コード例 #1
0
ファイル: GrYUVProvider.cpp プロジェクト: BertiKarsunke/skia
GrTexture* GrYUVProvider::refAsTexture(GrContext* ctx, const GrSurfaceDesc& desc, bool useCache) {
    SkYUVPlanesCache::Info yuvInfo;
    void* planes[3];
    YUVScoper scoper;
    if (!scoper.init(this, &yuvInfo, planes, useCache)) {
        return nullptr;
    }

    GrSurfaceDesc yuvDesc;
    yuvDesc.fConfig = kAlpha_8_GrPixelConfig;
    SkAutoTUnref<GrTexture> yuvTextures[3];
    for (int i = 0; i < 3; i++) {
        yuvDesc.fWidth  = yuvInfo.fSizeInfo.fSizes[i].fWidth;
        yuvDesc.fHeight = yuvInfo.fSizeInfo.fSizes[i].fHeight;
        // TODO: why do we need this check?
        bool needsExactTexture =
                (yuvDesc.fWidth  != yuvInfo.fSizeInfo.fSizes[SkYUVSizeInfo::kY].fWidth) ||
                (yuvDesc.fHeight != yuvInfo.fSizeInfo.fSizes[SkYUVSizeInfo::kY].fHeight);
        if (needsExactTexture) {
            yuvTextures[i].reset(ctx->textureProvider()->createTexture(yuvDesc, SkBudgeted::kYes));
        } else {
            yuvTextures[i].reset(ctx->textureProvider()->createApproxTexture(yuvDesc));
        }
        if (!yuvTextures[i] ||
            !yuvTextures[i]->writePixels(0, 0, yuvDesc.fWidth, yuvDesc.fHeight, yuvDesc.fConfig,
                                         planes[i], yuvInfo.fSizeInfo.fWidthBytes[i])) {
                return nullptr;
            }
    }

    GrSurfaceDesc rtDesc = desc;
    rtDesc.fFlags = rtDesc.fFlags | kRenderTarget_GrSurfaceFlag;

    SkAutoTUnref<GrTexture> result(ctx->textureProvider()->createTexture(rtDesc, SkBudgeted::kYes,
                                                                         nullptr, 0));
    if (!result) {
        return nullptr;
    }

    GrRenderTarget* renderTarget = result->asRenderTarget();
    SkASSERT(renderTarget);

    GrPaint paint;
    // We may be decoding an sRGB image, but the result of our linear math on the YUV planes
    // is already in sRGB in that case. Don't convert (which will make the image too bright).
    paint.setDisableOutputConversionToSRGB(true);
    SkAutoTUnref<const GrFragmentProcessor> yuvToRgbProcessor(
                                        GrYUVEffect::CreateYUVToRGB(yuvTextures[0],
                                                                    yuvTextures[1],
                                                                    yuvTextures[2],
                                                                    yuvInfo.fSizeInfo.fSizes,
                                                                    yuvInfo.fColorSpace));
    paint.addColorFragmentProcessor(yuvToRgbProcessor);
    paint.setPorterDuffXPFactory(SkXfermode::kSrc_Mode);
    const SkRect r = SkRect::MakeIWH(yuvInfo.fSizeInfo.fSizes[SkYUVSizeInfo::kY].fWidth,
            yuvInfo.fSizeInfo.fSizes[SkYUVSizeInfo::kY].fHeight);

    SkAutoTUnref<GrDrawContext> drawContext(ctx->drawContext(renderTarget));
    if (!drawContext) {
        return nullptr;
    }

    drawContext->drawRect(GrClip::WideOpen(), paint, SkMatrix::I(), r);

    return result.release();
}
コード例 #2
0
ファイル: GrYUVProvider.cpp プロジェクト: ROM-PacMe/skia
sk_sp<GrTexture> GrYUVProvider::refAsTexture(GrContext* ctx,
        const GrSurfaceDesc& desc,
        bool useCache) {
    SkYUVPlanesCache::Info yuvInfo;
    void* planes[3];
    YUVScoper scoper;
    if (!scoper.init(this, &yuvInfo, planes, useCache)) {
        return nullptr;
    }

    GrSurfaceDesc yuvDesc;
    yuvDesc.fConfig = kAlpha_8_GrPixelConfig;
    SkAutoTUnref<GrTexture> yuvTextures[3];
    for (int i = 0; i < 3; i++) {
        yuvDesc.fWidth  = yuvInfo.fSizeInfo.fSizes[i].fWidth;
        yuvDesc.fHeight = yuvInfo.fSizeInfo.fSizes[i].fHeight;
        // TODO: why do we need this check?
        bool needsExactTexture =
            (yuvDesc.fWidth  != yuvInfo.fSizeInfo.fSizes[SkYUVSizeInfo::kY].fWidth) ||
            (yuvDesc.fHeight != yuvInfo.fSizeInfo.fSizes[SkYUVSizeInfo::kY].fHeight);
        if (needsExactTexture) {
            yuvTextures[i].reset(ctx->textureProvider()->createTexture(yuvDesc, SkBudgeted::kYes));
        } else {
            yuvTextures[i].reset(ctx->textureProvider()->createApproxTexture(yuvDesc));
        }
        if (!yuvTextures[i] ||
                !yuvTextures[i]->writePixels(0, 0, yuvDesc.fWidth, yuvDesc.fHeight, yuvDesc.fConfig,
                                             planes[i], yuvInfo.fSizeInfo.fWidthBytes[i])) {
            return nullptr;
        }
    }

    sk_sp<GrDrawContext> drawContext(ctx->newDrawContext(SkBackingFit::kExact,
                                     desc.fWidth, desc.fHeight,
                                     desc.fConfig, desc.fSampleCnt));
    if (!drawContext) {
        return nullptr;
    }

    GrPaint paint;
    sk_sp<GrFragmentProcessor> yuvToRgbProcessor(
        GrYUVEffect::MakeYUVToRGB(yuvTextures[0], yuvTextures[1], yuvTextures[2],
                                  yuvInfo.fSizeInfo.fSizes, yuvInfo.fColorSpace, false));
    paint.addColorFragmentProcessor(std::move(yuvToRgbProcessor));

    // If we're decoding an sRGB image, the result of our linear math on the YUV planes is already
    // in sRGB. (The encoding is just math on bytes, with no concept of color spaces.) So, we need
    // to output the results of that math directly to the buffer that we will then consider sRGB.
    // If we have sRGB write control, we can just tell the HW not to do the Linear -> sRGB step.
    // Otherwise, we do our shader math to go from YUV -> sRGB, manually convert sRGB -> Linear,
    // then let the HW convert Linear -> sRGB.
    if (GrPixelConfigIsSRGB(desc.fConfig)) {
        if (ctx->caps()->srgbWriteControl()) {
            paint.setDisableOutputConversionToSRGB(true);
        } else {
            paint.addColorFragmentProcessor(GrGammaEffect::Make(2.2f));
        }
    }

    paint.setPorterDuffXPFactory(SkXfermode::kSrc_Mode);
    const SkRect r = SkRect::MakeIWH(yuvInfo.fSizeInfo.fSizes[SkYUVSizeInfo::kY].fWidth,
                                     yuvInfo.fSizeInfo.fSizes[SkYUVSizeInfo::kY].fHeight);

    drawContext->drawRect(GrNoClip(), paint, SkMatrix::I(), r);

    return drawContext->asTexture();
}
コード例 #3
0
sk_sp<GrTextureProxy> GrYUVProvider::refAsTextureProxy(GrContext* ctx, const GrSurfaceDesc& desc,
                                                       const SkColorSpace* srcColorSpace,
                                                       const SkColorSpace* dstColorSpace) {
    SkYUVPlanesCache::Info yuvInfo;
    void* planes[3];

    sk_sp<SkCachedData>  dataStorage = init_provider(this, &yuvInfo, planes);
    if (!dataStorage) {
        return nullptr;
    }

    sk_sp<GrTextureProxy> yuvTextureProxies[3];
    for (int i = 0; i < 3; i++) {
        int componentWidth  = yuvInfo.fSizeInfo.fSizes[i].fWidth;
        int componentHeight = yuvInfo.fSizeInfo.fSizes[i].fHeight;
        // If the sizes of the components are not all the same we choose to create exact-match
        // textures for the smaller onces rather than add a texture domain to the draw.
        // TODO: revisit this decision to imporve texture reuse?
        SkBackingFit fit =
                (componentWidth  != yuvInfo.fSizeInfo.fSizes[SkYUVSizeInfo::kY].fWidth) ||
                (componentHeight != yuvInfo.fSizeInfo.fSizes[SkYUVSizeInfo::kY].fHeight)
                    ? SkBackingFit::kExact : SkBackingFit::kApprox;

        SkImageInfo imageInfo = SkImageInfo::MakeA8(componentWidth, componentHeight);
        SkPixmap pixmap(imageInfo, planes[i], yuvInfo.fSizeInfo.fWidthBytes[i]);
        SkCachedData* dataStoragePtr = dataStorage.get();
        // We grab a ref to cached yuv data. When the SkImage we create below goes away it will call
        // the YUVGen_DataReleaseProc which will release this ref.
        // DDL TODO: Currently we end up creating a lazy proxy that will hold onto a ref to the
        // SkImage in its lambda. This means that we'll keep the ref on the YUV data around for the
        // life time of the proxy and not just upload. For non-DDL draws we should look into
        // releasing this SkImage after uploads (by deleting the lambda after instantiation).
        dataStoragePtr->ref();
        sk_sp<SkImage> yuvImage = SkImage::MakeFromRaster(pixmap, YUVGen_DataReleaseProc,
                                                          dataStoragePtr);

        auto proxyProvider = ctx->contextPriv().proxyProvider();
        yuvTextureProxies[i] = proxyProvider->createTextureProxy(yuvImage, kNone_GrSurfaceFlags,
                                                                 kTopLeft_GrSurfaceOrigin,
                                                                 1, SkBudgeted::kYes, fit);
    }

    // We never want to perform color-space conversion during the decode. However, if the proxy
    // config is sRGB then we must use a sRGB color space.
    sk_sp<SkColorSpace> colorSpace;
    if (GrPixelConfigIsSRGB(desc.fConfig)) {
        colorSpace = SkColorSpace::MakeSRGB();
    }
    // TODO: investigate preallocating mip maps here
    sk_sp<GrRenderTargetContext> renderTargetContext(ctx->makeDeferredRenderTargetContext(
            SkBackingFit::kExact, desc.fWidth, desc.fHeight, desc.fConfig, std::move(colorSpace),
            desc.fSampleCnt, GrMipMapped::kNo, kTopLeft_GrSurfaceOrigin));
    if (!renderTargetContext) {
        return nullptr;
    }

    GrPaint paint;
    auto yuvToRgbProcessor =
            GrYUVtoRGBEffect::Make(std::move(yuvTextureProxies[0]),
                                   std::move(yuvTextureProxies[1]),
                                   std::move(yuvTextureProxies[2]),
                                   yuvInfo.fSizeInfo.fSizes, yuvInfo.fColorSpace, false);
    paint.addColorFragmentProcessor(std::move(yuvToRgbProcessor));

    // If we're decoding an sRGB image, the result of our linear math on the YUV planes is already
    // in sRGB. (The encoding is just math on bytes, with no concept of color spaces.) So, we need
    // to output the results of that math directly to the buffer that we will then consider sRGB.
    // If we have sRGB write control, we can just tell the HW not to do the Linear -> sRGB step.
    // Otherwise, we do our shader math to go from YUV -> sRGB, manually convert sRGB -> Linear,
    // then let the HW convert Linear -> sRGB.
    if (GrPixelConfigIsSRGB(desc.fConfig)) {
        if (ctx->caps()->srgbWriteControl()) {
            paint.setDisableOutputConversionToSRGB(true);
        } else {
            paint.addColorFragmentProcessor(GrSRGBEffect::Make(GrSRGBEffect::Mode::kSRGBToLinear,
                                                               GrSRGBEffect::Alpha::kOpaque));
        }
    }

    // If the caller expects the pixels in a different color space than the one from the image,
    // apply a color conversion to do this.
    std::unique_ptr<GrFragmentProcessor> colorConversionProcessor =
            GrNonlinearColorSpaceXformEffect::Make(srcColorSpace, dstColorSpace);
    if (colorConversionProcessor) {
        paint.addColorFragmentProcessor(std::move(colorConversionProcessor));
    }

    paint.setPorterDuffXPFactory(SkBlendMode::kSrc);
    const SkRect r = SkRect::MakeIWH(yuvInfo.fSizeInfo.fSizes[SkYUVSizeInfo::kY].fWidth,
                                     yuvInfo.fSizeInfo.fSizes[SkYUVSizeInfo::kY].fHeight);

    renderTargetContext->drawRect(GrNoClip(), std::move(paint), GrAA::kNo, SkMatrix::I(), r);

    return renderTargetContext->asTextureProxyRef();
}