void log_deregister_thread() { threadid_t id = get_current_thread_id(); log_threadnamemutex.Lock(); log_threadnames.erase(id); log_threadnamemutex.Unlock(); }
void log_register_thread(const std::string &name) { threadid_t id = get_current_thread_id(); log_threadnamemutex.Lock(); log_threadnames[id] = name; log_threadnamemutex.Unlock(); }
void updateViewingRange(f32 frametime) { #if 1 static f32 counter = 0; if(counter > 0){ counter -= frametime; return; } counter = 5.0; //seconds g_viewing_range_nodes_mutex.Lock(); bool changed = false; if(frametime > 1.0/FPS_MIN || g_viewing_range_nodes > VIEWING_RANGE_NODES_MAX){ if(g_viewing_range_nodes > VIEWING_RANGE_NODES_MIN){ g_viewing_range_nodes -= MAP_BLOCKSIZE/2; changed = true; } } else if(frametime < 1.0/FPS_MAX || g_viewing_range_nodes < VIEWING_RANGE_NODES_MIN){ if(g_viewing_range_nodes < VIEWING_RANGE_NODES_MAX){ g_viewing_range_nodes += MAP_BLOCKSIZE/2; changed = true; } } if(changed){ std::cout<<"g_viewing_range_nodes = " <<g_viewing_range_nodes<<std::endl; } g_viewing_range_nodes_mutex.Unlock(); #endif }
void log_set_lev_silence(enum LogMessageLevel lev, bool silence) { log_threadnamemutex.Lock(); for (std::list<ILogOutput *>::iterator it = log_outputs[lev].begin(); it != log_outputs[lev].end(); ++it) { ILogOutput *out = *it; out->silence = silence; } log_threadnamemutex.Unlock(); }
void log_printline(enum LogMessageLevel lev, const std::string &text) { log_threadnamemutex.Lock(); std::string threadname = "(unknown thread)"; std::map<threadid_t, std::string>::const_iterator i; i = log_threadnames.find(get_current_thread_id()); if(i != log_threadnames.end()) threadname = i->second; std::string levelname = get_lev_string(lev); std::ostringstream os(std::ios_base::binary); os<<getTimestamp()<<": "<<levelname<<"["<<threadname<<"]: "<<text; for(std::list<ILogOutput*>::iterator i = log_outputs[lev].begin(); i != log_outputs[lev].end(); i++){ ILogOutput *out = *i; out->printLog(os.str()); out->printLog(os.str(), lev); out->printLog(lev, text); } log_threadnamemutex.Unlock(); }
void ClientLauncher::speed_tests() { // volatile to avoid some potential compiler optimisations volatile static s16 temp16; volatile static f32 tempf; static v3f tempv3f1; static v3f tempv3f2; static std::string tempstring; static std::string tempstring2; tempv3f1 = v3f(); tempv3f2 = v3f(); tempstring = std::string(); tempstring2 = std::string(); { infostream << "The following test should take around 20ms." << std::endl; TimeTaker timer("Testing std::string speed"); const u32 jj = 10000; for (u32 j = 0; j < jj; j++) { tempstring = ""; tempstring2 = ""; const u32 ii = 10; for (u32 i = 0; i < ii; i++) { tempstring2 += "asd"; } for (u32 i = 0; i < ii+1; i++) { tempstring += "asd"; if (tempstring == tempstring2) break; } } } infostream << "All of the following tests should take around 100ms each." << std::endl; { TimeTaker timer("Testing floating-point conversion speed"); tempf = 0.001; for (u32 i = 0; i < 4000000; i++) { temp16 += tempf; tempf += 0.001; } } { TimeTaker timer("Testing floating-point vector speed"); tempv3f1 = v3f(1, 2, 3); tempv3f2 = v3f(4, 5, 6); for (u32 i = 0; i < 10000000; i++) { tempf += tempv3f1.dotProduct(tempv3f2); tempv3f2 += v3f(7, 8, 9); } } { TimeTaker timer("Testing std::map speed"); std::map<v2s16, f32> map1; tempf = -324; const s16 ii = 300; for (s16 y = 0; y < ii; y++) { for (s16 x = 0; x < ii; x++) { map1[v2s16(x, y)] = tempf; tempf += 1; } } for (s16 y = ii - 1; y >= 0; y--) { for (s16 x = 0; x < ii; x++) { tempf = map1[v2s16(x, y)]; } } } { infostream << "Around 5000/ms should do well here." << std::endl; TimeTaker timer("Testing mutex speed"); JMutex m; u32 n = 0; u32 i = 0; do { n += 10000; for (; i < n; i++) { m.Lock(); m.Unlock(); } } // Do at least 10ms while(timer.getTimerTime() < 10); u32 dtime = timer.stop(); u32 per_ms = n / dtime; infostream << "Done. " << dtime << "ms, " << per_ms << "/ms" << std::endl; } }
void SpeedTests() { { dstream<<"The following test should take around 20ms."<<std::endl; TimeTaker timer("Testing std::string speed"); const u32 jj = 10000; for(u32 j=0; j<jj; j++) { tempstring = ""; tempstring2 = ""; const u32 ii = 10; for(u32 i=0; i<ii; i++){ tempstring2 += "asd"; } for(u32 i=0; i<ii+1; i++){ tempstring += "asd"; if(tempstring == tempstring2) break; } } } dstream<<"All of the following tests should take around 100ms each." <<std::endl; { TimeTaker timer("Testing floating-point conversion speed"); tempf = 0.001; for(u32 i=0; i<4000000; i++){ temp16 += tempf; tempf += 0.001; } } { TimeTaker timer("Testing floating-point vector speed"); tempv3f1 = v3f(1,2,3); tempv3f2 = v3f(4,5,6); for(u32 i=0; i<10000000; i++){ tempf += tempv3f1.dotProduct(tempv3f2); tempv3f2 += v3f(7,8,9); } } { TimeTaker timer("Testing core::map speed"); core::map<v2s16, f32> map1; tempf = -324; const s16 ii=300; for(s16 y=0; y<ii; y++){ for(s16 x=0; x<ii; x++){ map1.insert(v2s16(x,y), tempf); tempf += 1; } } for(s16 y=ii-1; y>=0; y--){ for(s16 x=0; x<ii; x++){ tempf = map1[v2s16(x,y)]; } } } { dstream<<"Around 5000/ms should do well here."<<std::endl; TimeTaker timer("Testing mutex speed"); JMutex m; m.Init(); u32 n = 0; u32 i = 0; do{ n += 10000; for(; i<n; i++){ m.Lock(); m.Unlock(); } } // Do at least 10ms while(timer.getTime() < 10); u32 dtime = timer.stop(); u32 per_ms = n / dtime; dstream<<"Done. "<<dtime<<"ms, " <<per_ms<<"/ms"<<std::endl; } }
void SpeedTests(IrrlichtDevice *device) { /* Test stuff */ //test(); //return 0; /*TestThread thread; thread.Start(); std::cout<<"thread started"<<std::endl; while(thread.IsRunning()) sleep(1); std::cout<<"thread ended"<<std::endl; return 0;*/ { std::cout<<"Testing floating-point conversion speed"<<std::endl; u32 time1 = device->getTimer()->getRealTime(); tempf = 0.001; for(u32 i=0; i<10000000; i++){ temp16 += tempf; tempf += 0.001; } u32 time2 = device->getTimer()->getRealTime(); u32 fp_conversion_time = time2 - time1; std::cout<<"Done. "<<fp_conversion_time<<"ms"<<std::endl; //assert(fp_conversion_time < 1000); } { std::cout<<"Testing floating-point vector speed"<<std::endl; u32 time1 = device->getTimer()->getRealTime(); tempv3f1 = v3f(1,2,3); tempv3f2 = v3f(4,5,6); for(u32 i=0; i<40000000; i++){ tempf += tempv3f1.dotProduct(tempv3f2); tempv3f2 += v3f(7,8,9); } u32 time2 = device->getTimer()->getRealTime(); u32 dtime = time2 - time1; std::cout<<"Done. "<<dtime<<"ms"<<std::endl; } { std::cout<<"Testing core::map speed"<<std::endl; u32 time1 = device->getTimer()->getRealTime(); core::map<v2s16, f32> map1; tempf = -324; for(s16 y=0; y<500; y++){ for(s16 x=0; x<500; x++){ map1.insert(v2s16(x,y), tempf); tempf += 1; } } for(s16 y=500-1; y>=0; y--){ for(s16 x=0; x<500; x++){ tempf = map1[v2s16(x,y)]; } } u32 time2 = device->getTimer()->getRealTime(); u32 dtime = time2 - time1; std::cout<<"Done. "<<dtime<<"ms"<<std::endl; } { std::cout<<"Testing mutex speed"<<std::endl; u32 time1 = device->getTimer()->getRealTime(); u32 time2 = time1; JMutex m; m.Init(); u32 n = 0; u32 i = 0; do{ n += 10000; for(; i<n; i++){ m.Lock(); m.Unlock(); } time2 = device->getTimer()->getRealTime(); } // Do at least 10ms while(time2 < time1 + 10); u32 dtime = time2 - time1; u32 per_ms = n / dtime; std::cout<<"Done. "<<dtime<<"ms, " <<per_ms<<"/ms"<<std::endl; } //assert(0); }