// loops around the vertex (vertex is defined as the ending position of the halfedge) // consists of taking the next edge, then taking the opposite edge // if boundary edge encountered, can't take the opposite edge; it this case flag=1 is returned // and the edge returned is the boundary edge pointing away from the vertex // if taking the opposite edge is possible, the returned edge points into the vertex and flag is set to 0 ObjMeshOrientable::HalfEdge & ObjMeshOrientable::loopVertex(HalfEdge & halfedge, int & flag) { HalfEdge * loop = &halfedge; loop = &(edgeNext(*loop)); if (loop->isBoundary()) { flag = 1; // return boundary edge pointing away from the vertex (there is no corresponding edge pointing into the vertex) HalfEdge & result = *loop; return result; } else { flag = 0; loop = &(edgeOpposite(*loop)); // return edge pointing into the vertex HalfEdge & result = *loop; return result; } }
// returns the number of edges flipped int ObjMeshOrientable::GenerateHalfEdgeDataStructure() { std::cout << "Building the half edge data structure..." << std::endl; // Step 1: iterate over all faces // for each face, add all the edges onto the list of half-edges std::cout << "Step 1: Generating the list of half edges..." << std::endl; typedef std::vector<ObjMesh::Group> SGroup; int coutCounter = 0; for(unsigned int i = 0; i < objMesh->getNumGroups(); i++ ) { const ObjMesh::Group * currentGroup = objMesh->getGroupHandle(i); std::cout << " Processing obj group '" << currentGroup->getName() << std::endl; std::cout << " Iterating through group faces..." << std::endl; for( unsigned int iFace = 0; iFace < currentGroup->getNumFaces(); ++iFace ) { ObjMesh::Face face = currentGroup->getFace(iFace); // get face whose number is iFace if (coutCounter < 100) { std::cout << face.getNumVertices() ; coutCounter++; } if (coutCounter == 100) { cout << "...[and more]"; coutCounter++; } unsigned int edgesSoFar = halfEdges_.size(); for ( unsigned int iVertex = 0; iVertex < face.getNumVertices(); ++iVertex ) { // create a half edge for each edge, store -1 for half-edge adjacent edge for now // index vertices starting from 0 int nextEdge = edgesSoFar + ((iVertex + 1) % face.getNumVertices()); HalfEdge halfEdge(edgesSoFar + iVertex, face.getVertex(iVertex).getPositionIndex(), face.getVertex((iVertex + 1) % face.getNumVertices()).getPositionIndex(), iVertex, (iVertex + 1) % face.getNumVertices(), i, iFace, -1, nextEdge); halfEdges_.push_back(halfEdge); } } std::cout << std::endl; } /* for (unsigned int i=0; i<halfEdges_.size(); i++) { cout << "Half edge "<< i << " :" << endl; cout << " Opposite edge: " << halfEdges_[i].opposite() << endl; cout << " Next edge: " << halfEdges_[i].next() << endl; cout << " Group: " << halfEdges_[i].groupID() << endl; cout << " Face: " << halfEdges_[i].face() << endl; cout << " Start vertex: " << halfEdges_[i].startVertex() << endl; cout << " End vertex: " << halfEdges_[i].endVertex() << endl; cout << " Start vertex (local): " << halfEdges_[i].startV() << endl; cout << " End vertex (local): " << halfEdges_[i].endV() << endl; cout << " Is boundary: " << halfEdges_[i].isBoundary() << endl; } */ // Step 2: build correspondence among half-dges // for each half-edge, search for the opposite half-edge, if it exists std::cout << "Step 2: Building correspondence among half-edges..." << std::endl; std::cout << "Boundary edges: "; // insert all edges into a binary tree typedef std::multimap<std::pair< unsigned int, unsigned int > , unsigned int> BinaryTree; BinaryTree edges; for (unsigned int i=0; i < halfEdges_.size(); i++) { int vertex1 = halfEdges_[i].startVertex(); int vertex2 = halfEdges_[i].endVertex(); if (vertex1 == vertex2) { std::cout << "Error: encountered a degenerated edge with equal starting and ending vertex." << std::endl; std::cout << " Group:" << halfEdges_[i].groupID() << " Face #: " << halfEdges_[i].face() << "Vertex ID: " << vertex1 << std::endl; exit(1); } if (vertex1 > vertex2) // swap { int buffer = vertex1; vertex1 = vertex2; vertex2 = buffer; } std::pair<unsigned int, unsigned int> vertices(vertex1,vertex2); edges.insert(std::make_pair(vertices,i)); } // retrieve one by one and build correspondence for (unsigned int i=0; i < halfEdges_.size(); i++) { int vertex1 = halfEdges_[i].startVertex(); int vertex2 = halfEdges_[i].endVertex(); if (vertex1 > vertex2) // swap { int buffer = vertex1; vertex1 = vertex2; vertex2 = buffer; } std::pair<unsigned int, unsigned int> vertices(vertex1,vertex2); // search for the edge int hits = 0; int candidates = 0; BinaryTree::iterator pos; for (pos = edges.lower_bound(vertices); pos != edges.upper_bound(vertices); ++pos) { candidates++; // check if we found ourselves if (pos->second != i) { // not ourselves halfEdges_[i].setOpposite(pos->second); hits++; } } if (candidates >= 3) { std::cout << "Error: encountered an edge that appears in more than two triangles. Geometry is non-manifold. Exiting." << std::endl; int faceNum = halfEdges_[i].face(); std::cout << " Group:" << halfEdges_[i].groupID() << std::endl << " Face #: " << faceNum << std::endl; std::cout << " Edge: " << vertex1 << " " << vertex2 << std::endl; std::cout << " Vertices: " << objMesh->getPosition(vertex1) << " " << objMesh->getPosition(vertex2) << std::endl; exit(1); } if (hits == 0) // boundary edge { //std::cout << "B"; std::cout << "B(" << vertex1 << "," << vertex2 << ") "; boundaryEdges_.push_back(i); } } std::cout << " total: " << boundaryEdges_.size() << std::endl; /* for (unsigned int i=0; i<halfEdges_.size(); i++) { cout << "Half edge "<< i << " :" << endl; cout << " Opposite edge: " << halfEdges_[i].opposite() << endl; cout << " Next edge: " << halfEdges_[i].next() << endl; cout << " Group: " << halfEdges_[i].groupID() << endl; cout << " Face: " << halfEdges_[i].face() << endl; cout << " Start vertex: " << halfEdges_[i].startVertex() << endl; cout << " End vertex: " << halfEdges_[i].endVertex() << endl; cout << " Start vertex (local): " << halfEdges_[i].startV() << endl; cout << " End vertex (local): " << halfEdges_[i].endV() << endl; cout << " Is boundary: " << halfEdges_[i].isBoundary() << endl; } */ // now, each half-edge knows its mirror edge, but orientations of faces might be inconsistent // orient all half-edges consistently std::cout << "Step 3: Attempting to orient the faces coherently..." << std::endl; // generate marks for all the edges std::vector<int> marks(halfEdges_.size(), 0); // initialize queue std::set<int> queue; connectedComponents = 0; int numOrientationFlips = 0; while(1) // breakable { // find the first un-marked edge and queue it unsigned int unmarkedEdge; for (unmarkedEdge = 0; unmarkedEdge < halfEdges_.size(); unmarkedEdge++) { if (marks[unmarkedEdge] == 0) break; // found an unmarked edge } if (unmarkedEdge == halfEdges_.size()) // no unmarked edge was found { break; // out of while; we are done } else { cout << "Found a new connected component. Seed half-edge is: " << unmarkedEdge << endl; connectedComponents++; queue.insert(unmarkedEdge); while(queue.size() > 0) { int edge = *(queue.begin()); queue.erase(queue.begin()); //std::cout << "Retrieved edge from queue: " << edge << " Queue size: " << queue.size() << std::endl; //cout << "The edge is boundary: " << halfEdges_[edge].isBoundary() << endl; //std::cout << "Marking all the edges on this face: "; // first, mark all the edges on this face as visited int loop = edge; do { marks[loop] = 1; //std::cout << loop << " "; loop = halfEdges_[loop].next(); } while (loop != edge); //std::cout << std::endl; // check if edge is consistent with the opposite edge orientation // careful: edge might be on the boundary // find a non-boundary edge on the same face (if it exists) //std::cout << "Seeking for a non-boundary edge on this face..."; loop = edge; int exitFlag = 0; while ((halfEdges_[loop].isBoundary()) && (exitFlag == 0)) { //cout << loop << " "; loop = halfEdges_[loop].next(); if (loop == edge) // all edges are boundary exitFlag = 1; } if (exitFlag == 1) // all edges are boundary; this is an isolated face { cout << "Encountered an isolated face." << endl; //cout << "none found." << endl; continue; // no need to queue anything or flip anything, this was an isolated face // also, this case can only happen during the first iteration of the while loop, which will also be the last one } edge = loop; // now, edge is a non-boundary halfedge //std::cout << "found non-boundary edge: " << edge << std::endl; //std::cout << "opposite edge is: " << halfEdges_[edge].opposite() << std::endl; bool orientationFlipNecessary = (marks[halfEdges_[edge].opposite()] == 1) && (halfEdges_[edge].startVertex() == (edgeOpposite(halfEdges_[edge])).startVertex()); //std::cout << "Orientation flip necessary for this face: " << orientationFlipNecessary << std::endl; if (orientationFlipNecessary) { // flip all edges along this face //cout << "Orientation flip" << endl; numOrientationFlips++; loop = edge; int cache = 0; do { int nextO = halfEdges_[loop].next(); halfEdges_[loop].setNext(cache); cache = loop; halfEdges_[loop].flipOrientation(); // flip orientation loop = nextO; } while (loop != edge); halfEdges_[loop].setNext(cache); int groupID = halfEdges_[loop].groupID(); int faceID = halfEdges_[loop].face(); ObjMesh::Group * currentGroup = (ObjMesh::Group*) objMesh->getGroupHandle(groupID); currentGroup->getFace(faceID).printVertices(); currentGroup->reverseFace(faceID); currentGroup->getFace(faceID).printVertices(); } // check if new orientation is consistent eveywhere along the face // if not, surface is not orientable // at the same time, queue the opposite edges if they are not marked already loop = edge; do { if (!halfEdges_[loop].isBoundary()) // skip boundary edges { // if opposite unmarked, queue the opposite edge if (marks[halfEdges_[loop].opposite()] == 0) { queue.insert(halfEdges_[loop].opposite()); //marks[halfEdges_[loop].opposite()] = 1; // JNB, 2008 //std::cout << "visiting edge: " << loop << " pushing opposite: " << halfEdges_[loop].opposite() << std::endl; } else { // opposite edge is marked as already visited // if orientation consistent, do nothing // if orientation not consistent, surface is not orientable bool orientationConsistent = (halfEdges_[loop].startVertex() == (edgeOpposite(halfEdges_[loop])).endVertex()); //std::cout << "visiting edge: " << loop << " opposite marked " << std::endl; if (!orientationConsistent) { std::cout << "Error: surface is non-orientable. Offending edge: [" << halfEdges_[loop].startVertex() << "," << halfEdges_[loop].endVertex() << "]" << std::endl; exit(1); } } } loop = halfEdges_[loop].next(); } while (loop != edge); } } } // end of while printf("Consistent orientation generated. Performed %d orientation flips.\n", numOrientationFlips); //PrintHalfEdges(); // step 4: for every vertex, find a half-edge emanating out of it std::cout << "Step 4: For every vertex, caching a half-edge emanating out of it..." << std::endl; std::cout << " For every face, caching a half-edge on it..." << std::endl; for (unsigned int i=0; i< objMesh->getNumVertices(); i++) edgesAtVertices_.push_back(-1); // value of -1 corresponds to no edge (i.e. isolated vertex) for (unsigned int i=0; i < halfEdges_.size(); i++) { //cout << i << " " << halfEdges_[i].startVertex() << " " << halfEdges_[i].endVertex() << endl; edgesAtVertices_[halfEdges_[i].endVertex()] = i; } // if vertex is on the boundary, rotate the edge until it is an incoming boundary edge // rotate edge until it is either on the boundary, or we come around to the same edge int numIsolatedVertices = 0; for (unsigned int i=0; i < objMesh->getNumVertices(); i++) { if (isIsolatedVertex(i)) { numIsolatedVertices++; continue; } HalfEdge * loop = &edgeAtVertex(i); HalfEdge * start = loop; do { if (loop->isBoundary()) { // set the edge to the current edge edgesAtVertices_[i] = loop->position(); break; } loop = &edgePrevious(edgeOpposite(*loop)); } while (*loop != *start); // if we came around, no need to change edgeAtVertices[i] } if (numIsolatedVertices > 0) printf("Warning: mesh has %d isolated vertices.\n", numIsolatedVertices); // build the cache for faces, first reset to -1 for (unsigned int i=0; i < objMesh->getNumGroups(); i++) { const ObjMesh::Group * currentGroup = objMesh->getGroupHandle(i); std::vector<int> dataForThisGroup; dataForThisGroup.clear(); for (unsigned int j=0; j < currentGroup->getNumFaces(); j++) { dataForThisGroup.push_back(-1); } edgesAtFaces_.push_back(dataForThisGroup); } for (unsigned int i=0; i < halfEdges_.size(); i++) edgesAtFaces_[halfEdges_[i].groupID()][halfEdges_[i].face()] = i; // sanity check: none of the face entries should be -1 for (unsigned int i=0; i < objMesh->getNumGroups(); i++) { const ObjMesh::Group * currentGroup = objMesh->getGroupHandle(i); for (unsigned int j=0; j < currentGroup->getNumFaces(); j++) if (edgesAtFaces_[i][j] == -1) cout << "Warning: face on group " << i << "(" << currentGroup->getName() << "), position " << j << " has no edges." << endl; } determineIfSurfaceHasBoundary(); // testing: previous edge capability /* cout << "Testing previous edge capability..." << endl; for (unsigned int i=0; i < halfEdges_.size(); i++) { cout << i << ": " << edgePrevious(halfEdges_[i]).position() << endl; } // testing: print out associated edges for every vertex for (unsigned int i=0; i < vertexPositions_.size(); i++) { cout << "Halfedge into vertex " << i << ": " << edgeAtVertex(i).position() << endl; } // testing: print out associated edges for every face for (unsigned int i=0; i < groups_.size(); i++) for (unsigned int j=0; j < groups_[i].getNumFaces(); j++) { cout << "Halfedge on face " << i << " " << j << ": " << edgeAtFace(i,j).position() << endl; } // testing: loop around every vertex for (unsigned int i=0; i < vertexPositions_.size(); i++) { cout << "Looping around vertex " << i << ":"; int flag = 0; HalfEdge * start = &edgeAtVertex(i); HalfEdge * loop = start; do { cout << loop->position() << " "; if (flag != 0) // boundary edge, exit the loop { cout << " B"; break; } loop = &loopVertex(*loop,flag); } while (loop->position() != start->position()); cout << endl; } */ std::cout << "Half-edge datastructure constructed successfully." << std::endl; std::cout << "Statistics: " << std::endl; std::cout << " Half-edges: " << halfEdges_.size() << std::endl; std::cout << " Boundary half-edges: " << boundaryEdges_.size() << std::endl; std::cout << " Connected components: " << connectedComponents << std::endl; return numOrientationFlips; }
TriMesh* TriMesh::subdivideSqrt3() { vector<glm::vec3> points; vector<int> indices; for (int i = 0; i < m_nodes.size(); i++){ HalfEdge* start_edge = m_nodes[i].getLeadingHalfEdge(); int surroundingPoints = 0; glm::vec3 new_point = glm::vec3(0); points.push_back(m_nodes[i].m_pos_); //Pushing node vertex to points. m_nodes[i].index = points.size() - 1; //Setting node index. HalfEdge* he = start_edge; do{ int center_of_triangle; //Checking if triangle center already exists. if (he->getTriangle()->getCenter() == -1){ points.push_back(he->getTriangle()->calculateBarycenter()); he->getTriangle()->setCenter(points.size() - 1); } center_of_triangle = he->getTriangle()->getCenter(); /*Boundary case*/ if (he->isBoundary()){ points.push_back(glm::lerp(m_nodes[i].m_pos_, he->getDestinationNode()->m_pos_, 0.5f)); //Pushing mid-edge point. int middle_of_edge = points.size() - 1; int end_of_edge; //Checking if end point on edge already exists. if (he->getDestinationNode()->index == -1){ points.push_back(he->getDestinationNode()->m_pos_); //Pushing if not. he->getDestinationNode()->index = points.size() - 1; } end_of_edge = he->getDestinationNode()->index; //Pushing boundary triangle 1. indices.push_back(middle_of_edge); indices.push_back(center_of_triangle); indices.push_back(m_nodes[i].index); //Pushing boundary triangle 2. indices.push_back(middle_of_edge); indices.push_back(end_of_edge); indices.push_back(center_of_triangle); } /*Normal non-boundary edge*/ else{ int center_of_twin_triangle; Triangle* twin_triangle = he->getTwin()->getTriangle(); //Checking if triangle center already exists. if (twin_triangle->getCenter() == -1){ points.push_back(twin_triangle->calculateBarycenter()); twin_triangle->setCenter(points.size() - 1); } center_of_twin_triangle = twin_triangle->getCenter(); //Pushing new triangle indices.push_back(m_nodes[i].index); indices.push_back(center_of_twin_triangle); indices.push_back(center_of_triangle); } surroundingPoints++; new_point += he->getDestinationNode()->m_pos_; he = he->getVtxRingNext(); } while (he != start_edge); glm::vec3 beta = glm::vec3((4 - 2*cos(2*M_PI/surroundingPoints))/(9*surroundingPoints)); new_point = (1 - surroundingPoints * beta.x)*m_nodes[i].m_pos_ + beta*new_point; points[m_nodes[i].index] = new_point; } // skip // Generate a new set of points and indices using the sqrt(3) subdivision scheme // unskip return new TriMesh(points, indices); }