bool saveResults( const GestureRecognitionPipeline &pipeline, const string &filename ){ infoLog << "Saving results to file: " << filename << endl; fstream file( filename.c_str(), fstream::out ); if( !file.is_open() ){ errorLog << "Failed to open results file: " << filename << endl; return false; } file << pipeline.getTestAccuracy() << endl; vector< UINT > classLabels = pipeline.getClassLabels(); for(UINT k=0; k<pipeline.getNumClassesInModel(); k++){ file << pipeline.getTestPrecision( classLabels[k] ); if( k+1 < pipeline.getNumClassesInModel() ) file << "\t"; else file << endl; } for(UINT k=0; k<pipeline.getNumClassesInModel(); k++){ file << pipeline.getTestRecall( classLabels[k] ); if( k+1 < pipeline.getNumClassesInModel() ) file << "\t"; else file << endl; } for(UINT k=0; k<pipeline.getNumClassesInModel(); k++){ file << pipeline.getTestFMeasure( classLabels[k] ); if( k+1 < pipeline.getNumClassesInModel() ) file << "\t"; else file << endl; } MatrixDouble confusionMatrix = pipeline.getTestConfusionMatrix(); for(UINT i=0; i<confusionMatrix.getNumRows(); i++){ for(UINT j=0; j<confusionMatrix.getNumCols(); j++){ file << confusionMatrix[i][j]; if( j+1 < confusionMatrix.getNumCols() ) file << "\t"; }file << endl; } file.close(); infoLog << "Results saved." << endl; return true; }
int main (int argc, const char * argv[]) { //Load some training data from a file ClassificationData trainingData; if( !trainingData.loadDatasetFromFile("HelloWorldTrainingData.grt") ){ cout << "ERROR: Failed to load training data from file\n"; return EXIT_FAILURE; } cout << "Data Loaded\n"; //Print out some stats about the training data trainingData.printStats(); //Partition the training data into a training dataset and a test dataset. 80 means that 80% //of the data will be used for the training data and 20% will be returned as the test dataset ClassificationData testData = trainingData.partition(80); //Create a new Gesture Recognition Pipeline using an Adaptive Naive Bayes Classifier GestureRecognitionPipeline pipeline; pipeline.setClassifier( ANBC() ); //Train the pipeline using the training data if( !pipeline.train( trainingData ) ){ cout << "ERROR: Failed to train the pipeline!\n"; return EXIT_FAILURE; } //Save the pipeline to a file if( !pipeline.savePipelineToFile( "HelloWorldPipeline.grt" ) ){ cout << "ERROR: Failed to save the pipeline!\n"; return EXIT_FAILURE; } //Load the pipeline from a file if( !pipeline.loadPipelineFromFile( "HelloWorldPipeline.grt" ) ){ cout << "ERROR: Failed to load the pipeline!\n"; return EXIT_FAILURE; } //Test the pipeline using the test data if( !pipeline.test( testData ) ){ cout << "ERROR: Failed to test the pipeline!\n"; return EXIT_FAILURE; } //Print some stats about the testing cout << "Test Accuracy: " << pipeline.getTestAccuracy() << endl; cout << "Precision: "; for(UINT k=0; k<pipeline.getNumClassesInModel(); k++){ UINT classLabel = pipeline.getClassLabels()[k]; cout << "\t" << pipeline.getTestPrecision(classLabel); }cout << endl; cout << "Recall: "; for(UINT k=0; k<pipeline.getNumClassesInModel(); k++){ UINT classLabel = pipeline.getClassLabels()[k]; cout << "\t" << pipeline.getTestRecall(classLabel); }cout << endl; cout << "FMeasure: "; for(UINT k=0; k<pipeline.getNumClassesInModel(); k++){ UINT classLabel = pipeline.getClassLabels()[k]; cout << "\t" << pipeline.getTestFMeasure(classLabel); }cout << endl; MatrixDouble confusionMatrix = pipeline.getTestConfusionMatrix(); cout << "ConfusionMatrix: \n"; for(UINT i=0; i<confusionMatrix.getNumRows(); i++){ for(UINT j=0; j<confusionMatrix.getNumCols(); j++){ cout << confusionMatrix[i][j] << "\t"; }cout << endl; } return EXIT_SUCCESS; }