/***********************************************************************//** * @brief Returns vector of random event times * * @param[in] rate Mean event rate (events per second). * @param[in] tmin Minimum event time. * @param[in] tmax Maximum event time. * @param[in,out] ran Random number generator. * * This method returns a vector of random event times assuming a constant * event rate that is specified by the rate parameter. ***************************************************************************/ GTimes GModelTemporalConst::mc(const double& rate, const GTime& tmin, const GTime& tmax, GRan& ran) const { // Allocates empty vector of times GTimes times; // Compute event rate (in events per seconds) double lambda = rate * norm(); // Initialise start and stop times in seconds double time = tmin.secs(); double tstop = tmax.secs(); // Generate events until maximum event time is exceeded while (time <= tstop) { // Simulate next event time time += ran.exp(lambda); // Add time if it is not beyod the stop time if (time <= tstop) { GTime event; event.secs(time); times.append(event); } } // endwhile: loop until stop time is reached // Return vector of times return times; }
// Generate an EventCube, rate is the number of event per second. Events have a time between tmin and tmax. virtual GTestEventCube* generateCube(const double &rate, const GTime &tmin, const GTime &tmax, GRan &ran) { // Create an event list GTestEventCube* cube = new GTestEventCube(); // Set min and max energy for ebounds // npred method integrate the model on time and energy. // In order to have a rate which not depend on energy we create an interval of 1 Mev. GEnergy engmin,engmax; engmin.MeV(1.0); engmax.MeV(2.0); // Instrument Direction GTestInstDir dir; // Generate an times list. GTimes times = m_modelTps->mc(rate, tmin, tmax, ran); GTestEventBin bin; bin.time(times[0]); bin.energy(engmin); bin.ewidth(engmax-engmin); bin.dir(dir); bin.ontime(10); // 10 sec per bin for (int i = 0; i < times.size(); ++i) { if ((bin.time().secs() + bin.ontime()) < times[i].secs()) { // Add the event to the cube cube->append(bin); bin.counts(0.0); bin.time(times[i]); bin.energy(engmin); bin.ewidth(engmax-engmin); bin.dir(dir); bin.ontime(10); // 10 sec per bin } bin.counts(bin.counts()+1); } // Create a time interval and add it to the list. GGti gti; gti.append(tmin,tmax); cube->gti(gti); // Create an energy interval and add it to the list GEbounds ebounds; ebounds.append(engmin,engmax); cube->ebounds(ebounds); return cube; };
/***********************************************************************//** * @brief Returns vector of random event times * * @param[in] rate Mean event rate (events per second). * @param[in] tmin Minimum event time. * @param[in] tmax Maximum event time. * @param[in,out] ran Random number generator. * * This method returns a vector of random event times between @p tmin and * @p tmax assuming a light curve specified in a FITS file. ***************************************************************************/ GTimes GModelTemporalLightCurve::mc(const double& rate, const GTime& tmin, const GTime& tmax, GRan& ran) const { // Allocates empty vector of times GTimes times; // Update Monte Carlo cache mc_update(tmin, tmax); // Continue only if effective duration is positive and cache is not empty if (m_mc_eff_duration > 0.0 && m_mc_cum.size() > 0) { // Compute mean number of times by multiplying the rate with the // effective duration. Note that the light curve normalization factor // is already included in the effective rate, hence we should not // multiply it here again (see #2181). double lambda = rate * m_mc_eff_duration; // Compute number of times to be sampled int ntimes = int(ran.poisson(lambda)+0.5); // Loop over number of times for (int i = 0; i < ntimes; ++i) { // Determine in which bin we reside int inx = 0; if (m_mc_cum.size() > 1) { double u = ran.uniform(); for (inx = m_mc_cum.size()-1; inx > 0; --inx) { if (m_mc_cum[inx-1] <= u) { break; } } } // Get random time double seconds; if (m_mc_slope[inx] == 0.0) { seconds = m_mc_dt[inx] * ran.uniform() + m_mc_time[inx]; } else { seconds = (std::sqrt(m_mc_offset[inx]*m_mc_offset[inx] + 2.0 * m_mc_slope[inx] * ran.uniform()) - m_mc_offset[inx]) / m_mc_slope[inx] + m_mc_time[inx]; } // Append random time GTime time(seconds, m_timeref); times.append(time); } // endfor: looped over times } // endif: cache was valid // Return vector of times return times; }
// Generate an EventList, rate is the number of event per second. Events have a time between tmin and tmax. virtual GTestEventList* generateList(const double &rate, const GTime &tmin, const GTime &tmax, GRan &ran) { // Create an event list GTestEventList * list = new GTestEventList(); // Set min and max energy for ebounds // npred method integrate the model on time and energy. // In order to have a rate which not depend on energy we create an interval of 1 Mev. GEnergy engmin,engmax; engmin.MeV(1.0); engmax.MeV(2.0); // Instrument Direction GTestInstDir dir; // Generate an times list. GTimes times = m_modelTps->mc(rate,tmin, tmax,ran); for (int i = 0; i < times.size() ; ++i) { GTestEventAtom event; event.dir(dir); event.energy(engmin); event.time(times[i]); // Add the event to the list list->append(event); } // Create a time interval and add it to the list. GGti gti; gti.append(tmin,tmax); list->gti(gti); // Create an energy interval and add it to the list GEbounds ebounds; ebounds.append(engmin,engmax); list->ebounds(ebounds); return list; }
/***********************************************************************//** * @brief Test GTimes ***************************************************************************/ void TestGObservation::test_times(void) { // Test void constructor test_try("Void constructor"); try { GTimes times; test_try_success(); } catch (std::exception &e) { test_try_failure(e); } // Manipulate GTimes starting from an empty object GTimes times; test_value(times.size(), 0, "GTimes should have zero size."); test_assert(times.is_empty(), "GTimes should be empty."); // Add a time times.append(GTime()); test_value(times.size(), 1, "GTimes should have 1 time."); test_assert(!times.is_empty(), "GTimes should not be empty."); // Remove time times.remove(0); test_value(times.size(), 0, "GTimes should have zero size."); test_assert(times.is_empty(), "GTimes should be empty."); // Append two times times.append(GTime()); times.append(GTime()); test_value(times.size(), 2, "GTimes should have 2 times."); test_assert(!times.is_empty(), "GTimes should not be empty."); // Clear object times.clear(); test_value(times.size(), 0, "GTimes should have zero size."); test_assert(times.is_empty(), "GTimes should be empty."); // Insert two times times.insert(0, GTime()); times.insert(0, GTime()); test_value(times.size(), 2, "GTimes should have 2 times."); test_assert(!times.is_empty(), "GTimes should not be empty."); // Extend times times.extend(times); test_value(times.size(), 4, "GTimes should have 4 times."); test_assert(!times.is_empty(), "GTimes should not be empty."); // Return return; }
/***********************************************************************//** * @brief Return simulated list of events * * @param[in] obs Observation. * @param[in] ran Random number generator. * @return Pointer to list of simulated events (needs to be de-allocated by * client) * * @exception GException::invalid_argument * No CTA event list found in observation. * * Draws a sample of events from the background model using a Monte * Carlo simulation. The pointing information, the energy boundaries and the * good time interval for the sampling will be extracted from the observation * argument that is passed to the method. The method also requires a random * number generator of type GRan which is passed by reference, hence the * state of the random number generator will be changed by the method. * * The method also applies a deadtime correction using a Monte Carlo process, * taking into account temporal deadtime variations. For this purpose, the * method makes use of the time dependent GObservation::deadc method. ***************************************************************************/ GCTAEventList* GCTAModelBackground::mc(const GObservation& obs, GRan& ran) const { // Initialise new event list GCTAEventList* list = new GCTAEventList; // Continue only if model is valid) if (valid_model()) { // Extract event list to access the ROI, energy boundaries and GTIs const GCTAEventList* events = dynamic_cast<const GCTAEventList*>(obs.events()); if (events == NULL) { std::string msg = "No CTA event list found in observation.\n" + obs.print(); throw GException::invalid_argument(G_MC, msg); } // Get simulation region const GCTARoi& roi = events->roi(); const GEbounds& ebounds = events->ebounds(); const GGti& gti = events->gti(); // Set simulation region for result event list list->roi(roi); list->ebounds(ebounds); list->gti(gti); // Loop over all energy boundaries for (int ieng = 0; ieng < ebounds.size(); ++ieng) { // Initialise de-allocation flag bool free_spectral = false; // Set pointer to spectral model GModelSpectral* spectral = m_spectral; // If the spectral model is a diffuse cube then create a node // function spectral model that is the product of the diffuse // cube node function and the spectral model evaluated at the // energies of the node function GModelSpatialDiffuseCube* cube = dynamic_cast<GModelSpatialDiffuseCube*>(m_spatial); if (cube != NULL) { // Set MC simulation cone based on ROI cube->set_mc_cone(roi.centre().dir(), roi.radius()); // Allocate node function to replace the spectral component GModelSpectralNodes* nodes = new GModelSpectralNodes(cube->spectrum()); for (int i = 0; i < nodes->nodes(); ++i) { GEnergy energy = nodes->energy(i); double intensity = nodes->intensity(i); double norm = m_spectral->eval(energy, events->tstart()); nodes->intensity(i, norm*intensity); } // Signal that node function needs to be de-allocated later free_spectral = true; // Set the spectral model pointer to the node function spectral = nodes; } // endif: spatial model was a diffuse cube // Compute the background rate in model within the energy boundaries // from spectral component (units: cts/s). // Note that the time here is ontime. Deadtime correction will be done // later. double rate = spectral->flux(ebounds.emin(ieng), ebounds.emax(ieng)); // Debug option: dump rate #if defined(G_DUMP_MC) std::cout << "GCTAModelBackground::mc(\"" << name() << "\": "; std::cout << "rate=" << rate << " cts/s)" << std::endl; #endif // Loop over all good time intervals for (int itime = 0; itime < gti.size(); ++itime) { // Get Monte Carlo event arrival times from temporal model GTimes times = m_temporal->mc(rate, gti.tstart(itime), gti.tstop(itime), ran); // Get number of events int n_events = times.size(); // Reserve space for events if (n_events > 0) { list->reserve(n_events); } // Loop over events for (int i = 0; i < n_events; ++i) { // Apply deadtime correction double deadc = obs.deadc(times[i]); if (deadc < 1.0) { if (ran.uniform() > deadc) { continue; } } // Get Monte Carlo event energy from spectral model GEnergy energy = spectral->mc(ebounds.emin(ieng), ebounds.emax(ieng), times[i], ran); // Get Monte Carlo event direction from spatial model GSkyDir dir = spatial()->mc(energy, times[i], ran); // Allocate event GCTAEventAtom event; // Set event attributes event.dir(GCTAInstDir(dir)); event.energy(energy); event.time(times[i]); // Append event to list if it falls in ROI if (events->roi().contains(event)) { list->append(event); } } // endfor: looped over all events } // endfor: looped over all GTIs // Free spectral model if required if (free_spectral) delete spectral; } // endfor: looped over all energy boundaries } // endif: model was valid // Return return list; }
/***********************************************************************//** * @brief Return simulated list of photons * * @param[in] area Simulation surface area (cm2). * @param[in] dir Centre of simulation cone. * @param[in] radius Radius of simulation cone (deg). * @param[in] emin Minimum photon energy. * @param[in] emax Maximum photon energy. * @param[in] tmin Minimum photon arrival time. * @param[in] tmax Maximum photon arrival time. * @param[in] ran Random number generator. * * This method returns a list of photons that has been derived by Monte Carlo * simulation from the model. A simulation region is define by specification * of a simulation cone (a circular region on the sky), * of an energy range [emin, emax], and * of a time interval [tmin, tmax]. * The simulation cone may eventually cover the entire sky (by setting * the radius to 180 degrees), yet simulations will be more efficient if * only the sky region will be simulated that is actually observed by the * telescope. * * @todo Check usage for diffuse models * @todo Implement photon arrival direction simulation for diffuse models * @todo Implement unique model ID to assign as Monte Carlo ID ***************************************************************************/ GPhotons GModelSky::mc(const double& area, const GSkyDir& dir, const double& radius, const GEnergy& emin, const GEnergy& emax, const GTime& tmin, const GTime& tmax, GRan& ran) const { // Allocate photons GPhotons photons; // Continue only if model is valid) if (valid_model()) { // Get point source pointer GModelSpatialPtsrc* ptsrc = dynamic_cast<GModelSpatialPtsrc*>(m_spatial); // Check if model will produce any photons in the specified // simulation region. If the model is a point source we check if the // source is located within the simulation code. If the model is a // diffuse source we check if the source overlaps with the simulation // code bool use_model = true; if (ptsrc != NULL) { if (dir.dist(ptsrc->dir()) > radius) { use_model = false; } } else { //TODO } // Continue only if model overlaps with simulation region if (use_model) { // Compute flux within [emin, emax] in model from spectral // component (units: ph/cm2/s) double flux = m_spectral->flux(emin, emax); // Derive expecting counting rate within simulation surface // (units: ph/s) double rate = flux * area; // Debug option: dump rate #if G_DUMP_MC std::cout << "GModelSky::mc(\"" << name() << "\": "; std::cout << "flux=" << flux << " ph/cm2/s, "; std::cout << "rate=" << rate << " ph/s)" << std::endl; #endif // Get photon arrival times from temporal model GTimes times = m_temporal->mc(rate, tmin, tmax, ran); // Reserve space for photons if (times.size() > 0) { photons.reserve(times.size()); } // Loop over photons for (int i = 0; i < times.size(); ++i) { // Allocate photon GPhoton photon; // Set photon arrival time photon.time(times[i]); // Set incident photon direction photon.dir(m_spatial->mc(ran)); // Set photon energy photon.energy(m_spectral->mc(emin, emax, ran)); // Append photon photons.append(photon); } // endfor: looped over photons } // endif: model was used } // endif: model was valid // Return photon list return photons; }
/***********************************************************************//** * @brief Return simulated list of events * * @param[in] obs Observation. * @param[in] ran Random number generator. * @return Pointer to list of simulated events (needs to be de-allocated by * client) * * @exception GException::invalid_argument * Specified observation is not a CTA observation. * * Draws a sample of events from the background model using a Monte * Carlo simulation. The region of interest, the energy boundaries and the * good time interval for the sampling will be extracted from the observation * argument that is passed to the method. The method also requires a random * number generator of type GRan which is passed by reference, hence the * state of the random number generator will be changed by the method. * * The method also applies a deadtime correction using a Monte Carlo process, * taking into account temporal deadtime variations. For this purpose, the * method makes use of the time dependent GObservation::deadc method. * * For each event in the returned event list, the sky direction, the nominal * coordinates (DETX and DETY), the energy and the time will be set. ***************************************************************************/ GCTAEventList* GCTAModelAeffBackground::mc(const GObservation& obs, GRan& ran) const { // Initialise new event list GCTAEventList* list = new GCTAEventList; // Continue only if model is valid) if (valid_model()) { // Retrieve CTA observation const GCTAObservation* cta = dynamic_cast<const GCTAObservation*>(&obs); if (cta == NULL) { std::string msg = "Specified observation is not a CTA " "observation.\n" + obs.print(); throw GException::invalid_argument(G_MC, msg); } // Get pointer on CTA IRF response const GCTAResponseIrf* rsp = dynamic_cast<const GCTAResponseIrf*>(cta->response()); if (rsp == NULL) { std::string msg = "Specified observation does not contain" " an IRF response.\n" + obs.print(); throw GException::invalid_argument(G_MC, msg); } // Retrieve CTA response and pointing const GCTAPointing& pnt = cta->pointing(); // Get pointer to CTA effective area const GCTAAeff* aeff = rsp->aeff(); if (aeff == NULL) { std::string msg = "Specified observation contains no effective area" " information.\n" + obs.print(); throw GException::invalid_argument(G_MC, msg); } // Retrieve event list to access the ROI, energy boundaries and GTIs const GCTAEventList* events = dynamic_cast<const GCTAEventList*>(obs.events()); if (events == NULL) { std::string msg = "No CTA event list found in observation.\n" + obs.print(); throw GException::invalid_argument(G_MC, msg); } // Get simulation region const GCTARoi& roi = events->roi(); const GEbounds& ebounds = events->ebounds(); const GGti& gti = events->gti(); // Get maximum offset value for simulations double max_theta = pnt.dir().dist(roi.centre().dir()) + roi.radius() * gammalib::deg2rad; double cos_max_theta = std::cos(max_theta); // Set simulation region for result event list list->roi(roi); list->ebounds(ebounds); list->gti(gti); // Set up spectral model to draw random energies from. Here we use // a fixed energy sampling for an instance of GModelSpectralNodes. // This is analogous to to the GCTAModelIrfBackground::mc method. // We make sure that only non-negative nodes get appended. GEbounds spectral_ebounds = GEbounds(m_n_mc_energies, ebounds.emin(), ebounds.emax(), true); GModelSpectralNodes spectral; for (int i = 0; i < spectral_ebounds.size(); ++i) { GEnergy energy = spectral_ebounds.elogmean(i); double intensity = aeff_integral(obs, energy.log10TeV()); double norm = m_spectral->eval(energy, events->tstart()); double arg = norm * intensity; if (arg > 0.0) { spectral.append(energy, arg); } } // Loop over all energy bins for (int ieng = 0; ieng < ebounds.size(); ++ieng) { // Compute the background rate in model within the energy // boundaries from spectral component (units: cts/s). // Note that the time here is ontime. Deadtime correction will // be done later. double rate = spectral.flux(ebounds.emin(ieng), ebounds.emax(ieng)); // Debug option: dump rate #if defined(G_DUMP_MC) std::cout << "GCTAModelAeffBackground::mc(\"" << name() << "\": "; std::cout << "rate=" << rate << " cts/s)" << std::endl; #endif // If the rate is not positive then skip this energy bins if (rate <= 0.0) { continue; } // Loop over all good time intervals for (int itime = 0; itime < gti.size(); ++itime) { // Get Monte Carlo event arrival times from temporal model GTimes times = m_temporal->mc(rate, gti.tstart(itime), gti.tstop(itime), ran); // Get number of events int n_events = times.size(); // Reserve space for events if (n_events > 0) { list->reserve(n_events); } // Debug option: provide number of times and initialize // statisics #if defined(G_DUMP_MC) std::cout << " Interval " << itime; std::cout << " times=" << n_events << std::endl; int n_killed_by_deadtime = 0; int n_killed_by_roi = 0; #endif // Loop over events for (int i = 0; i < n_events; ++i) { // Apply deadtime correction double deadc = obs.deadc(times[i]); if (deadc < 1.0) { if (ran.uniform() > deadc) { #if defined(G_DUMP_MC) n_killed_by_deadtime++; #endif continue; } } // Get Monte Carlo event energy from spectral model GEnergy energy = spectral.mc(ebounds.emin(ieng), ebounds.emax(ieng), times[i], ran); // Get maximum effective area for rejection method double max_aeff = aeff->max(energy.log10TeV(), pnt.zenith(), pnt.azimuth(), false); // Skip event if the maximum effective area is not positive if (max_aeff <= 0.0) { continue; } // Initialise randomised coordinates double offset = 0.0; double phi = 0.0; // Initialise acceptance fraction and counter of zeros for // rejection method double acceptance_fraction = 0.0; int zeros = 0; // Start rejection method loop do { // Throw random offset and azimuth angle in // considered range offset = std::acos(1.0 - ran.uniform() * (1.0 - cos_max_theta)); phi = ran.uniform() * gammalib::twopi; // Compute function value at this offset angle double value = (*aeff)(energy.log10TeV(), offset, phi, pnt.zenith(), pnt.azimuth(), false); // If the value is not positive then increment the // zeros counter and fall through. The counter assures // that this loop does not lock up. if (value <= 0.0) { zeros++; continue; } // Value is non-zero so reset the zeros counter zeros = 0; // Compute acceptance fraction acceptance_fraction = value / max_aeff; } while ((ran.uniform() > acceptance_fraction) && (zeros < 1000)); // If the zeros counter is non-zero then the loop was // exited due to exhaustion and the event is skipped if (zeros > 0) { continue; } // Convert CTA pointing direction in instrument system GCTAInstDir mc_dir(pnt.dir()); // Rotate pointing direction by offset and azimuth angle mc_dir.dir().rotate_deg(phi * gammalib::rad2deg, offset * gammalib::rad2deg); // Compute DETX and DETY coordinates double detx(0.0); double dety(0.0); if (offset > 0.0 ) { detx = offset * std::cos(phi); dety = offset * std::sin(phi); } // Set DETX and DETY coordinates mc_dir.detx(detx); mc_dir.dety(dety); // Allocate event GCTAEventAtom event; // Set event attributes event.dir(mc_dir); event.energy(energy); event.time(times[i]); // Append event to list if it falls in ROI if (events->roi().contains(event)) { list->append(event); } #if defined(G_DUMP_MC) else { n_killed_by_roi++; } #endif } // endfor: looped over all events // Debug option: provide statisics #if defined(G_DUMP_MC) std::cout << " Killed by deadtime="; std::cout << n_killed_by_deadtime << std::endl; std::cout << " Killed by ROI="; std::cout << n_killed_by_roi << std::endl; #endif } // endfor: looped over all GTIs } // endfor: looped over all energy boundaries } // endif: model was valid // Return return list; }
/***********************************************************************//** * @brief Return simulated list of events * * @param[in] obs Observation. * @param[in] ran Random number generator. * @return Pointer to list of simulated events (needs to be de-allocated by * client) * * @exception GException::invalid_argument * Specified observation is not a CTA observation. * * Draws a sample of events from the background model using a Monte * Carlo simulation. The region of interest, the energy boundaries and the * good time interval for the sampling will be extracted from the observation * argument that is passed to the method. The method also requires a random * number generator of type GRan which is passed by reference, hence the * state of the random number generator will be changed by the method. * * The method also applies a deadtime correction using a Monte Carlo process, * taking into account temporal deadtime variations. For this purpose, the * method makes use of the time dependent GObservation::deadc method. * * For each event in the returned event list, the sky direction, the nominal * coordinates (DETX and DETY), the energy and the time will be set. ***************************************************************************/ GCTAEventList* GCTAModelIrfBackground::mc(const GObservation& obs, GRan& ran) const { // Initialise new event list GCTAEventList* list = new GCTAEventList; // Continue only if model is valid) if (valid_model()) { // Retrieve CTA observation const GCTAObservation* cta = dynamic_cast<const GCTAObservation*>(&obs); if (cta == NULL) { std::string msg = "Specified observation is not a CTA observation.\n" + obs.print(); throw GException::invalid_argument(G_MC, msg); } // Get pointer on CTA IRF response const GCTAResponseIrf* rsp = dynamic_cast<const GCTAResponseIrf*>(cta->response()); if (rsp == NULL) { std::string msg = "Specified observation does not contain" " an IRF response.\n" + obs.print(); throw GException::invalid_argument(G_MC, msg); } // Retrieve CTA response and pointing const GCTAPointing& pnt = cta->pointing(); // Get pointer to CTA background const GCTABackground* bgd = rsp->background(); if (bgd == NULL) { std::string msg = "Specified observation contains no background" " information.\n" + obs.print(); throw GException::invalid_argument(G_MC, msg); } // Retrieve event list to access the ROI, energy boundaries and GTIs const GCTAEventList* events = dynamic_cast<const GCTAEventList*>(obs.events()); if (events == NULL) { std::string msg = "No CTA event list found in observation.\n" + obs.print(); throw GException::invalid_argument(G_MC, msg); } // Get simulation region const GCTARoi& roi = events->roi(); const GEbounds& ebounds = events->ebounds(); const GGti& gti = events->gti(); // Set simulation region for result event list list->roi(roi); list->ebounds(ebounds); list->gti(gti); // Create a spectral model that combines the information from the // background information and the spectrum provided by the model GModelSpectralNodes spectral(bgd->spectrum()); for (int i = 0; i < spectral.nodes(); ++i) { GEnergy energy = spectral.energy(i); double intensity = spectral.intensity(i); double norm = m_spectral->eval(energy, events->tstart()); spectral.intensity(i, norm*intensity); } // Loop over all energy boundaries for (int ieng = 0; ieng < ebounds.size(); ++ieng) { // Compute the background rate in model within the energy // boundaries from spectral component (units: cts/s). // Note that the time here is ontime. Deadtime correction will // be done later. double rate = spectral.flux(ebounds.emin(ieng), ebounds.emax(ieng)); // Debug option: dump rate #if defined(G_DUMP_MC) std::cout << "GCTAModelIrfBackground::mc(\"" << name() << "\": "; std::cout << "rate=" << rate << " cts/s)" << std::endl; #endif // Loop over all good time intervals for (int itime = 0; itime < gti.size(); ++itime) { // Get Monte Carlo event arrival times from temporal model GTimes times = m_temporal->mc(rate, gti.tstart(itime), gti.tstop(itime), ran); // Get number of events int n_events = times.size(); // Reserve space for events if (n_events > 0) { list->reserve(n_events); } // Debug option: provide number of times and initialize // statisics #if defined(G_DUMP_MC) std::cout << " Interval " << itime; std::cout << " times=" << n_events << std::endl; int n_killed_by_deadtime = 0; int n_killed_by_roi = 0; #endif // Loop over events for (int i = 0; i < n_events; ++i) { // Apply deadtime correction double deadc = obs.deadc(times[i]); if (deadc < 1.0) { if (ran.uniform() > deadc) { #if defined(G_DUMP_MC) n_killed_by_deadtime++; #endif continue; } } // Get Monte Carlo event energy from spectral model GEnergy energy = spectral.mc(ebounds.emin(ieng), ebounds.emax(ieng), times[i], ran); // Get Monte Carlo event direction from spatial model. // This only will set the DETX and DETY coordinates. GCTAInstDir instdir = bgd->mc(energy, times[i], ran); // Derive sky direction from instrument coordinates GSkyDir skydir = pnt.skydir(instdir); // Set sky direction in GCTAInstDir object instdir.dir(skydir); // Allocate event GCTAEventAtom event; // Set event attributes event.dir(instdir); event.energy(energy); event.time(times[i]); // Append event to list if it falls in ROI if (events->roi().contains(event)) { list->append(event); } #if defined(G_DUMP_MC) else { n_killed_by_roi++; } #endif } // endfor: looped over all events // Debug option: provide statisics #if defined(G_DUMP_MC) std::cout << " Killed by deadtime="; std::cout << n_killed_by_deadtime << std::endl; std::cout << " Killed by ROI="; std::cout << n_killed_by_roi << std::endl; #endif } // endfor: looped over all GTIs } // endfor: looped over all energy boundaries } // endif: model was valid // Return return list; }