// Given square matrix of Prob[i>j] returns a column vector for Prob[i]. // Uses Markov process, not 1-step conditional probability. // Challenges have uniform probability 1/N KMatrix Model::markovUniformPCE(const KMatrix & pv) { const double pTol = 1E-6; unsigned int numOpt = pv.numR(); auto p = KMatrix(numOpt, 1, 1.0) / numOpt; // all 1/n auto q = p; unsigned int iMax = 1000; // 10-30 is typical unsigned int iter = 0; double change = 1.0; while (pTol < change) { change = 0; for (unsigned int i = 0; i < numOpt; i++) { double pi = 0.0; for (unsigned int j = 0; j < numOpt; j++) { pi = pi + pv(i, j)*(p(i, 0) + p(j, 0)); } assert(0 <= pi); // double-check q(i, 0) = pi / numOpt; double c = fabs(q(i, 0) - p(i, 0)); change = (c > change) ? c : change; } // Newton method improves convergence. p = (p + q) / 2.0; iter++; assert(fabs(sum(p) - 1.0) < pTol); // double-check } assert(iter < iMax); // no way to recover return p; }
void RP2Model::setRP2(const KMatrix & pm0) { const unsigned int nr = pm0.numR(); const unsigned int nc = pm0.numC(); if (0 < numAct) { assert(nr == numAct); } else { numAct = nr; } if (0 < numOptions()) { assert(nc == numOptions()); } else { theta.resize(nc); // was size zero for (unsigned int i = 0; i < nc; i++) { theta[i] = i; } } assert(minNumActor <= numAct); assert(numAct <= maxNumActor); assert(minNumOptions <= numOptions()); for (auto u : pm0) { assert(0.0 <= u); assert(u <= 1.0); } // if all OK, set it polUtilMat = pm0; return; }
KMatrix rescaleRows(const KMatrix& m1, const double vMin, const double vMax) { assert(vMin < vMax); const unsigned int nr = m1.numR(); const unsigned int nc = m1.numC(); KMatrix m2 = KMatrix(nr, nc); for (unsigned int i = 0; i < nr; i++) { double rowMin = m1(i, 0); double rowMax = m1(i, 0); for (unsigned int j = 0; j < nc; j++) { const double mij = m1(i, j); if (mij < rowMin) { rowMin = mij; } if (mij > rowMax) { rowMax = mij; } } const double rowRange = rowMax - rowMin; assert(0 < rowRange); for (unsigned int j = 0; j < nc; j++) { const double mij = m1(i, j); const double nij = (mij - rowMin) / rowRange; // normalize into [0, 1] const double rij = vMin + (vMax - vMin)*nij; // rescale into [vMin, vMax] m2(i, j) = rij; } } return m2; }
KMatrix Model::bigRfromProb(const KMatrix & p, BigRRange rr) { double pMin = 1.0; double pMax = 0.0; for (double pi : p) { assert(0.0 <= pi); pMin = (pi < pMin) ? pi : pMin; pMax = (pi > pMax) ? pi : pMax; } const double pTol = 1E-8; assert(fabs(1 - KBase::sum(p)) < pTol); function<double(unsigned int, unsigned int)> rfn = nullptr; switch (rr) { case BigRRange::Min: rfn = [pMin, pMax, p](unsigned int i, unsigned int j) { return (p(i, j) - pMin) / (pMax - pMin); }; break; case BigRRange::Mid: rfn = [pMin, pMax, p](unsigned int i, unsigned int j) { return (3 * p(i, j) - (pMax + 2 * pMin)) / (2 * (pMax - pMin)); }; break; case BigRRange::Max: rfn = [pMin, pMax, p](unsigned int i, unsigned int j) { return (2 * p(i, j) - (pMax + pMin)) / (pMax - pMin); }; break; } auto rMat = KMatrix::map(rfn, p.numR(), p.numC()); return rMat; }
// returns a square matrix of prob(OptI > OptJ) // these are assumed to be unique options. // w is a [1,actor] row-vector of actor strengths, u is [act,option] utilities. KMatrix Model::vProb(VotingRule vr, VPModel vpm, const KMatrix & w, const KMatrix & u) { // u_ij is utility to actor i of the position advocated by actor j unsigned int numAct = u.numR(); unsigned int numOpt = u.numC(); // w_j is row-vector of actor weights, for simple voting assert(numAct == w.numC()); // require 1-to-1 matching of actors and strengths assert(1 == w.numR()); // weights must be a row-vector auto vfn = [vr, &w, &u](unsigned int k, unsigned int i, unsigned int j) { double vkij = vote(vr, w(0, k), u(k, i), u(k, j)); return vkij; }; auto c = coalitions(vfn, numAct, numOpt); // c(i,j) = strength of coaltion for i against j KMatrix p = vProb(vpm, c); // p(i,j) = prob Ai defeats Aj return p; }
vector<KMatrix> VHCSearch::vn1(const KMatrix & m0, double s) { unsigned int n = m0.numR(); auto nghbrs = vector<KMatrix>(); double pms[] = { -1, +1 }; for (unsigned int i = 0; i < n; i++) { for (double si : pms) { KMatrix m1 = m0; m1(i, 0) = m0(i, 0) + (si*s); nghbrs.push_back(m1); } } return nghbrs; }
tuple <KMatrix, VUI> RPState::pDist(int persp) const { /// Calculate the probability distribution over states from this perspective // TODO: convert this to a single, commonly used setup function const unsigned int numA = model->numAct; const unsigned int numP = numA; // for this demo, the number of positions is exactly the number of actors // get unique indices and their probability assert (0 < uIndices.size()); // should have been set with setUENdx(); //auto uNdx2 = uniqueNdx(); // get the indices to unique positions const unsigned int numU = uIndices.size(); assert(numU <= numP); // might have dropped some duplicates cout << "Number of aUtils: " << aUtil.size() << endl << flush; const KMatrix u = aUtil[0]; // all have same beliefs in this demo auto uufn = [u, this](unsigned int i, unsigned int j1) { return u(i, uIndices[j1]); }; auto uMat = KMatrix::map(uufn, numA, numU); auto vpm = VPModel::Linear; assert(uMat.numR() == numA); // must include all actors assert(uMat.numC() == numU); // vote_k ( i : j ) auto vkij = [this, uMat](unsigned int k, unsigned int i, unsigned int j) { auto ak = (RPActor*)(model->actrs[k]); auto v_kij = Model::vote(ak->vr, ak->sCap, uMat(k, i), uMat(k, j)); return v_kij; }; // the following uses exactly the values in the given euMat, // which may or may not be square const KMatrix c = Model::coalitions(vkij, uMat.numR(), uMat.numC()); const KMatrix pv = Model::vProb(vpm, c); // square const KMatrix p = Model::probCE(PCEModel::ConditionalPCM, pv); // column const KMatrix eu = uMat*p; // column assert(numA == eu.numR()); assert(1 == eu.numC()); return tuple <KMatrix, VUI>(p, uIndices); }
// Given square matrix of Prob[i>j] returns a column vector for Prob[i]. // Uses 1-step conditional probabilities, not Markov process KMatrix Model::condPCE(const KMatrix & pv) { unsigned int numOpt = pv.numR(); auto p = KMatrix(numOpt, 1); for (unsigned int i = 0; i < numOpt; i++) { double pi = 1.0; for (unsigned int j = 0; j < numOpt; j++) { pi = pi * pv(i, j); } // double-check assert(0 <= pi); assert(pi <= 1); p(i, 0) = pi; // probability that i beats all alternatives } double probOne = sum(p); // probability that one option, any option, beats all alternatives p = (p / probOne); // conditional probability that i is that one. return p; }
// note that while the C_ij can be any arbitrary positive matrix // with C_kk = 0, the p_ij matrix has the symmetry pij + pji = 1 // (and hence pkk = 1/2). KMatrix Model::vProb(VPModel vpm, const KMatrix & c) { unsigned int numOpt = c.numR(); assert(numOpt == c.numC()); auto p = KMatrix(numOpt, numOpt); for (unsigned int i = 0; i < numOpt; i++) { for (unsigned int j = 0; j < i; j++) { double cij = c(i, j); assert(0 <= cij); double cji = c(j, i); assert(0 <= cji); assert((0 < cij) || (0 < cji)); auto ppr = vProb(vpm, cij, cji); p(i, j) = get<0>(ppr); // set the lower left probability: if Linear, cij / (cij + cji) p(j, i) = get<1>(ppr); // set the upper right probability: if Linear, cji / (cij + cji) } p(i, i) = 0.5; // set the diagonal probability } return p; }
void RP2Model::setWeights(const KMatrix & w0) { const unsigned int nr = w0.numR(); const unsigned int nc = w0.numC(); assert(1 == nr); if (0 < numAct) { assert(nc == numAct); } else { numAct = nc; } for (auto w : w0) { assert(0.0 <= w); } assert(minNumActor <= numAct); assert(numAct <= maxNumActor); // if it is OK, set it wghtVect = w0; return; }
tuple<KMatrix, KMatrix> Model::probCE2(PCEModel pcm, VPModel vpm, const KMatrix & cltnStrngth) { const double pTol = 1E-8; unsigned int numOpt = cltnStrngth.numR(); auto p = KMatrix(numOpt, 1); const auto victProb = Model::vProb(vpm, cltnStrngth); // prob of victory, square switch (pcm) { case PCEModel::ConditionalPCM: p = condPCE(victProb); break; case PCEModel::MarkovIPCM: p = markovIncentivePCE(cltnStrngth, vpm); break; case PCEModel::MarkovUPCM: p = markovUniformPCE(victProb); break; default: throw KException("Model::probCE unrecognized PCEModel"); break; } assert(numOpt == p.numR()); assert(1 == p.numC()); assert(fabs(sum(p) - 1.0) < pTol); return tuple<KMatrix, KMatrix>(p, victProb); }
RPState* RPState::doSUSN(ReportingLevel rl) const { RPState* s2 = nullptr; const unsigned int numA = model->numAct; assert(numA == rpMod->actrs.size()); const unsigned int numU = uIndices.size(); assert ((0 < numU) && (numU <= numA)); assert (numA == eIndices.size()); // TODO: filter out essentially-duplicate positions //printf("RPState::doSUSN: numA %i \n", numA); //printf("RPState::doSUSN: numP %i \n", numP); //cout << endl << flush; const KMatrix u = aUtil[0]; // all have same beliefs in this demo auto vpm = VPModel::Linear; const unsigned int numP = pstns.size(); // Given the utility matrix, uMat, calculate the expected utility to each actor, // as a column-vector. Again, this is from the perspective of whoever developed uMat. auto euMat = [rl, numA, numP, vpm, this](const KMatrix & uMat) { // BTW, be sure to lambda-bind uMat *after* it is modified. assert(uMat.numR() == numA); // must include all actors assert(uMat.numC() <= numP); // might have dropped some duplicates auto uRng = [uMat](unsigned int i, unsigned int j) { if ((uMat(i, j) < 0.0) || (1.0 < uMat(i, j))) { printf("%f %i %i \n", uMat(i, j), i, j); cout << flush; cout << flush; } assert(0.0 <= uMat(i, j)); assert(uMat(i, j) <= 1.0); return; }; KMatrix::mapV(uRng, uMat.numR(), uMat.numC()); // vote_k ( i : j ) auto vkij = [this, uMat](unsigned int k, unsigned int i, unsigned int j) { auto ak = (RPActor*)(rpMod->actrs[k]); auto v_kij = Model::vote(ak->vr, ak->sCap, uMat(k, i), uMat(k, j)); return v_kij; }; // the following uses exactly the values in the given euMat, // which may or may not be square const KMatrix c = Model::coalitions(vkij, uMat.numR(), uMat.numC()); const KMatrix pv = Model::vProb(vpm, c); // square const KMatrix p = Model::probCE(PCEModel::ConditionalPCM, pv); // column const KMatrix eu = uMat*p; // column assert(numA == eu.numR()); assert(1 == eu.numC()); auto euRng = [eu](unsigned int i, unsigned int j) { // due to round-off error, we must have a tolerance factor const double tol = 1E-10; const double euij = eu(i, j); assert(0.0 <= euij+tol); assert(euij <= 1.0+tol); return; }; KMatrix::mapV(euRng, eu.numR(), eu.numC()); if (ReportingLevel::Low < rl) { printf("Util matrix is %i x %i \n", uMat.numR(), uMat.numC()); cout << "Assessing EU from util matrix: " << endl; uMat.mPrintf(" %.6f "); cout << endl << flush; cout << "Coalition strength matrix" << endl; c.mPrintf(" %12.6f "); cout << endl << flush; cout << "Probability Opt_i > Opt_j" << endl; pv.mPrintf(" %.6f "); cout << endl << flush; cout << "Probability Opt_i" << endl; p.mPrintf(" %.6f "); cout << endl << flush; cout << "Expected utility to actors: " << endl; eu.mPrintf(" %.6f "); cout << endl << flush; } return eu; }; // end of euMat auto euState = euMat(u); cout << "Actor expected utilities: "; KBase::trans(euState).mPrintf("%6.4f, "); cout << endl << flush; if (ReportingLevel::Low < rl) { printf("--------------------------------------- \n"); printf("Assessing utility of actual state to all actors \n"); for (unsigned int h = 0; h < numA; h++) { cout << "not available" << endl; } cout << endl << flush; printf("Out of %u positions, %u were unique: ", numA, numU); cout << flush; for (auto i : uIndices) { printf("%2i ", i); } cout << endl; cout << flush; } auto uufn = [u, this](unsigned int i, unsigned int j1) { return u(i, uIndices[j1]); }; auto uUnique = KMatrix::map(uufn, numA, numU); // Get expected-utility vector, one entry for each actor, in the current state. const KMatrix eu0 = euMat(uUnique); // 'u' with duplicates, 'uUnique' without duplicates s2 = new RPState(model); //s2->pstns = vector<KBase::Position*>(); for (unsigned int h = 0; h < numA; h++) { s2->pstns.push_back(nullptr); } // TODO: clean up the nesting of lambda-functions. // need to create a hypothetical state and run setOneAUtil(h,Silent) on it // // The newPosFn does a GA optimization to find the best next position for actor h, // and stores it in s2. To do that, it defines three functions for evaluation, neighbors, and show: // efn, nfn, and sfn. auto newPosFn = [this, rl, euMat, u, eu0, s2](const unsigned int h) { s2->pstns[h] = nullptr; auto ph = ((const MtchPstn *)(pstns[h])); // Evaluate h's estimate of the expected utility, to h, of // advocating position mp. To do this, build a hypothetical utility matrix representing // h's estimates of the direct utilities to all other actors of h adopting this // Position. Do that by modifying the h-column of h's matrix. // Then compute the expected probability distribution, over h's hypothetical position // and everyone else's actual position. Finally, compute the expected utility to // each actor, given that distribution, and pick out the value for h's expected utility. // That is the expected value to h of adopting the position. auto efn = [this, euMat, rl, u, h](const MtchPstn & mph) { // This correctly handles duplicated/unique options // We modify the given euMat so that the h-column // corresponds to the given mph, but we need to prune duplicates as well. // This entails some type-juggling. const KMatrix uh0 = aUtil[h]; assert(KBase::maxAbs(u - uh0) < 1E-10); // all have same beliefs in this demo if (mph.match.size() != rpMod->numItm) { cout << mph.match.size() << endl << flush; cout << rpMod->numItm << endl << flush; cout << flush << flush; } assert(mph.match.size() == rpMod->numItm); auto uh = uh0; for (unsigned int i = 0; i < rpMod->numAct; i++) { auto ai = (RPActor*)(rpMod->actrs[i]); double uih = ai->posUtil(&mph); uh(i, h) = uih; // utility to actor i of this hypothetical position by h } // 'uh' now has the correct h-column. Now we need to see how many options // are unique in the hypothetical state, and keep only those columns. // This entails juggling back and forth between the all current positions // and the one hypothetical position (mph at h). // Thus, the next call to euMat will consider only unique options. auto equivHNdx = [this, h, mph](const unsigned int i, const unsigned int j) { // this little function takes care of the different types needed to compare // dynamic pointers to positions (all but h) with a constant position (h itself). // In other words, the comparisons for index 'h' use the hypothetical mph, not pstns[h] bool rslt = false; auto mpi = ((const MtchPstn *)(pstns[i])); auto mpj = ((const MtchPstn *)(pstns[j])); assert(mpi != nullptr); assert(mpj != nullptr); if (i == j) { rslt = true; // Pi == Pj, always } else if (h == i) { rslt = (mph == (*mpj)); } else if (h == j) { rslt = ((*mpi) == mph); } else { rslt = ((*mpi) == (*mpj)); } return rslt; }; auto ns = KBase::uiSeq(0, model->numAct - 1); const VUI uNdx = get<0>(KBase::ueIndices<unsigned int>(ns, equivHNdx)); const unsigned int numU = uNdx.size(); auto hypUtil = KMatrix(rpMod->numAct, numU); // we need now to go through 'uh', copying column J the first time // the J-th position is determined to be equivalent to something in the unique list for (unsigned int i = 0; i < rpMod->numAct; i++) { for (unsigned int j1 = 0; j1 < numU; j1++) { unsigned int j2 = uNdx[j1]; hypUtil(i, j1) = uh(i, j2); // hypothetical utility in column h } } if (false) { cout << "constructed hypUtil matrix:" << endl << flush; hypUtil.mPrintf(" %8.2f "); cout << endl << flush; } if (ReportingLevel::Low < rl) { printf("--------------------------------------- \n"); printf("Assessing utility to %2i of hypo-pos: ", h); printPerm(mph.match); cout << endl << flush; printf("Hypo-util minus base util: \n"); (uh - uh0).mPrintf(" %+.4E "); cout << endl << flush; } const KMatrix eu = euMat(hypUtil); // uh or hypUtil // BUG: If we use 'uh' here, it passes the (0 <= delta-EU) test, because // both hypothetical and actual are then calculated without dropping duplicates. // If we use 'hypUtil' here, it sometimes gets (delta-EU < 0), because // the hypothetical drops duplicates but the actual (computed elsewhere) does not. // FIX: fix the 'elsewhere' const double euh = eu(h, 0); assert(0 < euh); //cout << euh << endl << flush; //printPerm(mp.match); //cout << endl << flush; //cout << flush; return euh; }; // end of efn /* // I do not actually use prevMP, but it is still an example for std::set auto prevMP = [](const MtchPstn & mp1, const MtchPstn & mp2) { bool r = std::lexicographical_compare( mp1.match.begin(), mp1.match.end(), mp2.match.begin(), mp2.match.end()); return r; }; std::set<MtchPstn, bool(*)(const MtchPstn &, const MtchPstn &)> mpSet(prevMP); */ // return vector of neighboring 1-permutations auto nfn = [](const MtchPstn & mp0) { const unsigned int numI = mp0.match.size(); auto mpVec = vector <MtchPstn>(); mpVec.push_back(MtchPstn(mp0)); // one-permutations for (unsigned int i = 0; i < numI; i++) { for (unsigned int j = i + 1; j < numI; j++) { unsigned int ei = mp0.match[i]; unsigned int ej = mp0.match[j]; auto mij = MtchPstn(mp0); mij.match[i] = ej; mij.match[j] = ei; mpVec.push_back(mij); } } // two-permutations for (unsigned int i = 0; i < numI; i++) { for (unsigned int j = i + 1; j < numI; j++) { for (unsigned int k = j + 1; k < numI; k++) { unsigned int ei = mp0.match[i]; unsigned int ej = mp0.match[j]; unsigned int ek = mp0.match[k]; auto mjki = MtchPstn(mp0); mjki.match[i] = ej; mjki.match[j] = ek; mjki.match[k] = ei; mpVec.push_back(mjki); auto mkij = MtchPstn(mp0); mkij.match[i] = ek; mkij.match[j] = ei; mkij.match[k] = ej; mpVec.push_back(mkij); } } } //unsigned int mvs = mpVec.size() ; //cout << mvs << endl << flush; //cout << flush; return mpVec; }; // end of nfn // show some representation of this position on cout auto sfn = [](const MtchPstn & mp0) { printPerm(mp0.match); return; }; auto ghc = new KBase::GHCSearch<MtchPstn>(); ghc->eval = efn; ghc->nghbrs = nfn; ghc->show = sfn; auto rslt = ghc->run(*ph, // start from h's current positions ReportingLevel::Silent, 100, // iter max 3, 0.001); // stable-max, stable-tol if (ReportingLevel::Low < rl) { printf("---------------------------------------- \n"); printf("Search for best next-position of actor %2i \n", h); //printf("Search for best next-position of actor %2i starting from ", h); //trans(*aPos).printf(" %+.6f "); cout << flush; } double vBest = get<0>(rslt); MtchPstn pBest = get<1>(rslt); unsigned int iterN = get<2>(rslt); unsigned int stblN = get<3>(rslt); delete ghc; ghc = nullptr; if (ReportingLevel::Medium < rl) { printf("Iter: %u Stable: %u \n", iterN, stblN); printf("Best value for %2i: %+.6f \n", h, vBest); cout << "Best position: " << endl; cout << "numCat: " << pBest.numCat << endl; cout << "numItm: " << pBest.numItm << endl; cout << "perm: "; printPerm(pBest.match); cout << endl << flush; } MtchPstn * posBest = new MtchPstn(pBest); s2->pstns[h] = posBest; // no need for mutex, as s2->pstns is the only shared var, // and each h is different. double du = vBest - eu0(h, 0); // (hypothetical, future) - (actual, current) if (ReportingLevel::Low < rl) { printf("EU improvement for %2i of %+.4E \n", h, du); } //printf(" vBest = %+.6f \n", vBest); //printf(" eu0(%i, 0) for %i = %+.6f \n", h, h, eu0(h,0)); //cout << endl << flush; // Logically, du should always be non-negative, as GHC never returns a worse value than the starting point. // However, actors plan on the assumption that all others do not change - yet they do. const double eps = 0.05; // 0.025; // enough to avoid problems with round-off error assert(-eps <= du); return; }; // end of newPosFn const bool par = true; auto ts = vector<thread>(); // Each actor, h, finds the position which maximizes their EU in this situation. for (unsigned int h = 0; h < numA; h++) { if (par) { // launch all, concurrent ts.push_back(thread([newPosFn, h]() { newPosFn(h); return; })); } else { // do each, sequential newPosFn(h); } } if (par) { // now join them all before continuing for (auto& t : ts) { t.join(); } } assert(nullptr != s2); assert(numP == s2->pstns.size()); assert(numA == s2->model->numAct); for (auto p : s2->pstns) { assert(nullptr != p); } s2->setUENdx(); return s2; }
// return the list of the most self-interested position of each actor, // with the CP last. // As a side-affect, set each actor's min/max permutation values so as to // compute normalized utilities later. vector<VUI> scanAllPossiblePositions(const RPModel * rpm) { unsigned int numA = rpm->numAct; unsigned int numRefItem = rpm->numItm; assert(numRefItem == rpm->numCat); LOG(INFO) << "There are" << numA << "actors and" << numRefItem << "reform items"; KMatrix aCap = KMatrix(1, numA); for (unsigned int i = 0; i < numA; i++) { auto ri = ((const RPActor *)(rpm->actrs[i])); aCap(0, i) = ri->sCap; } LOG(INFO) << "Actor capabilities: "; aCap.mPrintf(" %.2f "); LOG(INFO) << "Effective gov cost of items:"; (rpm->govCost).mPrintf("%.3f "); LOG(INFO) << "Government budget: " << rpm->govBudget; assert(0 < rpm->govBudget); string log("Value to actors (rows) of individual reform items (columns):"); for (unsigned int i = 0; i < rpm->actrs.size(); i++) { auto rai = ((const RPActor*)(rpm->actrs[i])); for (unsigned int j = 0; j < numRefItem; j++) { double vij = rai->riVals[j]; log += KBase::getFormattedString(" %6.2f", vij); } } LOG(INFO) << log; LOG(INFO) << "Computing positions ... "; vector<VUI> allPositions; // list of all possiblepositions VUI pstn; // build the first permutation: 0,1,2,3,... for (unsigned int i = 0; i < numRefItem; i++) { pstn.push_back(i); } allPositions.push_back(pstn); while (next_permutation(pstn.begin(), pstn.end())) { allPositions.push_back(pstn); } const unsigned int numPos = allPositions.size(); LOG(INFO) << "For" << numRefItem << "reform items there are" << numPos << "positions"; // ------------------------------------------------- // The next section sets up actor utilities. // First, we compute the unnormalized, raw utilities. The 'utilActorPos' checks // to see if pvMin/pvMax have been set, and returns the raw scores if not. // Then we scan across rows to find that actor's pvMin/pvMax, and record that // so utilActorPos can use it in the future. Finally, we normalize the rows and // display the normalized utility matrix. auto ruFn = [allPositions, rpm](unsigned int ai, unsigned int pj) { auto pstn = allPositions[pj]; double uip = rpm->utilActorPos(ai, pstn); return uip; }; LOG(INFO) << "Computing utilities of positions ... "; // rows are actors, columns are all possible positions auto rawUij = KMatrix::map(ruFn, numA, numPos); // set the min/max for each actor for (unsigned int i = 0; i < numA; i++) { double pvMin = rawUij(i, 0); double pvMax = rawUij(i, 0); for (unsigned int j = 0; j < numPos; j++) { double rij = rawUij(i, j); if (rij < pvMin) { pvMin = rij; } if (rij > pvMax) { pvMax = rij; } } assert(0 <= pvMin); assert(pvMin < pvMax); auto ai = ((RPActor*)(rpm->actrs[i])); ai->posValMin = pvMin; ai->posValMax = pvMax; } LOG(INFO) << "Normalizing utilities of positions ... "; KMatrix uij = KBase::rescaleRows(rawUij, 0.0, 1.0); // von Neumann utility scale string utilMtx("Complete (normalized) utility matrix of all possible positions (rows) versus actors (columns) \n"); for (unsigned int pj = 0; pj < numPos; pj++) { utilMtx += KBase::getFormattedString("%3u ", pj); auto pstn = allPositions[pj]; //printVUI(pstn); utilMtx += KBase::stringVUI(pstn); utilMtx += " "; for (unsigned int ai = 0; ai < numA; ai++) { double uap = uij(ai, pj); utilMtx += KBase::getFormattedString("%6.4f, ", uap); } utilMtx += KBase::getFormattedString("\n"); } LOG(INFO) << utilMtx; // ------------------------------------------------- // The next section determines the most self-interested positions for each actor, // as well as the 'central position' over all possible reform priorities // (which 'office seeking politicans' would adopt IF proportional voting). LOG(INFO) << "Computing best position for each actor"; vector<VUI> bestAP; // list of each actor's best position (followed by CP) for (unsigned int ai = 0; ai < numA; ai++) { unsigned int bestJ = 0; double bestV = 0; for (unsigned int pj = 0; pj < numPos; pj++) { if (bestV < uij(ai, pj)) { bestJ = pj; bestV = uij(ai, pj); } } string bestMtx("Best position for "); string ais = std::to_string(ai); //string bjs = std::to_string(bestJ); string ps = KBase::stringVUI(allPositions[bestJ]); bestMtx += ais + " is " + ps; LOG(INFO) << bestMtx; //LOG(INFO) << "Best for" << ai << "is "; //printVUI(positions[bestJ]); bestAP.push_back(allPositions[bestJ]); } LOG(INFO) << "Computing zeta ... "; KMatrix zeta = aCap * uij; assert((1 == zeta.numR()) && (numPos == zeta.numC())); LOG(INFO) << "Sorting positions from most to least net support ..."; auto betterPR = [](tuple<unsigned int, double, VUI> pr1, tuple<unsigned int, double, VUI> pr2) { double v1 = get<1>(pr1); double v2 = get<1>(pr2); bool better = (v1 > v2); return better; }; auto pairs = vector<tuple<unsigned int, double, VUI>>(); for (unsigned int i = 0; i < numPos; i++) { auto pri = tuple<unsigned int, double, VUI>(i, zeta(0, i), allPositions[i]); pairs.push_back(pri); } sort(pairs.begin(), pairs.end(), betterPR); const unsigned int maxDisplayed = 720; // factorial(6) unsigned int numPr = (pairs.size() < maxDisplayed) ? pairs.size() : maxDisplayed; LOG(INFO) << "Displaying highest" << numPr; for (unsigned int i = 0; i < numPr; i++) { auto pri = pairs[i]; unsigned int ni = get<0>(pri); double zi = get<1>(pri); VUI pi = get<2>(pri); string ps = KBase::stringVUI(pi); LOG(INFO) << KBase::getFormattedString(" %3u: %4u %.2f %s", i, ni, zi, ps.c_str()); //printVUI(pi); } VUI bestPerm = get<2>(pairs[0]); bestAP.push_back(bestPerm); return bestAP; }
// Given square matrix of strengths, Coalition[i over j] returns a column vector for Prob[i]. // Uses Markov process, not 1-step conditional probability. // Challenge probabilities are proportional to influence promoting a challenge KMatrix Model::markovIncentivePCE(const KMatrix & coalitions, VPModel vpm) { using KBase::sqr; using KBase::qrtc; const bool printP = false; const double pTol = 1E-8; const unsigned int numOpt = coalitions.numR(); assert(numOpt == coalitions.numC()); const auto victProbMatrix = vProb(vpm, coalitions); // given coalitions, calculate the total incentive for i to challenge j // This is n[ i -> j] in the "Markov Voting with Incentives in KTAB" paper auto iFn = [victProbMatrix, coalitions](unsigned int i, unsigned int j) { const double epsSupport = 1E-10; const double sij = coalitions(i, j); double inctv = sij * victProbMatrix(i,j); if (i == j) { inctv = inctv + epsSupport; } return inctv; }; const auto inctvMatrix = KMatrix::map(iFn, numOpt, numOpt); // Using the incentives, calculate the probability of i challenging j, // given that j is the current favorite proposal. // This is P[ i -> j] in the "Markov Voting with Incentives in KTAB" paper // Note that if every actor prefers j to every other option, // then all incentive(i,j) will be zero, except incentive(j,j) = eps. // Even in this case, we will not get a division by zero error, // and it will correctly return that the only "challenger" is j itself, // with guaranteed success. // auto cpFn = [inctvMatrix, numOpt](unsigned int i, unsigned int j) { double sum = 0.0; for (unsigned int k = 0; k < numOpt; k++) { sum = sum + inctvMatrix(k, j); } const double pij = inctvMatrix(i, j) / sum; return pij; }; const auto chlgProbMatrix = KMatrix::map(cpFn, numOpt, numOpt); // probability starts as uniform distribution (column vector) auto p = KMatrix(numOpt, 1, 1.0) / numOpt; // all 1/n auto q = p; unsigned int iMax = 1000; // 10-30 is typical unsigned int iter = 0; double change = 1.0; // do the markov calculation while (pTol < change) { // && (iter < iMax) if (printP) { printf("Iteration %u / %u \n", iter, iMax); cout << "pDist:" << endl; trans(p).mPrintf(" %.4f"); cout << endl; printf("change: %.4e \n", change); cout << endl << flush; } auto ct = KMatrix(numOpt, numOpt); for (unsigned int i = 0; i < numOpt; i++) { for (unsigned int j = 0; j < numOpt; j++) { // See "Markov Voting with Incentives in KTAB" paper ct(i, j) = p(i, 0) * chlgProbMatrix(j, i); } } if (printP) { cout << "Ct:" << endl; ct.mPrintf(" %.3f"); cout << endl << flush; } change = 0.0; for (unsigned int i = 0; i < numOpt; i++) { double qi = 0.0; for (unsigned int j = 0; j < numOpt; j++) { double vij = victProbMatrix(i, j); double cj = ct(i, j) + ct(j, i); qi = qi + vij* cj; } assert(0 <= qi); // double-check q(i, 0) = qi; double c = fabs(q(i, 0) - p(i, 0)); change = (c > change) ? c : change; } // Newton method improves convergence. p = (p+q)/2.0; iter++; assert(fabs(sum(p) - 1.0) < pTol); // double-check } assert(iter < iMax); // no way to recover return p; }