bool intersect(const Cubic& cubic, Intersections& i) { SkTDArray<double> ts; double precision = calcPrecision(cubic); cubic_to_quadratics(cubic, precision, ts); int tsCount = ts.count(); if (tsCount == 1) { return false; } double t1Start = 0; Cubic part; for (int idx = 0; idx < tsCount; ++idx) { double t1 = ts[idx]; Quadratic q1; sub_divide(cubic, t1Start, t1, part); demote_cubic_to_quad(part, q1); double t2Start = t1; for (int i2 = idx + 1; i2 <= tsCount; ++i2) { const double t2 = i2 < tsCount ? ts[i2] : 1; Quadratic q2; sub_divide(cubic, t2Start, t2, part); demote_cubic_to_quad(part, q2); Intersections locals; intersect2(q1, q2, locals); for (int tIdx = 0; tIdx < locals.used(); ++tIdx) { // discard intersections at cusp? (maximum curvature) double t1sect = locals.fT[0][tIdx]; double t2sect = locals.fT[1][tIdx]; if (idx + 1 == i2 && t1sect == 1 && t2sect == 0) { continue; } double to1 = t1Start + (t1 - t1Start) * t1sect; double to2 = t2Start + (t2 - t2Start) * t2sect; i.insert(to1, to2); } t2Start = t2; } t1Start = t1; } return i.intersected(); }
void QTessellatorPrivate::addIntersection(const Edge *e1, const Edge *e2) { const IntersectionLink emptyLink = {-1, -1}; int next = vertices.nextPos(vertices[e1->edge]); if (e2->edge == next) return; int prev = vertices.prevPos(vertices[e1->edge]); if (e2->edge == prev) return; Q27Dot5 yi; bool det_positive; bool isect = e1->intersect(*e2, &yi, &det_positive); QDEBUG("checking edges %d and %d", e1->edge, e2->edge); if (!isect) { QDEBUG() << " no intersection"; return; } // don't emit an intersection if it's at the start of a line segment or above us if (yi <= y) { if (!det_positive) return; QDEBUG() << " ----->>>>>> WRONG ORDER!"; yi = y; } QDEBUG() << " between edges " << e1->edge << "and" << e2->edge << "at point (" << Q27Dot5ToDouble(yi) << ')'; Intersection i1; i1.y = yi; i1.edge = e1->edge; IntersectionLink link1 = intersections.value(i1, emptyLink); Intersection i2; i2.y = yi; i2.edge = e2->edge; IntersectionLink link2 = intersections.value(i2, emptyLink); // new pair of edges if (link1.next == -1 && link2.next == -1) { link1.next = link1.prev = i2.edge; link2.next = link2.prev = i1.edge; } else if (link1.next == i2.edge || link1.prev == i2.edge || link2.next == i1.edge || link2.prev == i1.edge) { #ifdef DEBUG checkLinkChain(intersections, i1); checkLinkChain(intersections, i2); Q_ASSERT(edgeInChain(i1, i2.edge)); #endif return; } else if (link1.next == -1 || link2.next == -1) { if (link2.next == -1) { qSwap(i1, i2); qSwap(link1, link2); } Q_ASSERT(link1.next == -1); #ifdef DEBUG checkLinkChain(intersections, i2); #endif // only i2 in list link1.next = i2.edge; link1.prev = link2.prev; link2.prev = i1.edge; Intersection other; other.y = yi; other.edge = link1.prev; IntersectionLink link = intersections.value(other, emptyLink); Q_ASSERT(link.next == i2.edge); Q_ASSERT(link.prev != -1); link.next = i1.edge; intersections.insert(other, link); } else { bool connected = edgeInChain(i1, i2.edge); if (connected) return; #ifdef DEBUG checkLinkChain(intersections, i1); checkLinkChain(intersections, i2); #endif // both already in some list. Have to make sure they are connected // this can be done by cutting open the ring(s) after the two eges and // connecting them again Intersection other1; other1.y = yi; other1.edge = link1.next; IntersectionLink linko1 = intersections.value(other1, emptyLink); Intersection other2; other2.y = yi; other2.edge = link2.next; IntersectionLink linko2 = intersections.value(other2, emptyLink); linko1.prev = i2.edge; link2.next = other1.edge; linko2.prev = i1.edge; link1.next = other2.edge; intersections.insert(other1, linko1); intersections.insert(other2, linko2); } intersections.insert(i1, link1); intersections.insert(i2, link2); #ifdef DEBUG checkLinkChain(intersections, i1); checkLinkChain(intersections, i2); Q_ASSERT(edgeInChain(i1, i2.edge)); #endif return; }
static void hackToFixPartialCoincidence(const Quadratic& q1, const Quadratic& q2, Intersections& i) { // look to see if non-coincident data basically has unsortable tangents // look to see if a point between non-coincident data is on the curve int cIndex; for (int uIndex = 0; uIndex < i.fUsed; ) { double bestDist1 = 1; double bestDist2 = 1; int closest1 = -1; int closest2 = -1; for (cIndex = 0; cIndex < i.fCoincidentUsed; ++cIndex) { double dist = fabs(i.fT[0][uIndex] - i.fCoincidentT[0][cIndex]); if (bestDist1 > dist) { bestDist1 = dist; closest1 = cIndex; } dist = fabs(i.fT[1][uIndex] - i.fCoincidentT[1][cIndex]); if (bestDist2 > dist) { bestDist2 = dist; closest2 = cIndex; } } _Line ends; _Point mid; double t1 = i.fT[0][uIndex]; xy_at_t(q1, t1, ends[0].x, ends[0].y); xy_at_t(q1, i.fCoincidentT[0][closest1], ends[1].x, ends[1].y); double midT = (t1 + i.fCoincidentT[0][closest1]) / 2; xy_at_t(q1, midT, mid.x, mid.y); LineParameters params; params.lineEndPoints(ends); double midDist = params.pointDistance(mid); // Note that we prefer to always measure t error, which does not scale, // instead of point error, which is scale dependent. FIXME if (!approximately_zero(midDist)) { ++uIndex; continue; } double t2 = i.fT[1][uIndex]; xy_at_t(q2, t2, ends[0].x, ends[0].y); xy_at_t(q2, i.fCoincidentT[1][closest2], ends[1].x, ends[1].y); midT = (t2 + i.fCoincidentT[1][closest2]) / 2; xy_at_t(q2, midT, mid.x, mid.y); params.lineEndPoints(ends); midDist = params.pointDistance(mid); if (!approximately_zero(midDist)) { ++uIndex; continue; } // if both midpoints are close to the line, lengthen coincident span int cEnd = closest1 ^ 1; // assume coincidence always travels in pairs if (!between(i.fCoincidentT[0][cEnd], t1, i.fCoincidentT[0][closest1])) { i.fCoincidentT[0][closest1] = t1; } cEnd = closest2 ^ 1; if (!between(i.fCoincidentT[0][cEnd], t2, i.fCoincidentT[0][closest2])) { i.fCoincidentT[0][closest2] = t2; } int remaining = --i.fUsed - uIndex; if (remaining > 0) { memmove(&i.fT[0][uIndex], &i.fT[0][uIndex + 1], sizeof(i.fT[0][0]) * remaining); memmove(&i.fT[1][uIndex], &i.fT[1][uIndex + 1], sizeof(i.fT[1][0]) * remaining); } } // if coincident data is subjectively a tiny span, replace it with a single point for (cIndex = 0; cIndex < i.fCoincidentUsed; ) { double start1 = i.fCoincidentT[0][cIndex]; double end1 = i.fCoincidentT[0][cIndex + 1]; _Line ends1; xy_at_t(q1, start1, ends1[0].x, ends1[0].y); xy_at_t(q1, end1, ends1[1].x, ends1[1].y); if (!AlmostEqualUlps(ends1[0].x, ends1[1].x) || AlmostEqualUlps(ends1[0].y, ends1[1].y)) { cIndex += 2; continue; } double start2 = i.fCoincidentT[1][cIndex]; double end2 = i.fCoincidentT[1][cIndex + 1]; _Line ends2; xy_at_t(q2, start2, ends2[0].x, ends2[0].y); xy_at_t(q2, end2, ends2[1].x, ends2[1].y); // again, approximately should be used with T values, not points FIXME if (!AlmostEqualUlps(ends2[0].x, ends2[1].x) || AlmostEqualUlps(ends2[0].y, ends2[1].y)) { cIndex += 2; continue; } if (approximately_less_than_zero(start1) || approximately_less_than_zero(end1)) { start1 = 0; } else if (approximately_greater_than_one(start1) || approximately_greater_than_one(end1)) { start1 = 1; } else { start1 = (start1 + end1) / 2; } if (approximately_less_than_zero(start2) || approximately_less_than_zero(end2)) { start2 = 0; } else if (approximately_greater_than_one(start2) || approximately_greater_than_one(end2)) { start2 = 1; } else { start2 = (start2 + end2) / 2; } i.insert(start1, start2); i.fCoincidentUsed -= 2; int remaining = i.fCoincidentUsed - cIndex; if (remaining > 0) { memmove(&i.fCoincidentT[0][cIndex], &i.fCoincidentT[0][cIndex + 2], sizeof(i.fCoincidentT[0][0]) * remaining); memmove(&i.fCoincidentT[1][cIndex], &i.fCoincidentT[1][cIndex + 2], sizeof(i.fCoincidentT[1][0]) * remaining); } } }
// this flavor centers potential intersections recursively. In contrast, '2' may inadvertently // chase intersections near quadratic ends, requiring odd hacks to find them. static bool intersect3(const Cubic& cubic1, double t1s, double t1e, const Cubic& cubic2, double t2s, double t2e, double precisionScale, Intersections& i) { i.upDepth(); bool result = false; Cubic c1, c2; sub_divide(cubic1, t1s, t1e, c1); sub_divide(cubic2, t2s, t2e, c2); SkTDArray<double> ts1; // OPTIMIZE: if c1 == c2, call once (happens when detecting self-intersection) cubic_to_quadratics(c1, calcPrecision(c1) * precisionScale, ts1); SkTDArray<double> ts2; cubic_to_quadratics(c2, calcPrecision(c2) * precisionScale, ts2); double t1Start = t1s; int ts1Count = ts1.count(); for (int i1 = 0; i1 <= ts1Count; ++i1) { const double tEnd1 = i1 < ts1Count ? ts1[i1] : 1; const double t1 = t1s + (t1e - t1s) * tEnd1; Quadratic s1; int o1 = quadPart(cubic1, t1Start, t1, s1); double t2Start = t2s; int ts2Count = ts2.count(); for (int i2 = 0; i2 <= ts2Count; ++i2) { const double tEnd2 = i2 < ts2Count ? ts2[i2] : 1; const double t2 = t2s + (t2e - t2s) * tEnd2; if (cubic1 == cubic2 && t1Start >= t2Start) { t2Start = t2; continue; } Quadratic s2; int o2 = quadPart(cubic2, t2Start, t2, s2); #if ONE_OFF_DEBUG char tab[] = " "; if (tLimits1[0][0] >= t1Start && tLimits1[0][1] <= t1 && tLimits1[1][0] >= t2Start && tLimits1[1][1] <= t2) { Cubic cSub1, cSub2; sub_divide(cubic1, t1Start, t1, cSub1); sub_divide(cubic2, t2Start, t2, cSub2); SkDebugf("%.*s %s t1=(%1.9g,%1.9g) t2=(%1.9g,%1.9g)", i.depth()*2, tab, __FUNCTION__, t1Start, t1, t2Start, t2); Intersections xlocals; intersectWithOrder(s1, o1, s2, o2, xlocals); SkDebugf(" xlocals.fUsed=%d\n", xlocals.used()); } #endif Intersections locals; intersectWithOrder(s1, o1, s2, o2, locals); double coStart[2] = { -1 }; _Point coPoint; int tCount = locals.used(); for (int tIdx = 0; tIdx < tCount; ++tIdx) { double to1 = t1Start + (t1 - t1Start) * locals.fT[0][tIdx]; double to2 = t2Start + (t2 - t2Start) * locals.fT[1][tIdx]; // if the computed t is not sufficiently precise, iterate _Point p1 = xy_at_t(cubic1, to1); _Point p2 = xy_at_t(cubic2, to2); if (p1.approximatelyEqual(p2)) { if (locals.fIsCoincident[0] & 1 << tIdx) { if (coStart[0] < 0) { coStart[0] = to1; coStart[1] = to2; coPoint = p1; } else { i.insertCoincidentPair(coStart[0], to1, coStart[1], to2, coPoint, p1); coStart[0] = -1; } result = true; } else if (cubic1 != cubic2 || !approximately_equal(to1, to2)) { if (i.swapped()) { // FIXME: insert should respect swap i.insert(to2, to1, p1); } else { i.insert(to1, to2, p1); } result = true; } } else { double offset = precisionScale / 16; // FIME: const is arbitrary -- test & refine #if 1 double c1Bottom = tIdx == 0 ? 0 : (t1Start + (t1 - t1Start) * locals.fT[0][tIdx - 1] + to1) / 2; double c1Min = SkTMax(c1Bottom, to1 - offset); double c1Top = tIdx == tCount - 1 ? 1 : (t1Start + (t1 - t1Start) * locals.fT[0][tIdx + 1] + to1) / 2; double c1Max = SkTMin(c1Top, to1 + offset); double c2Min = SkTMax(0., to2 - offset); double c2Max = SkTMin(1., to2 + offset); #if ONE_OFF_DEBUG SkDebugf("%.*s %s 1 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab, __FUNCTION__, c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max, to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset, c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max, to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset); SkDebugf("%.*s %s 1 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g" " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n", i.depth()*2, tab, __FUNCTION__, c1Bottom, c1Top, 0., 1., to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset); SkDebugf("%.*s %s 1 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g" " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min, c1Max, c2Min, c2Max); #endif intersect3(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i); #if ONE_OFF_DEBUG SkDebugf("%.*s %s 1 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__, i.used(), i.used() > 0 ? i.fT[0][i.used() - 1] : -1); #endif if (tCount > 1) { c1Min = SkTMax(0., to1 - offset); c1Max = SkTMin(1., to1 + offset); double c2Bottom = tIdx == 0 ? to2 : (t2Start + (t2 - t2Start) * locals.fT[1][tIdx - 1] + to2) / 2; double c2Top = tIdx == tCount - 1 ? to2 : (t2Start + (t2 - t2Start) * locals.fT[1][tIdx + 1] + to2) / 2; if (c2Bottom > c2Top) { SkTSwap(c2Bottom, c2Top); } if (c2Bottom == to2) { c2Bottom = 0; } if (c2Top == to2) { c2Top = 1; } c2Min = SkTMax(c2Bottom, to2 - offset); c2Max = SkTMin(c2Top, to2 + offset); #if ONE_OFF_DEBUG SkDebugf("%.*s %s 2 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab, __FUNCTION__, c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max, to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset, c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max, to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset); SkDebugf("%.*s %s 2 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g" " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n", i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top, to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset); SkDebugf("%.*s %s 2 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g" " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min, c1Max, c2Min, c2Max); #endif intersect3(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i); #if ONE_OFF_DEBUG SkDebugf("%.*s %s 2 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__, i.used(), i.used() > 0 ? i.fT[0][i.used() - 1] : -1); #endif c1Min = SkTMax(c1Bottom, to1 - offset); c1Max = SkTMin(c1Top, to1 + offset); #if ONE_OFF_DEBUG SkDebugf("%.*s %s 3 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab, __FUNCTION__, c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max, to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset, c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max, to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset); SkDebugf("%.*s %s 3 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g" " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n", i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top, to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset); SkDebugf("%.*s %s 3 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g" " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min, c1Max, c2Min, c2Max); #endif intersect3(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i); #if ONE_OFF_DEBUG SkDebugf("%.*s %s 3 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__, i.used(), i.used() > 0 ? i.fT[0][i.used() - 1] : -1); #endif } #else double c1Bottom = tIdx == 0 ? 0 : (t1Start + (t1 - t1Start) * locals.fT[0][tIdx - 1] + to1) / 2; double c1Min = SkTMax(c1Bottom, to1 - offset); double c1Top = tIdx == tCount - 1 ? 1 : (t1Start + (t1 - t1Start) * locals.fT[0][tIdx + 1] + to1) / 2; double c1Max = SkTMin(c1Top, to1 + offset); double c2Bottom = tIdx == 0 ? to2 : (t2Start + (t2 - t2Start) * locals.fT[1][tIdx - 1] + to2) / 2; double c2Top = tIdx == tCount - 1 ? to2 : (t2Start + (t2 - t2Start) * locals.fT[1][tIdx + 1] + to2) / 2; if (c2Bottom > c2Top) { SkTSwap(c2Bottom, c2Top); } if (c2Bottom == to2) { c2Bottom = 0; } if (c2Top == to2) { c2Top = 1; } double c2Min = SkTMax(c2Bottom, to2 - offset); double c2Max = SkTMin(c2Top, to2 + offset); #if ONE_OFF_DEBUG SkDebugf("%s contains1=%d/%d contains2=%d/%d\n", __FUNCTION__, c1Min <= 0.210357794 && 0.210357794 <= c1Max && c2Min <= 0.223476406 && 0.223476406 <= c2Max, to1 - offset <= 0.210357794 && 0.210357794 <= to1 + offset && to2 - offset <= 0.223476406 && 0.223476406 <= to2 + offset, c1Min <= 0.211324707 && 0.211324707 <= c1Max && c2Min <= 0.211327209 && 0.211327209 <= c2Max, to1 - offset <= 0.211324707 && 0.211324707 <= to1 + offset && to2 - offset <= 0.211327209 && 0.211327209 <= to2 + offset); SkDebugf("%s c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g" " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n", __FUNCTION__, c1Bottom, c1Top, c2Bottom, c2Top, to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset); SkDebugf("%s to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g" " c2Max=%1.9g\n", __FUNCTION__, to1, to2, c1Min, c1Max, c2Min, c2Max); #endif #endif intersect3(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i); // TODO: if no intersection is found, either quadratics intersected where // cubics did not, or the intersection was missed. In the former case, expect // the quadratics to be nearly parallel at the point of intersection, and check // for that. } } SkASSERT(coStart[0] == -1); t2Start = t2; } t1Start = t1; } i.downDepth(); return result; }
// intersect the end of the cubic with the other. Try lines from the end to control and opposite // end to determine range of t on opposite cubic. static bool intersectEnd(const Cubic& cubic1, bool start, const Cubic& cubic2, const _Rect& bounds2, Intersections& i) { // bool selfIntersect = cubic1 == cubic2; _Line line; int t1Index = start ? 0 : 3; line[0] = cubic1[t1Index]; // don't bother if the two cubics are connnected #if 0 if (!selfIntersect && (line[0].approximatelyEqual(cubic2[0]) || line[0].approximatelyEqual(cubic2[3]))) { return false; } #endif bool result = false; SkTDArray<double> tVals; // OPTIMIZE: replace with hard-sized array for (int index = 0; index < 4; ++index) { if (index == t1Index) { continue; } _Vector dxy1 = cubic1[index] - line[0]; dxy1 /= gPrecisionUnit; line[1] = line[0] + dxy1; _Rect lineBounds; lineBounds.setBounds(line); if (!bounds2.intersects(lineBounds)) { continue; } Intersections local; if (!intersect(cubic2, line, local)) { continue; } for (int idx2 = 0; idx2 < local.used(); ++idx2) { double foundT = local.fT[0][idx2]; if (approximately_less_than_zero(foundT) || approximately_greater_than_one(foundT)) { continue; } if (local.fPt[idx2].approximatelyEqual(line[0])) { if (i.swapped()) { // FIXME: insert should respect swap i.insert(foundT, start ? 0 : 1, line[0]); } else { i.insert(start ? 0 : 1, foundT, line[0]); } result = true; } else { *tVals.append() = local.fT[0][idx2]; } } } if (tVals.count() == 0) { return result; } QSort<double>(tVals.begin(), tVals.end() - 1); double tMin1 = start ? 0 : 1 - LINE_FRACTION; double tMax1 = start ? LINE_FRACTION : 1; int tIdx = 0; do { int tLast = tIdx; while (tLast + 1 < tVals.count() && roughly_equal(tVals[tLast + 1], tVals[tIdx])) { ++tLast; } double tMin2 = SkTMax(tVals[tIdx] - LINE_FRACTION, 0.0); double tMax2 = SkTMin(tVals[tLast] + LINE_FRACTION, 1.0); int lastUsed = i.used(); result |= intersect3(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, i); if (lastUsed == i.used()) { tMin2 = SkTMax(tVals[tIdx] - (1.0 / gPrecisionUnit), 0.0); tMax2 = SkTMin(tVals[tLast] + (1.0 / gPrecisionUnit), 1.0); result |= intersect3(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, i); } tIdx = tLast + 1; } while (tIdx < tVals.count()); return result; }
// this flavor approximates the cubics with quads to find the intersecting ts // OPTIMIZE: if this strategy proves successful, the quad approximations, or the ts used // to create the approximations, could be stored in the cubic segment // FIXME: this strategy needs to intersect the convex hull on either end with the opposite to // account for inset quadratics that cause the endpoint intersection to avoid detection // the segments can be very short -- the length of the maximum quadratic error (precision) // FIXME: this needs to recurse on itself, taking a range of T values and computing the new // t range ala is linear inner. The range can be figured by taking the dx/dy and determining // the fraction that matches the precision. That fraction is the change in t for the smaller cubic. static bool intersect2(const Cubic& cubic1, double t1s, double t1e, const Cubic& cubic2, double t2s, double t2e, double precisionScale, Intersections& i) { Cubic c1, c2; sub_divide(cubic1, t1s, t1e, c1); sub_divide(cubic2, t2s, t2e, c2); SkTDArray<double> ts1; cubic_to_quadratics(c1, calcPrecision(c1) * precisionScale, ts1); SkTDArray<double> ts2; cubic_to_quadratics(c2, calcPrecision(c2) * precisionScale, ts2); double t1Start = t1s; int ts1Count = ts1.count(); for (int i1 = 0; i1 <= ts1Count; ++i1) { const double tEnd1 = i1 < ts1Count ? ts1[i1] : 1; const double t1 = t1s + (t1e - t1s) * tEnd1; Cubic part1; sub_divide(cubic1, t1Start, t1, part1); Quadratic q1; demote_cubic_to_quad(part1, q1); // start here; // should reduceOrder be looser in this use case if quartic is going to blow up on an // extremely shallow quadratic? Quadratic s1; int o1 = reduceOrder(q1, s1); double t2Start = t2s; int ts2Count = ts2.count(); for (int i2 = 0; i2 <= ts2Count; ++i2) { const double tEnd2 = i2 < ts2Count ? ts2[i2] : 1; const double t2 = t2s + (t2e - t2s) * tEnd2; Cubic part2; sub_divide(cubic2, t2Start, t2, part2); Quadratic q2; demote_cubic_to_quad(part2, q2); Quadratic s2; double o2 = reduceOrder(q2, s2); Intersections locals; if (o1 == 3 && o2 == 3) { intersect2(q1, q2, locals); } else if (o1 <= 2 && o2 <= 2) { locals.fUsed = intersect((const _Line&) s1, (const _Line&) s2, locals.fT[0], locals.fT[1]); } else if (o1 == 3 && o2 <= 2) { intersect(q1, (const _Line&) s2, locals); } else { SkASSERT(o1 <= 2 && o2 == 3); intersect(q2, (const _Line&) s1, locals); for (int s = 0; s < locals.fUsed; ++s) { SkTSwap(locals.fT[0][s], locals.fT[1][s]); } } for (int tIdx = 0; tIdx < locals.used(); ++tIdx) { double to1 = t1Start + (t1 - t1Start) * locals.fT[0][tIdx]; double to2 = t2Start + (t2 - t2Start) * locals.fT[1][tIdx]; // if the computed t is not sufficiently precise, iterate _Point p1, p2; xy_at_t(cubic1, to1, p1.x, p1.y); xy_at_t(cubic2, to2, p2.x, p2.y); if (p1.approximatelyEqual(p2)) { i.insert(i.swapped() ? to2 : to1, i.swapped() ? to1 : to2); } else { double dt1, dt2; computeDelta(cubic1, to1, (t1e - t1s), cubic2, to2, (t2e - t2s), dt1, dt2); double scale = precisionScale; if (dt1 > 0.125 || dt2 > 0.125) { scale /= 2; SkDebugf("%s scale=%1.9g\n", __FUNCTION__, scale); } #if SK_DEBUG ++debugDepth; assert(debugDepth < 10); #endif i.swap(); intersect2(cubic2, SkTMax(to2 - dt2, 0.), SkTMin(to2 + dt2, 1.), cubic1, SkTMax(to1 - dt1, 0.), SkTMin(to1 + dt1, 1.), scale, i); i.swap(); #if SK_DEBUG --debugDepth; #endif } } t2Start = t2; } t1Start = t1; } return i.intersected(); }