void MDDAGClassifier::saveConfusionMatrix(const string& dataFileName, const string& shypFileName, const string& outFileName) { InputData* pData = loadInputData(dataFileName, shypFileName); if (_verbose > 0) cout << "Loading strong hypothesis..." << flush; // The class that loads the weak hypotheses UnSerialization us; // Where to put the weak hypotheses vector<BaseLearner*> weakHypotheses; // loads them us.loadHypotheses(shypFileName, weakHypotheses, pData); // where the results go vector< ExampleResults* > results; if (_verbose > 0) cout << "Classifying..." << flush; // get the results computeResults( pData, weakHypotheses, results, (int)weakHypotheses.size() ); const int numClasses = pData->getNumClasses(); const int numExamples = pData->getNumExamples(); ofstream outFile(outFileName.c_str()); ////////////////////////////////////////////////////////////////////////// for (int l = 0; l < numClasses; ++l) outFile << '\t' << pData->getClassMap().getNameFromIdx(l); outFile << endl; for (int l = 0; l < numClasses; ++l) { vector<int> winnerCount(numClasses, 0); for (int i = 0; i < numExamples; ++i) { if ( pData->hasPositiveLabel(i,l) ) ++winnerCount[ results[i]->getWinner().first ]; } // class name outFile << pData->getClassMap().getNameFromIdx(l); for (int j = 0; j < numClasses; ++j) outFile << '\t' << winnerCount[j]; outFile << endl; } ////////////////////////////////////////////////////////////////////////// if (_verbose > 0) cout << "Done!" << endl; // delete the input data file if (pData) delete pData; vector<ExampleResults*>::iterator it; for (it = results.begin(); it != results.end(); ++it) delete (*it); }
void MDDAGClassifier::printConfusionMatrix(const string& dataFileName, const string& shypFileName) { InputData* pData = loadInputData(dataFileName, shypFileName); if (_verbose > 0) cout << "Loading strong hypothesis..." << flush; // The class that loads the weak hypotheses UnSerialization us; // Where to put the weak hypotheses vector<BaseLearner*> weakHypotheses; // loads them us.loadHypotheses(shypFileName, weakHypotheses, pData); // where the results go vector< ExampleResults* > results; if (_verbose > 0) cout << "Classifying..." << flush; // get the results computeResults( pData, weakHypotheses, results, (int)weakHypotheses.size()); const int numClasses = pData->getNumClasses(); const int numExamples = pData->getNumExamples(); if (_verbose > 0) cout << "Done!" << endl; const int colSize = 7; if (_verbose > 0) { cout << "Raw Confusion Matrix:\n"; cout << setw(colSize) << "Truth "; for (int l = 0; l < numClasses; ++l) cout << setw(colSize) << nor_utils::getAlphanumeric(l); cout << "\nClassification\n"; for (int l = 0; l < numClasses; ++l) { vector<int> winnerCount(numClasses, 0); for (int i = 0; i < numExamples; ++i) { if ( pData->hasPositiveLabel(i, l) ) ++winnerCount[ results[i]->getWinner().first ]; } // class cout << setw(colSize) << " " << nor_utils::getAlphanumeric(l); for (int j = 0; j < numClasses; ++j) cout << setw(colSize) << winnerCount[j]; cout << endl; } } cout << "\nMatrix Key:\n"; // Print the legend for (int l = 0; l < numClasses; ++l) cout << setw(5) << nor_utils::getAlphanumeric(l) << ": " << pData->getClassMap().getNameFromIdx(l) << "\n"; // delete the input data file if (pData) delete pData; vector<ExampleResults*>::iterator it; for (it = results.begin(); it != results.end(); ++it) delete (*it); }