コード例 #1
0
void CalculateDIFC::calculate() {
  Instrument_const_sptr instrument = m_inputWS->getInstrument();

  SpecialWorkspace2D_sptr localWS =
      boost::dynamic_pointer_cast<SpecialWorkspace2D>(m_outputWS);

  double l1;
  Kernel::V3D beamline, samplePos;
  double beamline_norm;
  instrument->getInstrumentParameters(l1, beamline, beamline_norm, samplePos);

  // To get all the detector ID's
  detid2det_map allDetectors;
  instrument->getDetectors(allDetectors);

  // Now go through all
  detid2det_map::const_iterator it = allDetectors.begin();
  for (; it != allDetectors.end(); ++it) {
    Geometry::IDetector_const_sptr det = it->second;
    if ((!det->isMasked()) && (!det->isMonitor())) {
      const detid_t detID = it->first;
      double offset = 0.;
      if (m_offsetsWS)
        offset = m_offsetsWS->getValue(detID, 0.);

      double difc = Geometry::Instrument::calcConversion(
          l1, beamline, beamline_norm, samplePos, det, offset);
      difc = 1. / difc; // calcConversion gives 1/DIFC
      localWS->setValue(detID, difc);
    }
  }

}
コード例 #2
0
  /**
   * Make a map of the conversion factors between tof and D-spacing
   * for all pixel IDs in a workspace.
   *
   * @param DFileName name of dspacemap file
   * @param offsetsWS :: OffsetsWorkspace with instrument and offsets
   */
  void SaveDspacemap::CalculateDspaceFromCal(Mantid::DataObjects::OffsetsWorkspace_sptr offsetsWS,
                                    std::string DFileName)
  {
    const char * filename = DFileName.c_str();
    // Get a pointer to the instrument contained in the workspace
    Instrument_const_sptr instrument = offsetsWS->getInstrument();
    double l1;
    Kernel::V3D beamline,samplePos;
    double beamline_norm;
    instrument->getInstrumentParameters(l1,beamline,beamline_norm, samplePos);

    //To get all the detector ID's
    detid2det_map allDetectors;
    instrument->getDetectors(allDetectors);

    detid2det_map::const_iterator it;
    detid_t maxdetID = 0;
    for (it = allDetectors.begin(); it != allDetectors.end(); it++)
    {
      detid_t detectorID = it->first;
      if(detectorID > maxdetID) maxdetID = detectorID;
    }
    detid_t paddetID = detid_t(getProperty("PadDetID"));
    if (maxdetID < paddetID)maxdetID = paddetID;

    // Now write the POWGEN-style Dspace mapping file
    std::ofstream fout(filename, std::ios_base::out|std::ios_base::binary);
    Progress prog(this,0.0,1.0,maxdetID);

    for (detid_t i = 0; i != maxdetID; i++)
    {
      //Compute the factor
      double factor;
      Geometry::IDetector_const_sptr det;
      // Find the detector with that detector id
      it = allDetectors.find(i);
      if (it != allDetectors.end())
      {
        det = it->second;
        factor = Instrument::calcConversion(l1, beamline, beamline_norm, samplePos, det, offsetsWS->getValue(i, 0.0));
        //Factor of 10 between ISAW and Mantid
        factor *= 0.1 ;
        if(factor<0)factor = 0.0;
        fout.write( reinterpret_cast<char*>( &factor ), sizeof(double) );
      }
      else
      {
        factor = 0;
        fout.write( reinterpret_cast<char*>( &factor ), sizeof(double) );
      }
      //Report progress
      prog.report();

    }
    fout.close();
  }
コード例 #3
0
ファイル: LoadDspacemap.cpp プロジェクト: spaceyatom/mantid
/**
 * Make a map of the conversion factors between tof and D-spacing
 * for all pixel IDs in a workspace.
 *
 * @param DFileName :: name of dspacemap file
 * @param offsetsWS :: OffsetsWorkspace to be filled.
 */
void LoadDspacemap::CalculateOffsetsFromDSpacemapFile(
    const std::string DFileName,
    Mantid::DataObjects::OffsetsWorkspace_sptr offsetsWS) {
  // Get a pointer to the instrument contained in the workspace
  Instrument_const_sptr instrument = offsetsWS->getInstrument();
  double l1;
  Kernel::V3D beamline, samplePos;
  double beamline_norm;
  instrument->getInstrumentParameters(l1, beamline, beamline_norm, samplePos);

  // To get all the detector ID's
  detid2det_map allDetectors;
  instrument->getDetectors(allDetectors);

  // Read in the POWGEN-style Dspace mapping file
  const char *filename = DFileName.c_str();
  std::ifstream fin(filename, std::ios_base::in | std::ios_base::binary);

  std::vector<double> dspace;
  double read;
  while (!fin.eof()) {
    fin.read(reinterpret_cast<char *>(&read), sizeof read);
    // Factor of 10 between ISAW and Mantid
    read *= 10.;
    dspace.push_back(read);
  }

  detid2det_map::const_iterator it;
  for (it = allDetectors.begin(); it != allDetectors.end(); ++it) {
    detid_t detectorID = it->first;
    Geometry::IDetector_const_sptr det = it->second;

    // Compute the factor
    double offset = 0.0;
    double factor = Instrument::calcConversion(l1, beamline, beamline_norm,
                                               samplePos, det, offset);
    offset = dspace[detectorID] / factor - 1.0;
    // Save in the map
    try {
      offsetsWS->setValue(detectorID, offset);
    } catch (std::invalid_argument &) {
    }
  }
}
コード例 #4
0
/**
 * @param offsetsWS
 * @param index
 * @return The offset adjusted value of DIFC
 */
double calculateDIFC(OffsetsWorkspace_const_sptr offsetsWS, const size_t index) {
    Instrument_const_sptr instrument = offsetsWS->getInstrument();

    const detid_t detid = getDetID(offsetsWS, index);
    const double offset = getOffset(offsetsWS, detid);

    double l1;
    Kernel::V3D beamline, samplePos;
    double beamline_norm;
    instrument->getInstrumentParameters(l1, beamline, beamline_norm, samplePos);

    Geometry::IDetector_const_sptr detector = instrument->getDetector(detid);

    // the factor returned is what is needed to convert TOF->d-spacing
    // the table is supposed to be filled with DIFC which goes the other way
    const double factor = Instrument::calcConversion(l1, beamline, beamline_norm,
                                      samplePos, detector, offset);
    return 1./factor;
}
コード例 #5
0
  /** Execute the algorithm.
   */
  void SaveIsawPeaks::exec()
  {
    // Section header
    std::string header = "2   SEQN    H    K    L     COL      ROW     CHAN        L2   2_THETA        AZ         WL         D      IPK          INTI    SIGI  RFLG";

    std::string filename = getPropertyValue("Filename");
    PeaksWorkspace_sptr ws = getProperty("InputWorkspace");
    std::vector<Peak> peaks = ws->getPeaks();

    // We must sort the peaks first by run, then bank #, and save the list of workspace indices of it
    typedef std::map<int, std::vector<size_t> > bankMap_t;
    typedef std::map<int, bankMap_t> runMap_t;
    std::set<int> uniqueBanks;
    runMap_t runMap;

    for (size_t i=0; i < peaks.size(); ++i)
    {
      Peak & p = peaks[i];
      int run = p.getRunNumber();
      int bank = 0;
      std::string bankName = p.getBankName();
      if (bankName.size() <= 4)
      {
        g_log.information() << "Could not interpret bank number of peak " << i << "(" << bankName << ")\n";
        continue;
      }
      // Take out the "bank" part of the bank name and convert to an int
      bankName = bankName.substr(4, bankName.size()-4);
      Strings::convert(bankName, bank);

      // Save in the map
      runMap[run][bank].push_back(i);
      // Track unique bank numbers
      uniqueBanks.insert(bank);
    }

    Instrument_const_sptr inst = ws->getInstrument();
    if (!inst) throw std::runtime_error("No instrument in PeaksWorkspace. Cannot save peaks file.");

    double l1; V3D beamline; double beamline_norm; V3D samplePos;
    inst->getInstrumentParameters(l1, beamline, beamline_norm, samplePos);

    std::ofstream out;
    bool append = getProperty("AppendFile");
    if (append)
    {
      out.open( filename.c_str(), std::ios::app);
    }
    else
    {
      out.open( filename.c_str());


    out << "Version: 2.0  Facility: SNS " ;
    out <<  " Instrument: " <<  inst->getName() <<  "  Date: " ;

    //TODO: The experiment date might be more useful than the instrument date.
    // For now, this allows the proper instrument to be loaded back after saving.
    Kernel::DateAndTime expDate = inst->getValidFromDate() + 1.0;
    out <<  expDate.to_ISO8601_string() << std::endl;

    out << "6         L1    T0_SHIFT" <<  std::endl;
    out << "7 "<< std::setw( 10 )  ;
    out <<   std::setprecision( 4 ) <<  std::fixed <<  ( l1*100 ) ;
    out << std::setw( 12 ) <<  std::setprecision( 3 ) <<  std::fixed  ;
    // Time offset of 0.00 for now
    out << "0.000" <<  std::endl;


    // ============================== Save .detcal info =========================================
    if (true)
    {
      out <<  "4 DETNUM  NROWS  NCOLS   WIDTH   HEIGHT   DEPTH   DETD   CenterX   CenterY   CenterZ    BaseX    BaseY    BaseZ      UpX      UpY      UpZ"
          <<  std::endl;
      // Here would save each detector...
      std::set<int>::iterator it;
      for (it = uniqueBanks.begin(); it != uniqueBanks.end(); it++)
      {
        // Build up the bank name
        int bank = *it;
        std::ostringstream mess;
        mess << "bank" << bank;
        std::string bankName = mess.str();
        // Retrieve it
        RectangularDetector_const_sptr det = boost::dynamic_pointer_cast<const RectangularDetector>(inst->getComponentByName(bankName));
        if (det)
        {
          // Center of the detector
          V3D center = det->getPos();
          // Distance to center of detector
          double detd = (center - inst->getSample()->getPos()).norm();

          // Base unit vector (along the horizontal, X axis)
          V3D base = det->getAtXY(det->xpixels()-1,0)->getPos() - det->getAtXY(0,0)->getPos();
          base.normalize();
          // Up unit vector (along the vertical, Y axis)
          V3D up = det->getAtXY(0,det->ypixels()-1)->getPos() - det->getAtXY(0,0)->getPos();
          up.normalize();

          // Write the line
          out << "5 "
           << std::setw(6) << std::right << bank << " "
           << std::setw(6) << std::right << det->xpixels() << " "
           << std::setw(6) << std::right << det->ypixels() << " "
           << std::setw(7) << std::right << std::fixed << std::setprecision(4) << 100.0*det->xsize() << " "
           << std::setw(7) << std::right << std::fixed << std::setprecision(4) << 100.0*det->ysize() << " "
           << "  0.2000 "
           << std::setw(6) << std::right << std::fixed << std::setprecision(2) << 100.0*detd << " "
           << std::setw(9) << std::right << std::fixed << std::setprecision(4) << 100.0*center.X() << " "
           << std::setw(9) << std::right << std::fixed << std::setprecision(4) << 100.0*center.Y() << " "
           << std::setw(9) << std::right << std::fixed << std::setprecision(4) << 100.0*center.Z() << " "
           << std::setw(8) << std::right << std::fixed << std::setprecision(5) << base.X() << " "
           << std::setw(8) << std::right << std::fixed << std::setprecision(5) << base.Y() << " "
           << std::setw(8) << std::right << std::fixed << std::setprecision(5) << base.Z() << " "
           << std::setw(8) << std::right << std::fixed << std::setprecision(5) << up.X() << " "
           << std::setw(8) << std::right << std::fixed << std::setprecision(5) << up.Y() << " "
           << std::setw(8) << std::right << std::fixed << std::setprecision(5) << up.Z() << " "
           << std::endl;

        }
      }
    }
    }


    // ============================== Save all Peaks =========================================
    // Sequence number
    int seqNum = 1;

    // Go in order of run numbers
    runMap_t::iterator runMap_it;
    for (runMap_it = runMap.begin(); runMap_it != runMap.end(); runMap_it++)
    {
      // Start of a new run
      int run = runMap_it->first;
      bankMap_t & bankMap = runMap_it->second;

      bankMap_t::iterator bankMap_it;
      for (bankMap_it = bankMap.begin(); bankMap_it != bankMap.end(); bankMap_it++)
      {
        // Start of a new bank.
        int bank = bankMap_it->first;
        std::vector<size_t> & ids = bankMap_it->second;

        if (ids.size() > 0)
        {
          // Write the bank header
          out << "0 NRUN DETNUM    CHI      PHI    OMEGA   MONCNT" << std::endl;
          out <<  "1" <<  std::setw( 5 ) <<  run <<  std::setw( 7 ) <<
              std::right <<  bank;

          // Determine goniometer angles by calculating from the goniometer matrix of a peak in the list
          Goniometer gon(peaks[ids[0]].getGoniometerMatrix());
          std::vector<double> angles = gon.getEulerAngles("yzy");

          double phi = angles[2];
          double chi = angles[1];
          double omega = angles[0];

          out  <<  std::setw( 7 ) <<  std::fixed <<  std::setprecision( 2 )  <<  chi << " ";
          out  <<  std::setw( 7 ) <<  std::fixed <<  std::setprecision( 2 )  <<  phi << " ";
          out  <<  std::setw( 7 ) <<  std::fixed <<  std::setprecision( 2 )  <<  omega << " ";
          out  <<  std::setw( 7 ) <<  (int)( 0 ) <<  std::endl;

          out << header << std::endl;

          // Go through each peak at this run / bank
          for (size_t i=0; i < ids.size(); i++)
          {
            size_t wi = ids[i];
            Peak & p = peaks[wi];

            // Sequence (run) number
            out <<  "3" <<  std::setw( 7 ) << seqNum;

            // HKL is flipped by -1 due to different q convention in ISAW vs mantid.
            out <<  std::setw( 5 ) << Utils::round(-p.getH())
                <<  std::setw( 5 ) << Utils::round(-p.getK())
                <<  std::setw( 5 ) << Utils::round(-p.getL());

            // Row/column
            out <<  std::setw( 8 ) <<  std::fixed << std::setprecision( 2 )
              << static_cast<double>(p.getCol()) << " ";

            out << std::setw( 8 ) << std::fixed << std::setprecision( 2 )
              << static_cast<double>(p.getRow()) << " ";

            out << std::setw( 8 ) << std::fixed << std::setprecision( 0 )
              << p.getTOF() << " ";


            out << std::setw( 9 ) << std::fixed << std::setprecision( 3 )
              << (p.getL2()*100.0) << " ";

            // This is the scattered beam direction
            V3D dir = p.getDetPos() - inst->getSample()->getPos();
            double scattering, azimuth;

            // Two-theta = polar angle = scattering angle = between +Z vector and the scattered beam
            scattering = dir.angle( V3D(0.0, 0.0, 1.0) );

            // "Azimuthal" angle: project the beam onto the XY plane, and measure the angle between that and the +X axis (right-handed)
            azimuth = atan2( dir.Y(), dir.X() );

            out << std::setw( 9 ) << std::fixed << std::setprecision( 5 )
              << scattering << " "; //two-theta scattering

            out << std::setw( 9 ) << std::fixed << std::setprecision( 5 )
              << azimuth << " ";

            out << std::setw( 10 ) << std::fixed << std::setprecision( 6 )
              << p.getWavelength() << " ";

            out << std::setw( 9 ) << std::fixed << std::setprecision( 4 )
              << p.getDSpacing() << " ";

            out << std::setw( 8 ) << std::fixed << int(p.getBinCount()) << std::setw( 10 ) << " "
              << std::fixed << std::setprecision( 2 ) << p.getIntensity() << " ";

            out << std::setw( 7 ) << std::fixed << std::setprecision( 2 )
              << p.getSigmaIntensity() << " ";

            int thisReflag = 310;
            out << std::setw( 5 ) << thisReflag;

            out << std::endl;

            // Count the sequence
            seqNum++;
          }
        }
      }
    }

    out.flush();
    out.close();

//    //REMOVE:
//    std::string line;
//    std::ifstream myfile (filename.c_str());
//    if (myfile.is_open())
//    {
//      while ( myfile.good() )
//      {
//        getline (myfile,line);
//        std::cout << line << std::endl;
//      }
//      myfile.close();
//    }


  }
コード例 #6
0
ファイル: LoadDspacemap.cpp プロジェクト: spaceyatom/mantid
/**
 * Make a map of the conversion factors between tof and D-spacing
 * for all pixel IDs in a workspace.
 * map vulcan should contain the module/module and stack/stack offset
 *
 * @param vulcan :: map between detector ID and vulcan correction factor.
 * @param offsetsWS :: OffsetsWorkspace to be filled.
 */
void LoadDspacemap::CalculateOffsetsFromVulcanFactors(
    std::map<detid_t, double> &vulcan,
    Mantid::DataObjects::OffsetsWorkspace_sptr offsetsWS) {
  // Get a pointer to the instrument contained in the workspace
  // At this point, instrument VULCAN has been created?
  Instrument_const_sptr instrument = offsetsWS->getInstrument();

  g_log.notice() << "Name of instrument = " << instrument->getName()
                 << std::endl;
  g_log.notice() << "Input map (dict):  size = " << vulcan.size() << std::endl;

  // To get all the detector ID's
  detid2det_map allDetectors;
  instrument->getDetectors(allDetectors);

  detid2det_map::const_iterator it;
  int numfinds = 0;
  g_log.notice() << "Input number of detectors = " << allDetectors.size()
                 << std::endl;

  // Get detector information
  double l1, beamline_norm;
  Kernel::V3D beamline, samplePos;
  instrument->getInstrumentParameters(l1, beamline, beamline_norm, samplePos);

  /*** A survey of parent detector
  std::map<detid_t, bool> parents;
  for (it = allDetectors.begin(); it != allDetectors.end(); it++){
    int32_t detid = it->first;

    // def boost::shared_ptr<const Mantid::Geometry::IDetector>
  IDetector_const_sptr;

    std::string parentname =
  it->second->getParent()->getComponentID()->getName();
    g_log.notice() << "Name = " << parentname << std::endl;
    // parents.insert(parentid, true);
  }
  ***/

  /*** Here some special configuration for VULCAN is hard-coded here!
   *   Including (1) Super-Parent Information
   ***/
  Kernel::V3D referencePos;
  detid_t anydetinrefmodule = 21 * 1250 + 5;

  std::map<detid_t, Geometry::IDetector_const_sptr>::iterator det_iter =
      allDetectors.find(anydetinrefmodule);

  if (det_iter == allDetectors.end()) {
    throw std::invalid_argument("Any Detector ID is Instrument's detector");
  }
  referencePos = det_iter->second->getParent()->getPos();
  double refl2 = referencePos.norm();
  double halfcosTwoThetaRef =
      referencePos.scalar_prod(beamline) / (refl2 * beamline_norm);
  double sinThetaRef = sqrt(0.5 - halfcosTwoThetaRef);
  double difcRef = sinThetaRef * (l1 + refl2) / CONSTANT;

  // Loop over all detectors in instrument to find the offset
  for (it = allDetectors.begin(); it != allDetectors.end(); ++it) {
    int detectorID = it->first;
    Geometry::IDetector_const_sptr det = it->second;
    double offset = 0.0;

    // Find the vulcan factor;
    double vulcan_factor = 0.0;
    std::map<detid_t, double>::const_iterator vulcan_iter =
        vulcan.find(detectorID);
    if (vulcan_iter != vulcan.end()) {
      vulcan_factor = vulcan_iter->second;
      numfinds++;
    }

    // g_log.notice() << "Selected Detector with ID = " << detectorID << "  ID2
    // = " << id2 << std::endl; proved to be same

    double intermoduleoffset = 0;
    double interstackoffset = 0;

    detid_t intermoduleid = detid_t(detectorID / 1250) * 1250 + 1250 - 2;
    vulcan_iter = vulcan.find(intermoduleid);
    if (vulcan_iter == vulcan.end()) {
      g_log.error() << "Cannot find inter-module offset ID = " << intermoduleid
                    << std::endl;
    } else {
      intermoduleoffset = vulcan_iter->second;
    }

    detid_t interstackid = detid_t(detectorID / 1250) * 1250 + 1250 - 1;
    vulcan_iter = vulcan.find(interstackid);
    if (vulcan_iter == vulcan.end()) {
      g_log.error() << "Cannot find inter-module offset ID = " << intermoduleid
                    << std::endl;
    } else {
      interstackoffset = vulcan_iter->second;
    }

    /***  This is the previous way to correct upon DIFC[module center pixel]
    // The actual factor is 10^(-value_in_the_file)
    vulcan_factor = pow(10.0,-vulcan_factor);
    // At this point, tof_corrected = vulcan_factor * tof_input
    // So this is the offset
    offset = vulcan_factor - 1.0;
    ***/

    /*** New approach to correct based on DIFC of each pixel
     *   Equation:  offset = DIFC^(pixel)/DIFC^(parent)*(1+vulcan_offset)-1
     *   offset should be close to 0
     ***/
    // 1. calculate DIFC
    Kernel::V3D detPos;
    detPos = det->getPos();

    // Now detPos will be set with respect to samplePos
    detPos -= samplePos;
    double l2 = detPos.norm();
    double halfcosTwoTheta =
        detPos.scalar_prod(beamline) / (l2 * beamline_norm);
    double sinTheta = sqrt(0.5 - halfcosTwoTheta);
    double difc_pixel = sinTheta * (l1 + l2) / CONSTANT;

    // Kernel::V3D parentPos = det->getParent()->getPos();
    // parentPos -= samplePos;
    // double l2parent = parentPos.norm();
    // double halfcosTwoThetaParent = parentPos.scalar_prod(beamline)/(l2 *
    // beamline_norm);
    // double sinThetaParent = sqrt(0.5 - halfcosTwoThetaParent);
    // double difc_parent = sinThetaParent*(l1+l2parent)/CONSTANT;

    /*** Offset Replicate Previous Result
    offset = difc_pixel/difc_parent*(pow(10.0, -vulcan_factor))-1.0;
    ***/

    offset =
        difc_pixel / difcRef * (pow(10.0, -(vulcan_factor + intermoduleoffset +
                                            interstackoffset))) -
        1.0;

    // Save in the map
    try {
      offsetsWS->setValue(detectorID, offset);

      if (intermoduleid != 27498 && intermoduleid != 28748 &&
          intermoduleid != 29998 && intermoduleid != 33748 &&
          intermoduleid != 34998 && intermoduleid != 36248) {
        g_log.error() << "Detector ID = " << detectorID
                      << "  Inter-Module ID = " << intermoduleid << std::endl;
        throw std::invalid_argument("Indexing error!");
      }

    } catch (std::invalid_argument &) {
      g_log.notice() << "Misses Detector ID = " << detectorID << std::endl;
    }
  } // for

  g_log.notice() << "Number of matched detectors =" << numfinds << std::endl;
}