コード例 #1
0
    void draw(GrBatchTarget* batchTarget, const GrPipeline* pipeline, int vertexCount, 
            size_t vertexStride, void* vertices, int indexCount, uint16_t* indices) {
        if (vertexCount == 0 || indexCount == 0) {
            return;
        }
        const GrVertexBuffer* vertexBuffer;
        GrVertices info;
        int firstVertex;
        void* verts = batchTarget->makeVertSpace(vertexStride, vertexCount, &vertexBuffer, 
                &firstVertex);
        if (!verts) {
            SkDebugf("Could not allocate vertices\n");
            return;
        }
        memcpy(verts, vertices, vertexCount * vertexStride);

        const GrIndexBuffer* indexBuffer;
        int firstIndex;
        uint16_t* idxs = batchTarget->makeIndexSpace(indexCount, &indexBuffer, &firstIndex);
        if (!idxs) {
            SkDebugf("Could not allocate indices\n");
            return;
        }
        memcpy(idxs, indices, indexCount * sizeof(uint16_t));
        info.initIndexed(kTriangles_GrPrimitiveType, vertexBuffer, indexBuffer, firstVertex, 
                firstIndex, vertexCount, indexCount);
        batchTarget->draw(info);
    }
コード例 #2
0
    void onPrepareDraws(Target* target) const override {
        // construct a cache key from the path's genID and the view matrix
        static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
        GrUniqueKey key;
        int clipBoundsSize32 =
            fPath.isInverseFillType() ? sizeof(fClipBounds) / sizeof(uint32_t) : 0;
        int strokeDataSize32 = fStroke.computeUniqueKeyFragmentData32Cnt();
        GrUniqueKey::Builder builder(&key, kDomain, 2 + clipBoundsSize32 + strokeDataSize32);
        builder[0] = fPath.getGenerationID();
        builder[1] = fPath.getFillType();
        // For inverse fills, the tessellation is dependent on clip bounds.
        if (fPath.isInverseFillType()) {
            memcpy(&builder[2], &fClipBounds, sizeof(fClipBounds));
        }
        fStroke.asUniqueKeyFragment(&builder[2 + clipBoundsSize32]);
        builder.finish();
        GrResourceProvider* rp = target->resourceProvider();
        SkAutoTUnref<GrVertexBuffer> vertexBuffer(rp->findAndRefTByUniqueKey<GrVertexBuffer>(key));
        int actualCount;
        SkScalar screenSpaceTol = GrPathUtils::kDefaultTolerance;
        SkScalar tol = GrPathUtils::scaleToleranceToSrc(
            screenSpaceTol, fViewMatrix, fPath.getBounds());
        if (!cache_match(vertexBuffer.get(), tol, &actualCount)) {
            bool canMapVB = GrCaps::kNone_MapFlags != target->caps().mapBufferFlags();
            actualCount = this->tessellate(&key, rp, vertexBuffer, canMapVB);
        }

        if (actualCount == 0) {
            return;
        }

        SkAutoTUnref<const GrGeometryProcessor> gp;
        {
            using namespace GrDefaultGeoProcFactory;

            Color color(fColor);
            LocalCoords localCoords(fPipelineInfo.readsLocalCoords() ?
                                    LocalCoords::kUsePosition_Type :
                                    LocalCoords::kUnused_Type);
            Coverage::Type coverageType;
            if (fPipelineInfo.readsCoverage()) {
                coverageType = Coverage::kSolid_Type;
            } else {
                coverageType = Coverage::kNone_Type;
            }
            Coverage coverage(coverageType);
            gp.reset(GrDefaultGeoProcFactory::Create(color, coverage, localCoords,
                                                     fViewMatrix));
        }

        target->initDraw(gp, this->pipeline());
        SkASSERT(gp->getVertexStride() == sizeof(SkPoint));

        GrPrimitiveType primitiveType = TESSELLATOR_WIREFRAME ? kLines_GrPrimitiveType
                                                              : kTriangles_GrPrimitiveType;
        GrVertices vertices;
        vertices.init(primitiveType, vertexBuffer.get(), 0, actualCount);
        target->draw(vertices);
    }
コード例 #3
0
    void onPrepareDraws(Target* target) const override {
        SkAutoTUnref<const GrGeometryProcessor> gp;
        {
            using namespace GrDefaultGeoProcFactory;
            Color color(this->color());
            Coverage coverage(this->coverageIgnored() ? Coverage::kSolid_Type :
                                                        Coverage::kNone_Type);
            LocalCoords localCoords(this->usesLocalCoords() ? LocalCoords::kUsePosition_Type :
                                                              LocalCoords::kUnused_Type);
            gp.reset(GrDefaultGeoProcFactory::Create(color, coverage, localCoords,
                                                     this->viewMatrix()));
        }

        target->initDraw(gp, this->pipeline());

        size_t vertexStride = gp->getVertexStride();

        SkASSERT(vertexStride == sizeof(GrDefaultGeoProcFactory::PositionAttr));

        const Geometry& args = fGeoData[0];

        int vertexCount = kVertsPerHairlineRect;
        if (args.fStrokeWidth > 0) {
            vertexCount = kVertsPerStrokeRect;
        }

        const GrVertexBuffer* vertexBuffer;
        int firstVertex;

        void* verts = target->makeVertexSpace(vertexStride, vertexCount, &vertexBuffer,
                                              &firstVertex);

        if (!verts) {
            SkDebugf("Could not allocate vertices\n");
            return;
        }

        SkPoint* vertex = reinterpret_cast<SkPoint*>(verts);

        GrPrimitiveType primType;
        if (args.fStrokeWidth > 0) {;
            primType = kTriangleStrip_GrPrimitiveType;
            init_stroke_rect_strip(vertex, args.fRect, args.fStrokeWidth);
        } else {
            // hairline
            primType = kLineStrip_GrPrimitiveType;
            vertex[0].set(args.fRect.fLeft, args.fRect.fTop);
            vertex[1].set(args.fRect.fRight, args.fRect.fTop);
            vertex[2].set(args.fRect.fRight, args.fRect.fBottom);
            vertex[3].set(args.fRect.fLeft, args.fRect.fBottom);
            vertex[4].set(args.fRect.fLeft, args.fRect.fTop);
        }

        GrVertices vertices;
        vertices.init(primType, vertexBuffer, firstVertex, vertexCount);
        target->draw(vertices);
    }
コード例 #4
0
    void generateGeometry(GrBatchTarget* batchTarget, const GrPipeline* pipeline) override {
        SkAutoTUnref<const GrGeometryProcessor> gp(
                GrDefaultGeoProcFactory::Create(GrDefaultGeoProcFactory::kPosition_GPType,
                                                this->color(),
                                                this->usesLocalCoords(),
                                                this->coverageIgnored(),
                                                this->viewMatrix(),
                                                SkMatrix::I()));

        batchTarget->initDraw(gp, pipeline);

        size_t vertexStride = gp->getVertexStride();

        SkASSERT(vertexStride == sizeof(GrDefaultGeoProcFactory::PositionAttr));

        Geometry& args = fGeoData[0];

        int vertexCount = kVertsPerHairlineRect;
        if (args.fStrokeWidth > 0) {
            vertexCount = kVertsPerStrokeRect;
        }

        const GrVertexBuffer* vertexBuffer;
        int firstVertex;

        void* verts = batchTarget->makeVertSpace(vertexStride, vertexCount,
                                                 &vertexBuffer, &firstVertex);

        if (!verts) {
            SkDebugf("Could not allocate vertices\n");
            return;
        }

        SkPoint* vertex = reinterpret_cast<SkPoint*>(verts);

        GrPrimitiveType primType;

        if (args.fStrokeWidth > 0) {;
            primType = kTriangleStrip_GrPrimitiveType;
            args.fRect.sort();
            this->setStrokeRectStrip(vertex, args.fRect, args.fStrokeWidth);
        } else {
            // hairline
            primType = kLineStrip_GrPrimitiveType;
            vertex[0].set(args.fRect.fLeft, args.fRect.fTop);
            vertex[1].set(args.fRect.fRight, args.fRect.fTop);
            vertex[2].set(args.fRect.fRight, args.fRect.fBottom);
            vertex[3].set(args.fRect.fLeft, args.fRect.fBottom);
            vertex[4].set(args.fRect.fLeft, args.fRect.fTop);
        }

        GrVertices vertices;
        vertices.init(primType, vertexBuffer, firstVertex, vertexCount);
        batchTarget->draw(vertices);
    }
コード例 #5
0
void AAHairlineBatch::generateGeometry(GrBatchTarget* batchTarget, const GrPipeline* pipeline) {
    // Setup the viewmatrix and localmatrix for the GrGeometryProcessor.
    SkMatrix invert;
    if (!this->viewMatrix().invert(&invert)) {
        return;
    }

    // we will transform to identity space if the viewmatrix does not have perspective
    bool hasPerspective = this->viewMatrix().hasPerspective();
    const SkMatrix* geometryProcessorViewM = &SkMatrix::I();
    const SkMatrix* geometryProcessorLocalM = &invert;
    const SkMatrix* toDevice = NULL;
    const SkMatrix* toSrc = NULL;
    if (hasPerspective) {
        geometryProcessorViewM = &this->viewMatrix();
        geometryProcessorLocalM = &SkMatrix::I();
        toDevice = &this->viewMatrix();
        toSrc = &invert;
    }

    // Setup geometry processors for worst case
    uint32_t gpFlags = GrDefaultGeoProcFactory::kPosition_GPType |
                       GrDefaultGeoProcFactory::kCoverage_GPType;

    SkAutoTUnref<const GrGeometryProcessor> lineGP(
            GrDefaultGeoProcFactory::Create(gpFlags,
                                            this->color(),
                                            this->usesLocalCoords(),
                                            this->coverageIgnored(),
                                            *geometryProcessorViewM,
                                            *geometryProcessorLocalM,
                                            this->coverage()));

    SkAutoTUnref<const GrGeometryProcessor> quadGP(
            GrQuadEffect::Create(this->color(),
                                 *geometryProcessorViewM,
                                 kHairlineAA_GrProcessorEdgeType,
                                 batchTarget->caps(),
                                 *geometryProcessorLocalM,
                                 this->usesLocalCoords(),
                                 this->coverage()));

    SkAutoTUnref<const GrGeometryProcessor> conicGP(
            GrConicEffect::Create(this->color(),
                                  *geometryProcessorViewM,
                                  kHairlineAA_GrProcessorEdgeType,
                                  batchTarget->caps(),
                                  *geometryProcessorLocalM,
                                  this->usesLocalCoords(),
                                  this->coverage()));

    // This is hand inlined for maximum performance.
    PREALLOC_PTARRAY(128) lines;
    PREALLOC_PTARRAY(128) quads;
    PREALLOC_PTARRAY(128) conics;
    IntArray qSubdivs;
    FloatArray cWeights;
    int quadCount = 0;

    int instanceCount = fGeoData.count();
    for (int i = 0; i < instanceCount; i++) {
        const Geometry& args = fGeoData[i];
        quadCount += gather_lines_and_quads(args.fPath, args.fViewMatrix, args.fDevClipBounds,
                                            &lines, &quads, &conics, &qSubdivs, &cWeights);
    }

    int lineCount = lines.count() / 2;
    int conicCount = conics.count() / 3;

    // do lines first
    if (lineCount) {
        SkAutoTUnref<const GrIndexBuffer> linesIndexBuffer(
            ref_lines_index_buffer(batchTarget->resourceProvider()));
        batchTarget->initDraw(lineGP, pipeline);

        const GrVertexBuffer* vertexBuffer;
        int firstVertex;

        size_t vertexStride = lineGP->getVertexStride();
        int vertexCount = kLineSegNumVertices * lineCount;
        LineVertex* verts = reinterpret_cast<LineVertex*>(
            batchTarget->makeVertSpace(vertexStride, vertexCount, &vertexBuffer, &firstVertex));

        if (!verts|| !linesIndexBuffer) {
            SkDebugf("Could not allocate vertices\n");
            return;
        }

        SkASSERT(lineGP->getVertexStride() == sizeof(LineVertex));

        for (int i = 0; i < lineCount; ++i) {
            add_line(&lines[2*i], toSrc, this->coverage(), &verts);
        }

        {
            GrVertices vertices;
            vertices.initInstanced(kTriangles_GrPrimitiveType, vertexBuffer, linesIndexBuffer,
                                   firstVertex, kLineSegNumVertices, kIdxsPerLineSeg, lineCount,
                                   kLineSegsNumInIdxBuffer);
            batchTarget->draw(vertices);
        }
    }

    if (quadCount || conicCount) {
        const GrVertexBuffer* vertexBuffer;
        int firstVertex;

        SkAutoTUnref<const GrIndexBuffer> quadsIndexBuffer(
            ref_quads_index_buffer(batchTarget->resourceProvider()));

        size_t vertexStride = sizeof(BezierVertex);
        int vertexCount = kQuadNumVertices * quadCount + kQuadNumVertices * conicCount;
        void *vertices = batchTarget->makeVertSpace(vertexStride, vertexCount,
                                                    &vertexBuffer, &firstVertex);

        if (!vertices || !quadsIndexBuffer) {
            SkDebugf("Could not allocate vertices\n");
            return;
        }

        // Setup vertices
        BezierVertex* verts = reinterpret_cast<BezierVertex*>(vertices);

        int unsubdivQuadCnt = quads.count() / 3;
        for (int i = 0; i < unsubdivQuadCnt; ++i) {
            SkASSERT(qSubdivs[i] >= 0);
            add_quads(&quads[3*i], qSubdivs[i], toDevice, toSrc, &verts);
        }

        // Start Conics
        for (int i = 0; i < conicCount; ++i) {
            add_conics(&conics[3*i], cWeights[i], toDevice, toSrc, &verts);
        }

        if (quadCount > 0) {
            batchTarget->initDraw(quadGP, pipeline);

            {
                GrVertices verts;
                verts.initInstanced(kTriangles_GrPrimitiveType, vertexBuffer, quadsIndexBuffer,
                                    firstVertex, kQuadNumVertices, kIdxsPerQuad, quadCount,
                                    kQuadsNumInIdxBuffer);
                batchTarget->draw(verts);
                firstVertex += quadCount * kQuadNumVertices;
           }
        }

        if (conicCount > 0) {
            batchTarget->initDraw(conicGP, pipeline);

            {
                GrVertices verts;
                verts.initInstanced(kTriangles_GrPrimitiveType, vertexBuffer, quadsIndexBuffer,
                                    firstVertex, kQuadNumVertices, kIdxsPerQuad, conicCount,
                                    kQuadsNumInIdxBuffer);
                batchTarget->draw(verts);
            }
        }
    }
}
コード例 #6
0
ファイル: GrPLSPathRenderer.cpp プロジェクト: crabfang/skia
    void onPrepareDraws(Target* target) const override {
        int instanceCount = fGeoData.count();

        SkMatrix invert;
        if (this->usesLocalCoords() && !this->viewMatrix().invert(&invert)) {
            SkDebugf("Could not invert viewmatrix\n");
            return;
        }

        // Setup GrGeometryProcessors
        SkAutoTUnref<GrPLSGeometryProcessor> triangleProcessor(
                PLSAATriangleEffect::Create(invert, this->usesLocalCoords()));
        SkAutoTUnref<GrPLSGeometryProcessor> quadProcessor(
                PLSQuadEdgeEffect::Create(invert, this->usesLocalCoords()));

        GrResourceProvider* rp = target->resourceProvider();
        for (int i = 0; i < instanceCount; ++i) {
            const Geometry& args = fGeoData[i];
            SkRect bounds = args.fPath.getBounds();
            args.fViewMatrix.mapRect(&bounds);
            bounds.fLeft = SkScalarFloorToScalar(bounds.fLeft);
            bounds.fTop = SkScalarFloorToScalar(bounds.fTop);
            bounds.fRight = SkScalarCeilToScalar(bounds.fRight);
            bounds.fBottom = SkScalarCeilToScalar(bounds.fBottom);
            triangleProcessor->setBounds(bounds);
            quadProcessor->setBounds(bounds);

            // We use the fact that SkPath::transform path does subdivision based on
            // perspective. Otherwise, we apply the view matrix when copying to the
            // segment representation.
            const SkMatrix* viewMatrix = &args.fViewMatrix;

            // We avoid initializing the path unless we have to
            const SkPath* pathPtr = &args.fPath;
            SkTLazy<SkPath> tmpPath;
            if (viewMatrix->hasPerspective()) {
                SkPath* tmpPathPtr = tmpPath.init(*pathPtr);
                tmpPathPtr->setIsVolatile(true);
                tmpPathPtr->transform(*viewMatrix);
                viewMatrix = &SkMatrix::I();
                pathPtr = tmpPathPtr;
            }

            GrVertices grVertices;

            PLSVertices triVertices;
            PLSVertices quadVertices;
            if (!get_geometry(*pathPtr, *viewMatrix, triVertices, quadVertices, rp, bounds)) {
                continue;
            }

            if (triVertices.count()) {
                const GrVertexBuffer* triVertexBuffer;
                int firstTriVertex;
                size_t triStride = triangleProcessor->getVertexStride();
                PLSVertex* triVerts = reinterpret_cast<PLSVertex*>(target->makeVertexSpace(
                        triStride, triVertices.count(), &triVertexBuffer, &firstTriVertex));
                if (!triVerts) {
                    SkDebugf("Could not allocate vertices\n");
                    return;
                }
                for (int i = 0; i < triVertices.count(); ++i) {
                    triVerts[i] = triVertices[i];
                }
                grVertices.init(kTriangles_GrPrimitiveType, triVertexBuffer, firstTriVertex, 
                                triVertices.count());
                target->initDraw(triangleProcessor, this->pipeline());
                target->draw(grVertices);
            }

            if (quadVertices.count()) {
                const GrVertexBuffer* quadVertexBuffer;
                int firstQuadVertex;
                size_t quadStride = quadProcessor->getVertexStride();
                PLSVertex* quadVerts = reinterpret_cast<PLSVertex*>(target->makeVertexSpace(
                        quadStride, quadVertices.count(), &quadVertexBuffer, &firstQuadVertex));
                if (!quadVerts) {
                    SkDebugf("Could not allocate vertices\n");
                    return;
                }
                for (int i = 0; i < quadVertices.count(); ++i) {
                    quadVerts[i] = quadVertices[i];
                }
                grVertices.init(kTriangles_GrPrimitiveType, quadVertexBuffer, firstQuadVertex, 
                                quadVertices.count());
                target->initDraw(quadProcessor, this->pipeline());
                target->draw(grVertices);
            }

            SkAutoTUnref<GrGeometryProcessor> finishProcessor(
                    PLSFinishEffect::Create(this->color(), 
                                            pathPtr->getFillType() == 
                                                                SkPath::FillType::kEvenOdd_FillType,
                                            invert, 
                                            this->usesLocalCoords()));
            const GrVertexBuffer* rectVertexBuffer;
            size_t finishStride = finishProcessor->getVertexStride();
            int firstRectVertex;
            static const int kRectVertexCount = 6;
            SkPoint* rectVerts = reinterpret_cast<SkPoint*>(target->makeVertexSpace(
                    finishStride, kRectVertexCount, &rectVertexBuffer, &firstRectVertex));
            if (!rectVerts) {
                SkDebugf("Could not allocate vertices\n");
                return;
            }
            rectVerts[0] = { bounds.fLeft, bounds.fTop };
            rectVerts[1] = { bounds.fLeft, bounds.fBottom };
            rectVerts[2] = { bounds.fRight, bounds.fBottom };
            rectVerts[3] = { bounds.fLeft, bounds.fTop };
            rectVerts[4] = { bounds.fRight, bounds.fTop };
            rectVerts[5] = { bounds.fRight, bounds.fBottom };

            grVertices.init(kTriangles_GrPrimitiveType, rectVertexBuffer, firstRectVertex, 
                            kRectVertexCount);
            target->initDraw(finishProcessor, this->pipeline());
            target->draw(grVertices);
        }
    }
コード例 #7
0
    void generateGeometry(GrBatchTarget* batchTarget, const GrPipeline* pipeline) override {
        SkAutoTUnref<const GrGeometryProcessor> gp(
                GrDefaultGeoProcFactory::Create(GrDefaultGeoProcFactory::kPosition_GPType,
                                                this->color(),
                                                this->viewMatrix(),
                                                SkMatrix::I(),
                                                this->coverage()));

        size_t vertexStride = gp->getVertexStride();
        SkASSERT(vertexStride == sizeof(SkPoint));

        batchTarget->initDraw(gp, pipeline);

        // TODO this is hacky, but the only way we have to initialize the GP is to use the
        // GrPipelineInfo struct so we can generate the correct shader.  Once we have GrBatch
        // everywhere we can remove this nastiness
        GrPipelineInfo init;
        init.fColorIgnored = fBatch.fColorIgnored;
        init.fOverrideColor = GrColor_ILLEGAL;
        init.fCoverageIgnored = fBatch.fCoverageIgnored;
        init.fUsesLocalCoords = this->usesLocalCoords();
        gp->initBatchTracker(batchTarget->currentBatchTracker(), init);

        int instanceCount = fGeoData.count();

        // compute number of vertices
        int maxVertices = 0;

        // We will use index buffers if we have multiple paths or one path with multiple contours
        bool isIndexed = instanceCount > 1;
        for (int i = 0; i < instanceCount; i++) {
            Geometry& args = fGeoData[i];

            int contourCount;
            maxVertices += GrPathUtils::worstCasePointCount(args.fPath, &contourCount,
                                                            args.fTolerance);

            isIndexed = isIndexed || contourCount > 1;
        }

        if (maxVertices == 0 || maxVertices > ((int)SK_MaxU16 + 1)) {
            SkDebugf("Cannot render path (%d)\n", maxVertices);
            return;
        }

        // determine primitiveType
        int maxIndices = 0;
        GrPrimitiveType primitiveType;
        if (this->isHairline()) {
            if (isIndexed) {
                maxIndices = 2 * maxVertices;
                primitiveType = kLines_GrPrimitiveType;
            } else {
                primitiveType = kLineStrip_GrPrimitiveType;
            }
        } else {
            if (isIndexed) {
                maxIndices = 3 * maxVertices;
                primitiveType = kTriangles_GrPrimitiveType;
            } else {
                primitiveType = kTriangleFan_GrPrimitiveType;
            }
        }

        // allocate vertex / index buffers
        const GrVertexBuffer* vertexBuffer;
        int firstVertex;

        void* verts = batchTarget->makeVertSpace(vertexStride, maxVertices,
                                                 &vertexBuffer, &firstVertex);

        if (!verts) {
            SkDebugf("Could not allocate vertices\n");
            return;
        }

        const GrIndexBuffer* indexBuffer = NULL;
        int firstIndex = 0;

        void* indices = NULL;
        if (isIndexed) {
            indices = batchTarget->makeIndexSpace(maxIndices, &indexBuffer, &firstIndex);

            if (!indices) {
                SkDebugf("Could not allocate indices\n");
                return;
            }
        }

        // fill buffers
        int vertexOffset = 0;
        int indexOffset = 0;
        for (int i = 0; i < instanceCount; i++) {
            Geometry& args = fGeoData[i];

            int vertexCnt = 0;
            int indexCnt = 0;
            if (!this->createGeom(verts,
                                  vertexOffset,
                                  indices,
                                  indexOffset,
                                  &vertexCnt,
                                  &indexCnt,
                                  args.fPath,
                                  args.fTolerance,
                                  isIndexed)) {
                return;
            }

            vertexOffset += vertexCnt;
            indexOffset += indexCnt;
            SkASSERT(vertexOffset <= maxVertices && indexOffset <= maxIndices);
        }

        GrVertices vertices;
        if (isIndexed) {
            vertices.initIndexed(primitiveType, vertexBuffer, indexBuffer, firstVertex, firstIndex,
                                 vertexOffset, indexOffset);
        } else {
            vertices.init(primitiveType, vertexBuffer, firstVertex, vertexOffset);
        }
        batchTarget->draw(vertices);

        // put back reserves
        batchTarget->putBackIndices((size_t)(maxIndices - indexOffset));
        batchTarget->putBackVertices((size_t)(maxVertices - vertexOffset), (size_t)vertexStride);
    }
コード例 #8
0
    void onPrepareDraws(Target* target) override {
#ifndef SK_IGNORE_LINEONLY_AA_CONVEX_PATH_OPTS
        if (this->linesOnly()) {
            this->prepareLinesOnlyDraws(target);
            return;
        }
#endif

        int instanceCount = fGeoData.count();

        SkMatrix invert;
        if (this->usesLocalCoords() && !this->viewMatrix().invert(&invert)) {
            SkDebugf("Could not invert viewmatrix\n");
            return;
        }

        // Setup GrGeometryProcessor
        SkAutoTUnref<GrGeometryProcessor> quadProcessor(
                QuadEdgeEffect::Create(this->color(), invert, this->usesLocalCoords()));

        target->initDraw(quadProcessor, this->pipeline());

        // TODO generate all segments for all paths and use one vertex buffer
        for (int i = 0; i < instanceCount; i++) {
            Geometry& args = fGeoData[i];

            // We use the fact that SkPath::transform path does subdivision based on
            // perspective. Otherwise, we apply the view matrix when copying to the
            // segment representation.
            const SkMatrix* viewMatrix = &args.fViewMatrix;
            if (viewMatrix->hasPerspective()) {
                args.fPath.transform(*viewMatrix);
                viewMatrix = &SkMatrix::I();
            }

            int vertexCount;
            int indexCount;
            enum {
                kPreallocSegmentCnt = 512 / sizeof(Segment),
                kPreallocDrawCnt = 4,
            };
            SkSTArray<kPreallocSegmentCnt, Segment, true> segments;
            SkPoint fanPt;

            if (!get_segments(args.fPath, *viewMatrix, &segments, &fanPt, &vertexCount,
                              &indexCount)) {
                continue;
            }

            const GrVertexBuffer* vertexBuffer;
            int firstVertex;

            size_t vertexStride = quadProcessor->getVertexStride();
            QuadVertex* verts = reinterpret_cast<QuadVertex*>(target->makeVertexSpace(
                vertexStride, vertexCount, &vertexBuffer, &firstVertex));

            if (!verts) {
                SkDebugf("Could not allocate vertices\n");
                return;
            }

            const GrIndexBuffer* indexBuffer;
            int firstIndex;

            uint16_t *idxs = target->makeIndexSpace(indexCount, &indexBuffer, &firstIndex);
            if (!idxs) {
                SkDebugf("Could not allocate indices\n");
                return;
            }

            SkSTArray<kPreallocDrawCnt, Draw, true> draws;
            create_vertices(segments, fanPt, &draws, verts, idxs);

            GrVertices vertices;

            for (int j = 0; j < draws.count(); ++j) {
                const Draw& draw = draws[j];
                vertices.initIndexed(kTriangles_GrPrimitiveType, vertexBuffer, indexBuffer,
                                     firstVertex, firstIndex, draw.fVertexCnt, draw.fIndexCnt);
                target->draw(vertices);
                firstVertex += draw.fVertexCnt;
                firstIndex += draw.fIndexCnt;
            }
        }
    }
コード例 #9
0
    void prepareLinesOnlyDraws(Target* target) {
        bool canTweakAlphaForCoverage = this->canTweakAlphaForCoverage();

        // Setup GrGeometryProcessor
        SkAutoTUnref<const GrGeometryProcessor> gp(create_fill_gp(canTweakAlphaForCoverage,
                                                                  this->viewMatrix(),
                                                                  this->usesLocalCoords(),
                                                                  this->coverageIgnored()));
        if (!gp) {
            SkDebugf("Could not create GrGeometryProcessor\n");
            return;
        }

        target->initDraw(gp, this->pipeline());

        size_t vertexStride = gp->getVertexStride();

        SkASSERT(canTweakAlphaForCoverage ?
                 vertexStride == sizeof(GrDefaultGeoProcFactory::PositionColorAttr) :
                 vertexStride == sizeof(GrDefaultGeoProcFactory::PositionColorCoverageAttr));

        GrAAConvexTessellator tess;

        int instanceCount = fGeoData.count();

        for (int i = 0; i < instanceCount; i++) {
            tess.rewind();

            Geometry& args = fGeoData[i];

            if (!tess.tessellate(args.fViewMatrix, args.fPath)) {
                continue;
            }

            const GrVertexBuffer* vertexBuffer;
            int firstVertex;

            void* verts = target->makeVertexSpace(vertexStride, tess.numPts(), &vertexBuffer,
                                                  &firstVertex);
            if (!verts) {
                SkDebugf("Could not allocate vertices\n");
                return;
            }

            const GrIndexBuffer* indexBuffer;
            int firstIndex;

            uint16_t* idxs = target->makeIndexSpace(tess.numIndices(), &indexBuffer, &firstIndex);
            if (!idxs) {
                SkDebugf("Could not allocate indices\n");
                return;
            }

            extract_verts(tess, verts, vertexStride, args.fColor, idxs, canTweakAlphaForCoverage);

            GrVertices info;
            info.initIndexed(kTriangles_GrPrimitiveType,
                             vertexBuffer, indexBuffer,
                             firstVertex, firstIndex,
                             tess.numPts(), tess.numIndices());
            target->draw(info);
        }
    }
コード例 #10
0
    void onPrepareDraws(Target* target) override {
        SkAutoTUnref<const GrGeometryProcessor> gp;
        {
            using namespace GrDefaultGeoProcFactory;
            Color color(this->color());
            Coverage coverage(this->coverage());
            if (this->coverageIgnored()) {
                coverage.fType = Coverage::kNone_Type;
            }
            LocalCoords localCoords(this->usesLocalCoords() ? LocalCoords::kUsePosition_Type :
                                                              LocalCoords::kUnused_Type);
            gp.reset(GrDefaultGeoProcFactory::Create(color, coverage, localCoords,
                                                     this->viewMatrix()));
        }

        size_t vertexStride = gp->getVertexStride();
        SkASSERT(vertexStride == sizeof(SkPoint));

        target->initDraw(gp, this->pipeline());

        int instanceCount = fGeoData.count();

        // compute number of vertices
        int maxVertices = 0;

        // We will use index buffers if we have multiple paths or one path with multiple contours
        bool isIndexed = instanceCount > 1;
        for (int i = 0; i < instanceCount; i++) {
            Geometry& args = fGeoData[i];

            int contourCount;
            maxVertices += GrPathUtils::worstCasePointCount(args.fPath, &contourCount,
                                                            args.fTolerance);

            isIndexed = isIndexed || contourCount > 1;
        }

        if (maxVertices == 0 || maxVertices > ((int)SK_MaxU16 + 1)) {
            SkDebugf("Cannot render path (%d)\n", maxVertices);
            return;
        }

        // determine primitiveType
        int maxIndices = 0;
        GrPrimitiveType primitiveType;
        if (this->isHairline()) {
            if (isIndexed) {
                maxIndices = 2 * maxVertices;
                primitiveType = kLines_GrPrimitiveType;
            } else {
                primitiveType = kLineStrip_GrPrimitiveType;
            }
        } else {
            if (isIndexed) {
                maxIndices = 3 * maxVertices;
                primitiveType = kTriangles_GrPrimitiveType;
            } else {
                primitiveType = kTriangleFan_GrPrimitiveType;
            }
        }

        // allocate vertex / index buffers
        const GrVertexBuffer* vertexBuffer;
        int firstVertex;

        void* verts = target->makeVertexSpace(vertexStride, maxVertices,
                                              &vertexBuffer, &firstVertex);

        if (!verts) {
            SkDebugf("Could not allocate vertices\n");
            return;
        }

        const GrIndexBuffer* indexBuffer = nullptr;
        int firstIndex = 0;

        void* indices = nullptr;
        if (isIndexed) {
            indices = target->makeIndexSpace(maxIndices, &indexBuffer, &firstIndex);

            if (!indices) {
                SkDebugf("Could not allocate indices\n");
                return;
            }
        }

        // fill buffers
        int vertexOffset = 0;
        int indexOffset = 0;
        for (int i = 0; i < instanceCount; i++) {
            Geometry& args = fGeoData[i];

            int vertexCnt = 0;
            int indexCnt = 0;
            if (!this->createGeom(verts,
                                  vertexOffset,
                                  indices,
                                  indexOffset,
                                  &vertexCnt,
                                  &indexCnt,
                                  args.fPath,
                                  args.fTolerance,
                                  isIndexed)) {
                return;
            }

            vertexOffset += vertexCnt;
            indexOffset += indexCnt;
            SkASSERT(vertexOffset <= maxVertices && indexOffset <= maxIndices);
        }

        GrVertices vertices;
        if (isIndexed) {
            vertices.initIndexed(primitiveType, vertexBuffer, indexBuffer, firstVertex, firstIndex,
                                 vertexOffset, indexOffset);
        } else {
            vertices.init(primitiveType, vertexBuffer, firstVertex, vertexOffset);
        }
        target->draw(vertices);

        // put back reserves
        target->putBackIndices((size_t)(maxIndices - indexOffset));
        target->putBackVertices((size_t)(maxVertices - vertexOffset), (size_t)vertexStride);
    }