TEST(NotificationQueueTest, ConsumeUntilDrainedStress) { for (size_t i = 0; i < 1 << 8; ++i) { // Basic tests: make sure we // - drain all the messages // - ignore any maxReadAtOnce // - can't add messages during draining EventBase eventBase; IntQueue queue; QueueConsumer consumer; consumer.fn = [&](int j) { EXPECT_THROW(queue.tryPutMessage(j), std::runtime_error); EXPECT_FALSE(queue.tryPutMessageNoThrow(j)); EXPECT_THROW(queue.putMessage(j), std::runtime_error); std::vector<int> ints{1, 2, 3}; EXPECT_THROW( queue.putMessages(ints.begin(), ints.end()), std::runtime_error); }; consumer.setMaxReadAtOnce(10); // We should ignore this consumer.startConsuming(&eventBase, &queue); for (int j = 0; j < 20; j++) { queue.putMessage(j); } EXPECT_TRUE(consumer.consumeUntilDrained()); EXPECT_EQ(20, consumer.messages.size()); // Make sure there can only be one drainer at once folly::Baton<> callbackBaton, threadStartBaton; consumer.fn = [&](int /* i */) { callbackBaton.wait(); }; QueueConsumer competingConsumer; competingConsumer.startConsuming(&eventBase, &queue); queue.putMessage(1); atomic<bool> raceA {false}; atomic<bool> raceB {false}; size_t numConsA = 0; size_t numConsB = 0; auto thread = std::thread([&]{ threadStartBaton.post(); raceB = consumer.consumeUntilDrained(&numConsB) && numConsB; }); threadStartBaton.wait(); raceA = competingConsumer.consumeUntilDrained(&numConsA) && numConsA; callbackBaton.post(); thread.join(); EXPECT_FALSE(raceA && raceB); EXPECT_TRUE(raceA || raceB); EXPECT_TRUE(raceA ^ raceB); } }
void QueueTest::maxQueueSize() { // Create a queue with a maximum size of 5, and fill it up for (int n = 0; n < 5; ++n) { queue.tryPutMessage(n); } // Calling tryPutMessage() now should fail EXPECT_THROW(queue.tryPutMessage(5), std::overflow_error); EXPECT_FALSE(queue.tryPutMessageNoThrow(5)); int val = 5; EXPECT_FALSE(queue.tryPutMessageNoThrow(std::move(val))); // Pop a message from the queue int result = -1; EXPECT_TRUE(queue.tryConsume(result)); EXPECT_EQ(0, result); // We should be able to write another message now that we popped one off. queue.tryPutMessage(5); // But now we are full again. EXPECT_THROW(queue.tryPutMessage(6), std::overflow_error); // putMessage() should let us exceed the maximum queue.putMessage(6); // Pull another mesage off EXPECT_TRUE(queue.tryConsume(result)); EXPECT_EQ(1, result); // tryPutMessage() should still fail since putMessage() actually put us over // the max. EXPECT_THROW(queue.tryPutMessage(7), std::overflow_error); // Pull another message off and try again EXPECT_TRUE(queue.tryConsume(result)); EXPECT_EQ(2, result); queue.tryPutMessage(7); // Now pull all the remaining messages off EXPECT_TRUE(queue.tryConsume(result)); EXPECT_EQ(3, result); EXPECT_TRUE(queue.tryConsume(result)); EXPECT_EQ(4, result); EXPECT_TRUE(queue.tryConsume(result)); EXPECT_EQ(5, result); EXPECT_TRUE(queue.tryConsume(result)); EXPECT_EQ(6, result); EXPECT_TRUE(queue.tryConsume(result)); EXPECT_EQ(7, result); // There should be no messages left result = -1; EXPECT_TRUE(!queue.tryConsume(result)); EXPECT_EQ(-1, result); }
void QueueTest::maxQueueSize() { // Create a queue with a maximum size of 5, and fill it up for (int n = 0; n < 5; ++n) { queue.tryPutMessage(n); } // Calling tryPutMessage() now should fail BOOST_CHECK_THROW(queue.tryPutMessage(5), TQueueFullException); BOOST_CHECK_EQUAL(queue.tryPutMessageNoThrow(5), false); int val = 5; BOOST_CHECK_EQUAL(queue.tryPutMessageNoThrow(std::move(val)), false); // Pop a message from the queue int result = -1; BOOST_CHECK(queue.tryConsume(result)); BOOST_CHECK_EQUAL(result, 0); // We should be able to write another message now that we popped one off. queue.tryPutMessage(5); // But now we are full again. BOOST_CHECK_THROW(queue.tryPutMessage(6), TQueueFullException); // putMessage() should let us exceed the maximum queue.putMessage(6); // Pull another mesage off BOOST_CHECK(queue.tryConsume(result)); BOOST_CHECK_EQUAL(result, 1); // tryPutMessage() should still fail since putMessage() actually put us over // the max. BOOST_CHECK_THROW(queue.tryPutMessage(7), TQueueFullException); // Pull another message off and try again BOOST_CHECK(queue.tryConsume(result)); BOOST_CHECK_EQUAL(result, 2); queue.tryPutMessage(7); // Now pull all the remaining messages off BOOST_CHECK(queue.tryConsume(result)); BOOST_CHECK_EQUAL(result, 3); BOOST_CHECK(queue.tryConsume(result)); BOOST_CHECK_EQUAL(result, 4); BOOST_CHECK(queue.tryConsume(result)); BOOST_CHECK_EQUAL(result, 5); BOOST_CHECK(queue.tryConsume(result)); BOOST_CHECK_EQUAL(result, 6); BOOST_CHECK(queue.tryConsume(result)); BOOST_CHECK_EQUAL(result, 7); // There should be no messages left result = -1; BOOST_CHECK(!queue.tryConsume(result)); BOOST_CHECK_EQUAL(result, -1); }
void QueueTest::fillQueue(bool expectFail) { try { for (uint32_t i = 0; i < 0x000fffff; i++) { queue.putMessage(i); } BOOST_CHECK(!expectFail); } catch (const apache::thrift::TLibraryException &ex) { BOOST_CHECK(expectFail); } catch (...) { BOOST_CHECK(false); } }
void QueueTest::sendOne() { // Create a notification queue and a callback in this thread TEventBase eventBase; QueueConsumer consumer; consumer.fn = [&](int) { // Stop consuming after we receive 1 message consumer.stopConsuming(); }; consumer.startConsuming(&eventBase, &queue); // Start a new TEventBase thread to put a message on our queue ScopedEventBaseThread t1; t1.getEventBase()->runInEventBaseThread([&] { queue.putMessage(5); }); // Loop until we receive the message eventBase.loop(); const auto& messages = consumer.messages; BOOST_CHECK_EQUAL(messages.size(), 1); BOOST_CHECK_EQUAL(messages.at(0), 5); }
/* * Test code that creates a NotificationQueue, then forks, and incorrectly * tries to send a message to the queue from the child process. * * The child process should crash in this scenario, since the child code has a * bug. (Older versions of NotificationQueue didn't catch this in the child, * resulting in a crash in the parent process.) */ TEST(NotificationQueueTest, UseAfterFork) { IntQueue queue; int childStatus = 0; QueueConsumer consumer; // Boost sets a custom SIGCHLD handler, which fails the test if a child // process exits abnormally. We don't want this. signal(SIGCHLD, SIG_DFL); // Log some info so users reading the test output aren't confused // by the child process' crash log messages. LOG(INFO) << "This test makes sure the child process crashes. " << "Error log messagges and a backtrace are expected."; { // Start a separate thread consuming from the queue ScopedEventBaseThread t1; t1.getEventBase()->runInEventBaseThread([&] { consumer.startConsuming(t1.getEventBase(), &queue); }); // Send a message to it, just for sanity checking queue.putMessage(1234); // Fork pid_t pid = fork(); if (pid == 0) { // The boost test framework installs signal handlers to catch errors. // We only want to catch in the parent. In the child let SIGABRT crash // us normally. signal(SIGABRT, SIG_DFL); // Child. // We're horrible people, so we try to send a message to the queue // that is being consumed in the parent process. // // The putMessage() call should catch this error, and crash our process. queue.putMessage(9876); // We shouldn't reach here. _exit(0); } PCHECK(pid > 0); // Parent. Wait for the child to exit. auto waited = waitpid(pid, &childStatus, 0); EXPECT_EQ(pid, waited); // Send another message to the queue before we terminate the thread. queue.putMessage(5678); } // The child process should have crashed when it tried to call putMessage() // on our NotificationQueue. EXPECT_TRUE(WIFSIGNALED(childStatus)); EXPECT_EQ(SIGABRT, WTERMSIG(childStatus)); // Make sure the parent saw the expected messages. // It should have gotten 1234 and 5678 from the parent process, but not // 9876 from the child. EXPECT_EQ(2, consumer.messages.size()); EXPECT_EQ(1234, consumer.messages.front()); consumer.messages.pop_front(); EXPECT_EQ(5678, consumer.messages.front()); consumer.messages.pop_front(); }
void QueueTest::maxReadAtOnce() { // Add 100 messages to the queue for (int n = 0; n < 100; ++n) { queue.putMessage(n); } EventBase eventBase; // Record how many messages were processed each loop iteration. uint32_t messagesThisLoop = 0; std::vector<uint32_t> messagesPerLoop; std::function<void()> loopFinished = [&] { // Record the current number of messages read this loop messagesPerLoop.push_back(messagesThisLoop); // Reset messagesThisLoop to 0 for the next loop messagesThisLoop = 0; // To prevent use-after-free bugs when eventBase destructs, // prevent calling runInLoop any more after the test is finished. // 55 == number of times loop should run. if (messagesPerLoop.size() != 55) { // Reschedule ourself to run at the end of the next loop eventBase.runInLoop(loopFinished); } }; // Schedule the first call to loopFinished eventBase.runInLoop(loopFinished); QueueConsumer consumer; // Read the first 50 messages 10 at a time. consumer.setMaxReadAtOnce(10); consumer.fn = [&](int value) { ++messagesThisLoop; // After 50 messages, drop to reading only 1 message at a time. if (value == 50) { consumer.setMaxReadAtOnce(1); } // Terminate the loop when we reach the end of the messages. if (value == 99) { eventBase.terminateLoopSoon(); } }; consumer.startConsuming(&eventBase, &queue); // Run the event loop until the consumer terminates it eventBase.loop(); // The consumer should have read all 100 messages in order EXPECT_EQ(100, consumer.messages.size()); for (int n = 0; n < 100; ++n) { EXPECT_EQ(n, consumer.messages.at(n)); } // Currently EventBase happens to still run the loop callbacks even after // terminateLoopSoon() is called. However, we don't really want to depend on // this behavior. In case this ever changes in the future, add // messagesThisLoop to messagesPerLoop in loop callback isn't invoked for the // last loop iteration. if (messagesThisLoop > 0) { messagesPerLoop.push_back(messagesThisLoop); messagesThisLoop = 0; } // For the first 5 loops it should have read 10 messages each time. // After that it should have read 1 messages per loop for the next 50 loops. EXPECT_EQ(55, messagesPerLoop.size()); for (int n = 0; n < 5; ++n) { EXPECT_EQ(10, messagesPerLoop.at(n)); } for (int n = 5; n < 55; ++n) { EXPECT_EQ(1, messagesPerLoop.at(n)); } }
void QueueTest::multiConsumer() { uint32_t numConsumers = 8; uint32_t numMessages = 10000; // Create several consumers each running in their own EventBase thread vector<QueueConsumer> consumers(numConsumers); vector<ScopedEventBaseThread> threads(numConsumers); for (uint32_t consumerIdx = 0; consumerIdx < numConsumers; ++consumerIdx) { QueueConsumer* consumer = &consumers[consumerIdx]; consumer->fn = [consumer, consumerIdx, this](int value) { // Treat 0 as a signal to stop. if (value == 0) { consumer->stopConsuming(); // Put a message on the terminationQueue to indicate we have stopped terminationQueue.putMessage(consumerIdx); } }; EventBase* eventBase = threads[consumerIdx].getEventBase(); eventBase->runInEventBaseThread([eventBase, consumer, this] { consumer->startConsuming(eventBase, &queue); }); } // Now add a number of messages from this thread // Start at 1 rather than 0, since 0 is the signal to stop. for (uint32_t n = 1; n < numMessages; ++n) { queue.putMessage(n); } // Now add a 0 for each consumer, to signal them to stop for (uint32_t n = 0; n < numConsumers; ++n) { queue.putMessage(0); } // Wait until we get notified that all of the consumers have stopped // We use a separate notification queue for this. QueueConsumer terminationConsumer; vector<uint32_t> consumersStopped(numConsumers, 0); uint32_t consumersRemaining = numConsumers; terminationConsumer.fn = [&](int consumerIdx) { --consumersRemaining; if (consumersRemaining == 0) { terminationConsumer.stopConsuming(); } EXPECT_GE(consumerIdx, 0); EXPECT_LT(consumerIdx, numConsumers); ++consumersStopped[consumerIdx]; }; EventBase eventBase; terminationConsumer.startConsuming(&eventBase, &terminationQueue); eventBase.loop(); // Verify that we saw exactly 1 stop message for each consumer for (uint32_t n = 0; n < numConsumers; ++n) { EXPECT_EQ(1, consumersStopped[n]); } // Validate that every message sent to the main queue was received exactly // once. vector<int> messageCount(numMessages, 0); for (uint32_t n = 0; n < numConsumers; ++n) { for (int msg : consumers[n].messages) { EXPECT_GE(msg, 0); EXPECT_LT(msg, numMessages); ++messageCount[msg]; } } // 0 is the signal to stop, and should have been received once by each // consumer EXPECT_EQ(numConsumers, messageCount[0]); // All other messages should have been received exactly once for (uint32_t n = 1; n < numMessages; ++n) { EXPECT_EQ(1, messageCount[n]); } }