void Geo2Emp::transferParticlePointAttribs(int numAttribs, GEO_AttributeHandleList& attribList, std::map<int, AttributeInfo>& attrLut, Nb::ParticleShape& shape, const GEO_Point* ppt) { GEO_AttributeHandle* pAttr; AttributeInfo* pAttrInfo; for (int i = 0; i < numAttribs; i++) { pAttr = attribList[i]; pAttrInfo = &( attrLut[i] ); if (!pAttrInfo->supported) //Skip unsupported attributes continue; pAttr->setElement( ppt ); if (! pAttr->isAttributeValid() ) { LogDebug() << "Invalid attribute handle on supported attribute!! [" << pAttr->getName() << "]" << std::endl; } LogDebug() << "Transferring attribute: " << pAttr->getName() << std::endl; switch ( pAttrInfo->type ) { case GB_ATTRIB_FLOAT: //LogDebug() << "Transfer Float" << pAttrInfo->entries << "[" << pAttr->getName() << "]" << std::endl; switch ( pAttrInfo->entries ) { case 1: { //LogDebug() << "Float1: " << pAttr->getV3() << std::endl; //Get the channel from the point shape em::block3_array1f& vecData = shape.mutableBlocks1f( pAttrInfo->empIndex ); //Write the data into the buffer vecData(0).push_back( pAttr->getF() ); } break; case 3: { LogDebug() << "Float3: " << pAttr->getV3() << std::endl; //Get the channel from the particle shape em::block3_array3f& vecData = shape.mutableBlocks3f( pAttrInfo->empIndex ); //Write the data into the buffer vecData(0).push_back( em::vec3f( pAttr->getF(0), pAttr->getF(1), pAttr->getF(2) ) ); } break; } break; case GB_ATTRIB_INT: LogDebug() << "Int " << pAttrInfo->entries << std::endl; switch ( pAttrInfo->entries ) { case 1: { //LogDebug() << "Float1: " << pAttr->getV3() << std::endl; //Get the channel from the point shape em::block3_array1i& vecData = shape.mutableBlocks1i( pAttrInfo->empIndex ); //Write the data into the buffer vecData(0).push_back( pAttr->getI() ); } break; case 3: { LogDebug() << "Int3: " << std::endl; //Get the channel from the particle shape em::block3_array3i& vecData = shape.mutableBlocks3i( pAttrInfo->empIndex ); //Write the data into the buffer vecData(0).push_back( em::vec3i( pAttr->getI(0), pAttr->getI(1), pAttr->getI(2) ) ); } break; } break; case GB_ATTRIB_VECTOR: { //LogDebug() << "Transfer Vector3 [" << pAttr->getName() << "] " << pAttr->getF(0) << "," << pAttr->getF(1) << "," << pAttr->getF(2)<< std::endl; //If we have a vector, we need to invert it (reverse winding). em::block3_array3f& vecData = shape.mutableBlocks3f( pAttrInfo->empIndex ); //Write the data into the buffer vecData(0).push_back( em::vec3f( pAttr->getF(0), pAttr->getF(1), pAttr->getF(2) ) ); break; } case GB_ATTRIB_MIXED: case GB_ATTRIB_INDEX: default: //Unsupported attribute, so give it a skip. LogDebug() << " !!!!! SHOULDNT GET THIS !!!! Unsupported attribute type for blind copy [" << pAttrInfo->type << "]" << std::endl; continue; break; } } }
OP_ERROR SOP_IntersectRay::cookMySop(OP_Context &context) { double t; float edgelength, primarea, generatepoints; int verbose; // We optionally add points in self-penetration places: GB_PointGroup *hitPointsGroup; UT_RefArray<UT_Vector3> hitPoints; if (lockInputs(context) >= UT_ERROR_ABORT) return error(); t = context.getTime(); duplicatePointSource(0, context); edgelength = EDGELENGTH(t); primarea = PRIMAREA(t); verbose = VERBOSE(t); generatepoints = GENERATEPOINTS(t); // Normals: GEO_AttributeHandle nH; GEO_AttributeHandle cdH; nH = gdp->getAttribute(GEO_POINT_DICT, "N"); cdH = gdp->getAttribute(GEO_POINT_DICT, "Cd"); // RayInfo parms: //float max = 1E18f; // Max specified by edge length... float min = 0.0f; float tol = 1e-1F; // Rayhit objects: GU_RayFindType itype = GU_FIND_ALL; GU_RayIntersect intersect = GU_RayIntersect(gdp); // Profile: //Timer timer = Timer(); //float rayhit_time = 0; //float vertex_time = 0; // Here we determine which groups we have to work on. if (error() < UT_ERROR_ABORT && cookInputGroups(context) < UT_ERROR_ABORT) { UT_AutoInterrupt progress("Checking for self-intersections..."); const GEO_Primitive *ppr; FOR_ALL_GROUP_PRIMITIVES(gdp, myGroup, ppr) { // Check if user requested abort if (progress.wasInterrupted()) break; // Get rid of primitives smaller than primarea: if ( ppr->calcArea() < primarea ) continue; for (int j = 0; j < ppr->getVertexCount() - 1; j++) { // Get data; // TODO: This is extremally inefficent. // TODO: Why do we crash with uv vetrex attributes!? const GEO_Vertex ppv1 = ppr->getVertex(j); const GEO_Vertex ppv2 = ppr->getVertex(j+1); const GEO_Point *ppt1 = ppv1.getPt(); const GEO_Point *ppt2 = ppv2.getPt(); // Vertices positions: UT_Vector3 p1 = ppt1->getPos(); UT_Vector3 p2 = ppt2->getPos(); // Ray direction: p2 = p2 - p1; // Get rid of edges shorter than edgelength: if (p2.length() < edgelength) continue; // hit info with max distance equal edge length: GU_RayInfo hitinfo = GU_RayInfo(p2.length(), min, itype, tol); p2.normalize(); // Send ray: if (intersect.sendRay(p1, p2, hitinfo)) { UT_RefArray<GU_RayInfoHit> hits = *(hitinfo.myHitList); for(int j = 0; j < hits.entries(); j++) { const GEO_Primitive *prim = hits[j].prim; const GEO_PrimPoly *poly = (const GEO_PrimPoly *) prim; //TODO: Prims only? // We are interested only ff points are not part of prims...: if (poly->find(*ppt1) == -1 && poly->find(*ppt2)== -1) { if (verbose) printf("Edge: %i-%i intersects with prim:%d \n",ppt1->getNum(), ppt2->getNum(), prim->getNum()); // Save hit position as points: if (generatepoints) { UT_Vector4 pos; float u = hits[j].u; float v = hits[j].v; if (!prim->evaluateInteriorPoint(pos, u, v)) hitPoints.append(pos); } // TODO: Should I indicate penetration with red color on both ends of edge?: cdH.setElement(ppt1); cdH.setV3(UT_Vector3(1.0, 0.0, 0.0)); cdH.setElement(ppt2); cdH.setV3(UT_Vector3(1.0, 0.0, 0.0)); } } } } } if (generatepoints) { hitPointsGroup = gdp->newPointGroup("__self_penetrate", false); for (int i = 0; i < hitPoints.entries(); i++) { GEO_Point *point; point = gdp->appendPoint(); hitPointsGroup->add(point); point->setPos(hitPoints(i)); } } }
OP_ERROR SOP_FluidSolver2D::cookMySop(OP_Context &context) { oldf = f; double t = context.getTime(); int f = context.getFrame(); UT_Interrupt *boss; GU_PrimVolume *volume; OP_Node::flags().timeDep = 1; fluidSolver->fps = OPgetDirector()->getChannelManager()->getSamplesPerSec(); int newResX = RESX(t); int newResY = RESY(t); if ( newResX != fluidSolver->res.x || newResY != fluidSolver->res.y) { fluidSolver->changeFluidRes(newResX,newResY); } UT_Vector3 fluidPos(POSX(t), POSY(t), POSZ(t)); UT_Vector3 fluidRot(ROTX(t), ROTY(t), ROTZ(t)); fluidRot.degToRad(); fluidSolver->fluidSize.x = FLUIDSIZEX(t); fluidSolver->fluidSize.y = FLUIDSIZEY(t); fluidSolver->borderNegX = BORDERNEGX(t); fluidSolver->borderPosX = BORDERPOSX(t); fluidSolver->borderNegY = BORDERNEGY(t); fluidSolver->borderPosY = BORDERPOSY(t); fluidSolver->preview = PREVIEW(t); fluidSolver->previewType = PREVIEWTYPE(t); fluidSolver->bounds = BOUNDS(t); fluidSolver->substeps = SUBSTEPS(t); fluidSolver->jacIter = JACITER(t); fluidSolver->densDis = DENSDIS(t); fluidSolver->densBuoyStrength = DENSBUOYSTRENGTH(t); float ddirX = DENSBUOYDIRX(t); float ddirY = DENSBUOYDIRY(t); fluidSolver->densBuoyDir = cu::make_float2(ddirX,ddirY); fluidSolver->velDamp = VELDAMP(t); fluidSolver->vortConf = VORTCONF(t); fluidSolver->noiseStr = NOISESTR(t); fluidSolver->noiseFreq = NOISEFREQ(t); fluidSolver->noiseOct = NOISEOCT(t); fluidSolver->noiseLacun = NOISELACUN(t); fluidSolver->noiseSpeed = NOISESPEED(t); fluidSolver->noiseAmp = NOISEAMP(t); if (error() < UT_ERROR_ABORT) { boss = UTgetInterrupt(); gdp->clearAndDestroy(); // Start the interrupt server if (boss->opStart("Building Volume")){ static float zero = 0.0; #ifdef HOUDINI_11 GB_AttributeRef fluidAtt = gdp->addAttrib("cudaFluidPreview", sizeof(int), GB_ATTRIB_INT, &zero); gdp->attribs().getElement().setValue<int>(fluidAtt, fluidSolver->preview); GB_AttributeRef solverIdAtt = gdp->addAttrib("solverId", sizeof(int), GB_ATTRIB_INT, &zero); gdp->attribs().getElement().setValue<int>(solverIdAtt, fluidSolver->id); #else GA_WOAttributeRef fluidAtt = gdp->addIntTuple(GA_ATTRIB_DETAIL, "cudaFluidPreview", 1); gdp->element().setValue<int>(fluidAtt, fluidSolver->preview); GA_WOAttributeRef solverIdAtt = gdp->addIntTuple(GA_ATTRIB_DETAIL, "solverId", 1); gdp->element().setValue<int>(solverIdAtt, fluidSolver->id); #endif UT_Matrix3 xform; const UT_XformOrder volXFormOrder; volume = (GU_PrimVolume *)GU_PrimVolume::build(gdp); #ifdef HOUDINI_11 volume->getVertex().getPt()->getPos() = fluidPos; #else volume->getVertexElement(0).getPt()->setPos(fluidPos); #endif xform.identity(); xform.scale(fluidSolver->fluidSize.x*0.5, fluidSolver->fluidSize.y*0.5, 0.25); xform.rotate(fluidRot.x(), fluidRot.y(), fluidRot.z(), volXFormOrder); volume->setTransform(xform); xform.identity(); xform.rotate(fluidRot.x(), fluidRot.y(), fluidRot.z(), volXFormOrder); xform.invert(); if(lockInputs(context) >= UT_ERROR_ABORT) return error(); if(getInput(0)){ GU_Detail* emittersInput = (GU_Detail*)inputGeo(0, context); GEO_PointList emittersList = emittersInput->points(); int numEmitters = emittersList.entries(); if (numEmitters != fluidSolver->nEmit) { delete fluidSolver->emitters; fluidSolver->nEmit = numEmitters; fluidSolver->emitters = new FluidEmitter[numEmitters]; } GEO_AttributeHandle radAh, amountAh; radAh = emittersInput->getPointAttribute("radius"); amountAh = emittersInput->getPointAttribute("amount"); for (int i = 0; i < numEmitters; i++) { UT_Vector4 emitPos = emittersList[i]->getPos(); UT_Vector3 emitPos3(emitPos); emitPos3 -= fluidPos; emitPos3 = emitPos3*xform; fluidSolver->emitters[i].posX = emitPos3.x(); fluidSolver->emitters[i].posY = emitPos3.y(); radAh.setElement(emittersList[i]); amountAh.setElement(emittersList[i]); fluidSolver->emitters[i].radius = radAh.getF(0); fluidSolver->emitters[i].amount = amountAh.getF(0); } } else { fluidSolver->nEmit = 0; } if(getInput(1)) { GU_Detail* collidersInput = (GU_Detail*)inputGeo(1, context); GEO_PointList collidersList = collidersInput->points(); int numColliders = collidersList.entries(); if (numColliders != fluidSolver->nColliders) { delete fluidSolver->colliders; fluidSolver->nColliders = numColliders; fluidSolver->colliders = new Collider[numColliders]; } GEO_AttributeHandle colRadAh; colRadAh = collidersInput->getPointAttribute("radius"); for (int i = 0; i < numColliders; i++) { UT_Vector4 colPos = collidersList[i]->getPos(); UT_Vector3 colPos3(colPos); colPos3 -= fluidPos; colPos3 = colPos3*xform; if (f > STARTFRAME(t)) { fluidSolver->colliders[i].oldPosX = fluidSolver->colliders[i].posX; fluidSolver->colliders[i].oldPosY = fluidSolver->colliders[i].posY; } else { fluidSolver->colliders[i].oldPosX = colPos3.x(); fluidSolver->colliders[i].oldPosY = colPos3.y(); } fluidSolver->colliders[i].posX = colPos3.x(); fluidSolver->colliders[i].posY = colPos3.y(); colRadAh.setElement(collidersList[i]); fluidSolver->colliders[i].radius = colRadAh.getF(0); } } else { fluidSolver->nColliders = 0; } unlockInputs(); if (f <= STARTFRAME(t)) { fluidSolver->resetFluid(); if (fluidSolver->preview != 1) { { UT_VoxelArrayWriteHandleF handle = volume->getVoxelWriteHandle(); handle->constant(0); } } } else { if (f!=oldf) { fluidSolver->solveFluid(); } if (fluidSolver->preview != 1) { cu::cudaMemcpy( fluidSolver->host_dens, fluidSolver->dev_dens, fluidSolver->res.x*fluidSolver->res.y*sizeof(float), cu::cudaMemcpyDeviceToHost ); { UT_VoxelArrayWriteHandleF handle = volume->getVoxelWriteHandle(); handle->size(fluidSolver->res.x, fluidSolver->res.y, 1); for (int i = 0; i < fluidSolver->res.x; i++) { for (int j = 0; j < fluidSolver->res.y; j++) { handle->setValue(i, j, 0, fluidSolver->host_dens[(j*fluidSolver->res.x + i)]); } } } } } select(GU_SPrimitive); } // Tell the interrupt server that we've completed. Must do this // regardless of what opStart() returns. boss->opEnd(); } gdp->notifyCache(GU_CACHE_ALL); return error(); }
OP_ERROR SOP_FluidSolver3D::cookMySop(OP_Context &context) { oldf = f; f = context.getFrame(); double t = context.getTime(); fluidSolver->fps = OPgetDirector()->getChannelManager()->getSamplesPerSec(); UT_Interrupt *boss; GU_PrimVolume *volume; GU_PrimVolume *velXVolume; GU_PrimVolume *velYVolume; GU_PrimVolume *velZVolume; OP_Node::flags().timeDep = 1; int newResX = RESX(t); int newResY = RESY(t); int newResZ = RESZ(t); if ( newResX != fluidSolver->res.width || newResY != fluidSolver->res.height || newResZ != fluidSolver->res.depth) { fluidSolver->changeFluidRes(newResX,newResY,newResZ); } UT_Vector3 fluidPos(POSX(t), POSY(t), POSZ(t)); UT_Vector3 fluidRot(ROTX(t), ROTY(t), ROTZ(t)); fluidRot.degToRad(); fluidSolver->fluidSize.x = FLUIDSIZEX(t); fluidSolver->fluidSize.y = FLUIDSIZEY(t); fluidSolver->fluidSize.z = FLUIDSIZEZ(t); fluidSolver->borderNegX = BORDERNEGX(t); fluidSolver->borderPosX = BORDERPOSX(t); fluidSolver->borderNegY = BORDERNEGY(t); fluidSolver->borderPosY = BORDERPOSY(t); fluidSolver->borderNegZ = BORDERNEGZ(t); fluidSolver->borderPosZ = BORDERPOSZ(t); fluidSolver->substeps = SUBSTEPS(t); fluidSolver->jacIter = JACITER(t); fluidSolver->densDis = DENSDIS(t); fluidSolver->densBuoyStrength = DENSBUOYSTRENGTH(t); float ddirX = DENSBUOYDIRX(t); float ddirY = DENSBUOYDIRY(t); float ddirZ = DENSBUOYDIRZ(t); fluidSolver->densBuoyDir = cu::make_float3(ddirX,ddirY,ddirZ); fluidSolver->velDamp = VELDAMP(t); fluidSolver->vortConf = VORTCONF(t); fluidSolver->noiseStr = NOISESTR(t); fluidSolver->noiseFreq = NOISEFREQ(t); fluidSolver->noiseOct = NOISEOCT(t); fluidSolver->noiseLacun = NOISELACUN(t); fluidSolver->noiseSpeed = NOISESPEED(t); fluidSolver->noiseAmp = NOISEAMP(t); fluidSolver->preview = PREVIEW(t); fluidSolver->drawCube = DRAWCUBE(t); fluidSolver->opaScale = OPASCALE(t); fluidSolver->stepMul = STEPMUL(t); fluidSolver->displayRes = DISPLAYRES(t); fluidSolver->doShadows = DOSHADOWS(t); float lightPosX = LIGHTPOSX(t); float lightPosY = LIGHTPOSY(t); float lightPosZ = LIGHTPOSZ(t); fluidSolver->lightPos = cu::make_float3(lightPosX,lightPosY,lightPosZ); fluidSolver->shadowDens = SHADOWDENS(t); fluidSolver->shadowStepMul = SHADOWSTEPMUL(t); fluidSolver->shadowThres = SHADOWTHRES(t); fluidSolver->displaySlice = DISPLAYSLICE(t); fluidSolver->sliceType = SLICETYPE(t); fluidSolver->sliceAxis = SLICEAXIS(t); fluidSolver->slicePos = SLICEPOS(t); fluidSolver->sliceBounds = SLICEBOUNDS(t); if (error() < UT_ERROR_ABORT) { boss = UTgetInterrupt(); gdp->clearAndDestroy(); // Start the interrupt server if (boss->opStart("Building Volume")){ static float zero = 0.0; GB_AttributeRef fluidAtt = gdp->addAttrib("cudaFluid3DPreview", sizeof(int), GB_ATTRIB_INT, &zero); gdp->attribs().getElement().setValue<int>(fluidAtt, fluidSolver->preview); GB_AttributeRef fluidSliceAtt = gdp->addAttrib("sliceDisplay", sizeof(int), GB_ATTRIB_INT, &zero); gdp->attribs().getElement().setValue<int>(fluidSliceAtt, fluidSolver->displaySlice); GB_AttributeRef solverIdAtt = gdp->addAttrib("solverId", sizeof(int), GB_ATTRIB_INT, &zero); gdp->attribs().getElement().setValue<int>(solverIdAtt, fluidSolver->id); GEO_AttributeHandle name_gah; int def = -1; gdp->addPrimAttrib("name", sizeof(int), GB_ATTRIB_INDEX, &def); name_gah = gdp->getPrimAttribute("name"); UT_Matrix3 xform; const UT_XformOrder volXFormOrder; volume = (GU_PrimVolume *)GU_PrimVolume::build(gdp); volume->getVertex().getPt()->getPos() = fluidPos; xform.identity(); xform.scale(fluidSolver->fluidSize.x*0.5, fluidSolver->fluidSize.y*0.5, fluidSolver->fluidSize.z*0.5); xform.rotate(fluidRot.x(), fluidRot.y(), fluidRot.z(), volXFormOrder); volume->setTransform(xform); name_gah.setElement(volume); name_gah.setString("density"); velXVolume = (GU_PrimVolume *)GU_PrimVolume::build(gdp); velXVolume->getVertex().getPt()->getPos() = fluidPos; velXVolume->setTransform(xform); name_gah.setElement(velXVolume); name_gah.setString("vel.x"); velYVolume = (GU_PrimVolume *)GU_PrimVolume::build(gdp); velYVolume->getVertex().getPt()->getPos() = fluidPos; velYVolume->setTransform(xform); name_gah.setElement(velYVolume); name_gah.setString("vel.y"); velZVolume = (GU_PrimVolume *)GU_PrimVolume::build(gdp); velZVolume->getVertex().getPt()->getPos() = fluidPos; velZVolume->setTransform(xform); name_gah.setElement(velZVolume); name_gah.setString("vel.z"); xform.identity(); xform.rotate(fluidRot.x(), fluidRot.y(), fluidRot.z(), volXFormOrder); xform.invert(); if(lockInputs(context) >= UT_ERROR_ABORT) return error(); if(getInput(0)){ GU_Detail* emittersInput = (GU_Detail*)inputGeo(0, context); GEO_PointList emittersList = emittersInput->points(); int numEmitters = emittersList.entries(); if (numEmitters != fluidSolver->nEmit) { delete fluidSolver->emitters; fluidSolver->nEmit = numEmitters; fluidSolver->emitters = new VHFluidEmitter[numEmitters]; } GEO_AttributeHandle radAh, amountAh; radAh = emittersInput->getPointAttribute("radius"); amountAh = emittersInput->getPointAttribute("amount"); for (int i = 0; i < numEmitters; i++) { UT_Vector4 emitPos = emittersList[i]->getPos(); UT_Vector3 emitPos3(emitPos); emitPos3 -= fluidPos; emitPos3 = emitPos3*xform; fluidSolver->emitters[i].posX = emitPos3.x(); fluidSolver->emitters[i].posY = emitPos3.y(); fluidSolver->emitters[i].posZ = emitPos3.z(); radAh.setElement(emittersList[i]); amountAh.setElement(emittersList[i]); fluidSolver->emitters[i].radius = radAh.getF(0); fluidSolver->emitters[i].amount = amountAh.getF(0); } } else { fluidSolver->nEmit = 0; } if(getInput(1)) { GU_Detail* collidersInput = (GU_Detail*)inputGeo(1, context); GEO_PointList collidersList = collidersInput->points(); int numColliders = collidersList.entries(); if (numColliders != fluidSolver->nColliders) { delete fluidSolver->colliders; fluidSolver->nColliders = numColliders; fluidSolver->colliders = new VHFluidCollider[numColliders]; } GEO_AttributeHandle colRadAh; colRadAh = collidersInput->getPointAttribute("radius"); for (int i = 0; i < numColliders; i++) { UT_Vector4 colPos = collidersList[i]->getPos(); UT_Vector3 colPos3(colPos); colPos3 -= fluidPos; colPos3 = colPos3*xform; if (f > STARTFRAME(t)) { fluidSolver->colliders[i].oldPosX = fluidSolver->colliders[i].posX; fluidSolver->colliders[i].oldPosY = fluidSolver->colliders[i].posY; fluidSolver->colliders[i].oldPosZ = fluidSolver->colliders[i].posZ; } else { fluidSolver->colliders[i].oldPosX = colPos3.x(); fluidSolver->colliders[i].oldPosY = colPos3.y(); fluidSolver->colliders[i].oldPosZ = colPos3.z(); } fluidSolver->colliders[i].posX = colPos3.x(); fluidSolver->colliders[i].posY = colPos3.y(); fluidSolver->colliders[i].posZ = colPos3.z(); colRadAh.setElement(collidersList[i]); fluidSolver->colliders[i].radius = colRadAh.getF(0); } } else { fluidSolver->nColliders = 0; } unlockInputs(); if (f <= STARTFRAME(t)) { fluidSolver->resetFluid(); if (COPYDENS(t)) { { UT_VoxelArrayWriteHandleF handle = volume->getVoxelWriteHandle(); handle->constant(0); UT_VoxelArrayWriteHandleF velXHandle = velXVolume->getVoxelWriteHandle(); velXHandle->constant(0); UT_VoxelArrayWriteHandleF velYHandle = velYVolume->getVoxelWriteHandle(); velYHandle->constant(0); UT_VoxelArrayWriteHandleF velZHandle = velZVolume->getVoxelWriteHandle(); velZHandle->constant(0); } } } else { if (f!=oldf) { fluidSolver->solveFluid(); } if (COPYDENS(t)) { cu::cudaMemcpy( fluidSolver->host_dens, fluidSolver->dev_dens, fluidSolver->res.width*fluidSolver->res.height*fluidSolver->res.depth*sizeof(float), cu::cudaMemcpyDeviceToHost ); { UT_VoxelArrayWriteHandleF handle = volume->getVoxelWriteHandle(); handle->size(fluidSolver->res.width, fluidSolver->res.height, fluidSolver->res.depth); for (int i = 0; i < fluidSolver->res.width; i++) { for (int j = 0; j < fluidSolver->res.height; j++) { for (int k = 0; k < fluidSolver->res.depth; k++) { handle->setValue(i, j, k, fluidSolver->host_dens[k*fluidSolver->res.width*fluidSolver->res.height + j*fluidSolver->res.width + i]); } } } } if (COPYVEL(t)) { cu::cudaMemcpy( fluidSolver->host_vel, fluidSolver->dev_vel, fluidSolver->res.width*fluidSolver->res.height*fluidSolver->res.depth*sizeof(cu::float4), cu::cudaMemcpyDeviceToHost ); { UT_VoxelArrayWriteHandleF velXHandle = velXVolume->getVoxelWriteHandle(); velXHandle->size(fluidSolver->res.width, fluidSolver->res.height, fluidSolver->res.depth); UT_VoxelArrayWriteHandleF velYHandle = velYVolume->getVoxelWriteHandle(); velYHandle->size(fluidSolver->res.width, fluidSolver->res.height, fluidSolver->res.depth); UT_VoxelArrayWriteHandleF velZHandle = velZVolume->getVoxelWriteHandle(); velZHandle->size(fluidSolver->res.width, fluidSolver->res.height, fluidSolver->res.depth); for (int i = 0; i < fluidSolver->res.width; i++) { for (int j = 0; j < fluidSolver->res.height; j++) { for (int k = 0; k < fluidSolver->res.depth; k++) { velXHandle->setValue(i, j, k, fluidSolver->host_vel[4*(k*fluidSolver->res.width*fluidSolver->res.height + j*fluidSolver->res.width + i)]); velYHandle->setValue(i, j, k, fluidSolver->host_vel[4*(k*fluidSolver->res.width*fluidSolver->res.height + j*fluidSolver->res.width + i)+1]); velZHandle->setValue(i, j, k, fluidSolver->host_vel[4*(k*fluidSolver->res.width*fluidSolver->res.height + j*fluidSolver->res.width + i)+2]); } } } } } } } select(GU_SPrimitive); } // Tell the interrupt server that we've completed. Must do this // regardless of what opStart() returns. boss->opEnd(); } gdp->notifyCache(GU_CACHE_ALL); return error(); }