/Image/Classification/ResNet/Python/TrainResNet_CIFAR10.py // Please see README.md in <CNTK>/Examples/Image/Classification/ResNet about how to train the model. FunctionPtr modelFunc = Function::Load(modelFile, device); // Get input variable. The model has only one single input. Variable inputVar = modelFunc->Arguments()[0]; // The model has only one output. // If the model has more than one output, use modelFunc->Outputs to get the list of output variables. Variable outputVar = modelFunc->Output(); // Prepare input data. // For evaluating an image, you first need to perform some image preprocessing to make sure that the input image has the correct size and layout // that match the model inputs. // Please note that the model used by this example expects the CHW image layout. // inputVar.Shape[0] is image width, inputVar.Shape[1] is image height, and inputVar.Shape[2] is channels. // For simplicity and avoiding external dependencies, we skip the preprocessing step here, and just use some artificially created data as input. std::vector<float> inputData(inputVar.Shape().TotalSize() * sampleCount); for (size_t i = 0; i < inputData.size(); ++i) { inputData[i] = static_cast<float>(i % 255); } // Create input value and input data map. ValuePtr inputVal = Value::CreateBatch(inputVar.Shape(), inputData, device); std::unordered_map<Variable, ValuePtr> inputDataMap = { { inputVar, inputVal } }; // Create output data map. Using null as Value to indicate using system allocated memory. // Alternatively, create a Value object and add it to the data map. std::unordered_map<Variable, ValuePtr> outputDataMap = { { outputVar, nullptr } }; // Start evaluation on the device modelFunc->Evaluate(inputDataMap, outputDataMap, device); // Get evaluate result as dense output ValuePtr outputVal = outputDataMap[outputVar]; std::vector<std::vector<float>> outputData; outputVal->CopyVariableValueTo(outputVar, outputData); PrintOutput<float>(outputVar.Shape().TotalSize(), outputData); }
/// <summary> /// The example shows /// - how to load a pretrained model and evaluate an intermediate layer of its network. /// Note: The example uses the model trained by <CNTK>/Examples/Image/Classification/ResNet/Python/TrainResNet_CIFAR10.py /// Please see README.md in <CNTK>/Examples/Image/Classification/ResNet about how to train the model. /// The parameter 'modelFilePath' specifies the path to the model. /// </summary> void EvaluateIntermediateLayer(const wchar_t* modelFilePath, const DeviceDescriptor& device) { printf("\n===== Evaluate intermediate layer =====\n"); // Load the model. FunctionPtr rootFunc = Function::Load(modelFilePath, device); std::wstring intermediateLayerName = L"final_avg_pooling"; FunctionPtr interLayerPrimitiveFunc = rootFunc->FindByName(intermediateLayerName); // The Function returned by FindByName is a primitive function. // For evaluation, it is required to create a composite function from the primitive function. FunctionPtr modelFunc = AsComposite(interLayerPrimitiveFunc); Variable outputVar = modelFunc->Output(); Variable inputVar = modelFunc->Arguments()[0]; // Prepare input data. // For evaluating an image, you first need to perform some image preprocessing to make sure that the input image has the correct size and layout // that match the model inputs. // Please note that the model used by this example expects the CHW image layout. // inputVar.Shape[0] is image width, inputVar.Shape[1] is image height, and inputVar.Shape[2] is channels. // For simplicity and avoiding external dependencies, we skip the preprocessing step here, and just use some artificially created data as input. std::vector<float> inputData(inputVar.Shape().TotalSize()); for (size_t i = 0; i < inputData.size(); ++i) { inputData[i] = static_cast<float>(i % 255); } // Create input value and input data map ValuePtr inputVal = Value::CreateBatch(inputVar.Shape(), inputData, device); std::unordered_map<Variable, ValuePtr> inputDataMap = { { inputVar, inputVal } }; // Create output data map. Using null as Value to indicate using system allocated memory. // Alternatively, create a Value object and add it to the data map. std::unordered_map<Variable, ValuePtr> outputDataMap = { { outputVar, nullptr } }; // Start evaluation on the device modelFunc->Evaluate(inputDataMap, outputDataMap, device); // Get evaluate result as dense output ValuePtr outputVal = outputDataMap[outputVar]; std::vector<std::vector<float>> outputData; outputVal->CopyVariableValueTo(outputVar, outputData); PrintOutput<float>(outputVar.Shape().TotalSize(), outputData); }
void RunEvaluationOnSingleSample(FunctionPtr evalInstance, const DeviceDescriptor& device) { // Get input variable. The model has only one single input. Variable inputVar = evalInstance->Arguments()[0]; // The model has only one output. // If the model has more than one output, use modelFunc->Outputs to get the list of output variables. Variable outputVar = evalInstance->Output(); // Prepare input data. // For evaluating an image, you first need to perform some image preprocessing to make sure that the input image has the correct size and layout // that match the model inputs. // Please note that the model used by this example expects the CHW image layout. // inputVar.Shape[0] is image width, inputVar.Shape[1] is image height, and inputVar.Shape[2] is channels. // For simplicity and avoiding external dependencies, we skip the preprocessing step here, and just use some artificially created data as input. std::vector<float> inputData(inputVar.Shape().TotalSize()); for (size_t i = 0; i < inputData.size(); ++i) { inputData[i] = static_cast<float>(i % 255); } // Create input value and input data map ValuePtr inputVal = Value::CreateBatch(inputVar.Shape(), inputData, device); std::unordered_map<Variable, ValuePtr> inputDataMap = { { inputVar, inputVal } }; // Create output data map. Using null as Value to indicate using system allocated memory. // Alternatively, create a Value object and add it to the data map. std::unordered_map<Variable, ValuePtr> outputDataMap = { { outputVar, nullptr } }; // Start evaluation on the device evalInstance->Evaluate(inputDataMap, outputDataMap, device); // Get evaluate result as dense output ValuePtr outputVal = outputDataMap[outputVar]; std::vector<std::vector<float>> outputData; outputVal->CopyVariableValueTo(outputVar, outputData); }
/// <summary> /// The example shows /// - how to prepare input data as sequence using sparse input. /// The example uses the model trained by <CNTK>/Examples/LanguageUnderstanding/ATIS/Python/LanguageUnderstanding.py /// Please see README.md in <CNTK>/Examples/LanguageUnderstanding/ATIS about how to train the model. /// The parameter 'modelFile' specifies the path to the model. /// The vocabularyFile specifies the vacabulary file used by the ATIS model, e.g. <CNTK>/Examples/LanguageUnderstanding/ATIS/BrainScript/query.wl /// The labelFile specifies the label file used by the ATIS model, e.g. <CNTK>/Examples/LanguageUnderstanding/ATIS/BrainScript/slots.wl /// </summary> void EvaluationSingleSequenceUsingSparse(const wchar_t* modelFile, const wchar_t* vocabularyFile, const wchar_t* labelFile, const DeviceDescriptor& device) { printf("\n===== Evaluate single sequence using sparse input.\n"); // Load the model. // The model is trained by <CNTK>/Examples/LanguageUnderstanding/ATIS/Python/LanguageUnderstanding.py // Please see README.md in <CNTK>/Examples/LanguageUnderstanding/ATIS about how to train the model. FunctionPtr modelFunc = Function::Load(modelFile, device); // Read word and slot index files. std::unordered_map<std::string, size_t> vocabToIndex = BuildVocabIndex(vocabularyFile); std::vector<std::string> indexToSlots = BuildSlotIndex(labelFile); // Get input variable. The model has only one single input. Variable inputVar = modelFunc->Arguments()[0]; size_t vocabSize = inputVar.Shape().TotalSize(); const char *inputSentence = "BOS i would like to find a flight from charlotte to las vegas that makes a stop in st. louis EOS"; std::vector<size_t> seqData; std::vector<std::string> inputWords; std::stringstream inputStream; std::string word; // build one-hot index for the input sequence. inputStream.str(inputSentence); while (inputStream >> word) { inputWords.push_back(word); } size_t seqLen = inputWords.size(); // For this example, only 1 non-zero value for each sample. size_t numNonZeroValues = seqLen * 1; std::vector<SparseIndexType> colStarts; std::vector<SparseIndexType> rowIndices; std::vector<float> nonZeroValues; size_t count = 0; for (; count < seqLen; count++) { // Get the index of the word auto nonZeroValueIndex = static_cast<SparseIndexType>(vocabToIndex[inputWords[count]]); // Add the sample to the sequence nonZeroValues.push_back(1.0); rowIndices.push_back(nonZeroValueIndex); colStarts.push_back(static_cast<SparseIndexType>(count)); } colStarts.push_back(static_cast<SparseIndexType>(numNonZeroValues)); // Create input value using one-hot vector and input data map ValuePtr inputVal = Value::CreateSequence<float>(vocabSize, seqLen, colStarts.data(), rowIndices.data(), nonZeroValues.data(), numNonZeroValues, device); std::unordered_map<Variable, ValuePtr> inputDataMap = { { inputVar, inputVal } }; // The model has only one output. // If the model has more than one output, use modelFunc->Outputs to get the list of output variables. Variable outputVar = modelFunc->Output(); // Create output data map. Using null as Value to indicate using system allocated memory. // Alternatively, create a Value object and add it to the data map. std::unordered_map<Variable, ValuePtr> outputDataMap = { { outputVar, nullptr } }; // Start evaluation on the device modelFunc->Evaluate(inputDataMap, outputDataMap, device); // Get evaluate result as dense output ValuePtr outputVal = outputDataMap[outputVar]; std::vector<std::vector<float>> outputData; outputVal->CopyVariableValueTo(outputVar, outputData); // output the result size_t outputSampleSize = outputVar.Shape().TotalSize(); if (outputData.size() != 1) { throw("Only one sequence of slots is expected as output."); } std::vector<float> slotSeq = outputData[0]; if (slotSeq.size() % outputSampleSize != 0) { throw("The number of elements in the slot sequence is not a multiple of sample size"); } size_t numOfSlotsInOutput = slotSeq.size() / outputSampleSize; if (inputWords.size() != numOfSlotsInOutput) { throw("The number of input words and the number of output slots do not match"); } for (size_t i = 0; i < numOfSlotsInOutput; i++) { float max = slotSeq[i * outputSampleSize]; size_t maxIndex = 0; for (size_t j = 1; j < outputSampleSize; j++) { if (slotSeq[i * outputSampleSize + j] > max) { max = slotSeq[i * outputSampleSize + j]; maxIndex = j; } } printf(" %10s ---- %s\n", inputWords[i].c_str(), indexToSlots[maxIndex].c_str()); } printf("\n"); }
/// <summary> /// The example shows /// - how to load model. /// - how to prepare input data as batch of sequences with variable length. /// how to prepare data using one-hot vector format. /// - how to prepare input and output data map. /// - how to evaluate a model. /// The example uses the model trained by <CNTK>/Examples/LanguageUnderstanding/ATIS/Python/LanguageUnderstanding.py /// Please see README.md in <CNTK>/Examples/LanguageUnderstanding/ATIS about how to train the model. /// The parameter 'modelFile' specifies the path to the model. /// The vocabularyFile specifies the vacabulary file used by the ATIS model, e.g. <CNTK>/Examples/LanguageUnderstanding/ATIS/BrainScript/query.wl /// The labelFile specifies the label file used by the ATIS model, e.g. <CNTK>/Examples/LanguageUnderstanding/ATIS/BrainScript/slots.wl /// </summary> void EvaluationBatchOfSequencesUsingOneHot(const wchar_t* modelFile, const wchar_t* vocabularyFile, const wchar_t* labelFile, const DeviceDescriptor& device) { printf("\n===== Evaluate batch of sequences with variable length using one-hot vector.\n"); // Load the model. // The model is trained by <CNTK>/Examples/LanguageUnderstanding/ATIS/Python/LanguageUnderstanding.py // Please see README.md in <CNTK>/Examples/LanguageUnderstanding/ATIS about how to train the model. FunctionPtr modelFunc = Function::Load(modelFile, device); // Read word and slot index files. std::unordered_map<std::string, size_t> vocabToIndex = BuildVocabIndex(vocabularyFile); std::vector<std::string> indexToSlots = BuildSlotIndex(labelFile); // Get input variable. The model has only one single input. Variable inputVar = modelFunc->Arguments()[0]; size_t vocabSize = inputVar.Shape().TotalSize(); std::vector<const char *> inputSentences = { "BOS i would like to find a flight from charlotte to las vegas that makes a stop in st. louis EOS", "BOS flights from new york to seattle EOS" }; // Prepare input data. std::vector<std::vector<std::string>> inputWordsList(inputSentences.size()); // Each sample is represented by an index to the one-hot vector, so the index of the non-zero value of each sample is saved in the inner list. // The outer list represents sequences contained in the batch. std::vector<std::vector<size_t>> inputBatch; // SeqStartFlagBatch is used to indicate whether this sequence is a new sequence (true) or concatenating the previous sequence (false). std::vector<bool> seqStartFlagBatch; std::string word; size_t index; for (size_t seqIndex = 0; seqIndex < inputSentences.size(); seqIndex++) { std::stringstream inputStream; std::vector<size_t> seqData; // build one-hot index for the input sequences. inputStream.str(inputSentences[seqIndex]); while (inputStream >> word) { inputWordsList[seqIndex].push_back(word); index = vocabToIndex.at(word); seqData.push_back(index); } inputBatch.push_back(seqData); seqStartFlagBatch.push_back(true); } // Create input value representing the batch data and input data map ValuePtr inputVal = Value::CreateBatchOfSequences<float>(vocabSize, inputBatch, seqStartFlagBatch, device); std::unordered_map<Variable, ValuePtr> inputDataMap = { { inputVar, inputVal } }; // The model has only one output. // If the model has more than one output, use modelFunc->Outputs to get the list of output variables. Variable outputVar = modelFunc->Output(); // Create output data map. Using null as Value to indicate using system allocated memory. // Alternatively, create a Value object and add it to the data map. std::unordered_map<Variable, ValuePtr> outputDataMap = { { outputVar, nullptr } }; // Start evaluation on the device modelFunc->Evaluate(inputDataMap, outputDataMap, device); // Get evaluate result as dense output ValuePtr outputVal = outputDataMap[outputVar]; std::vector<std::vector<float>> outputData; outputVal->CopyVariableValueTo(outputVar, outputData); // output the result size_t outputSampleSize = outputVar.Shape().TotalSize(); if (outputData.size() != inputBatch.size()) { throw("The number of sequence in output does not match that in input."); } printf("The number of sequences in the batch: %d\n", (int)outputData.size()); for (size_t seqno = 0; seqno < outputData.size(); seqno++) { std::vector<float> slotSeq = outputData[seqno]; printf("Sequence %d:\n", (int)seqno); if (slotSeq.size() % outputSampleSize != 0) { throw("The number of elements in the slot sequence is not a multiple of sample size"); } size_t numOfSlotsInOutput = slotSeq.size() / outputSampleSize; if (inputWordsList[seqno].size() != numOfSlotsInOutput) { throw("The number of input words and the number of output slots do not match"); } for (size_t i = 0; i < numOfSlotsInOutput; i++) { float max = slotSeq[i * outputSampleSize]; size_t maxIndex = 0; for (size_t j = 1; j < outputSampleSize; j++) { if (slotSeq[i * outputSampleSize + j] > max) { max = slotSeq[i * outputSampleSize + j]; maxIndex = j; } } printf(" %10s ---- %s\n", inputWordsList[seqno][i].c_str(), indexToSlots[maxIndex].c_str()); } printf("\n"); } }