void KarbonCalligraphicShape::addCap(int index1, int index2, int pointIndex, bool inverted) { QPointF p1 = m_points[index1]->point(); QPointF p2 = m_points[index2]->point(); // TODO: review why spikes can appear with a lower limit QPointF delta = p2 - p1; if (delta.manhattanLength() < 1.0) return; QPointF direction = QLineF(QPointF(0, 0), delta).unitVector().p2(); qreal width = m_points[index2]->width(); QPointF p = p2 + direction * m_caps * width; KoPathPoint * newPoint = new KoPathPoint(this, p); qreal angle = m_points[index2]->angle(); if (inverted) angle += M_PI; qreal dx = std::cos(angle) * width; qreal dy = std::sin(angle) * width; newPoint->setControlPoint1(QPointF(p.x() - dx / 2, p.y() - dy / 2)); newPoint->setControlPoint2(QPointF(p.x() + dx / 2, p.y() + dy / 2)); insertPoint(newPoint, KoPathPointIndex(0, pointIndex)); }
void KoPathPointInsertCommand::undo() { QUndoCommand::undo(); for (int i = 0; i < m_pointDataList.size(); ++i) { const KoPathPointData &pdBefore = m_pointDataList.at(i); KoPathShape * pathShape = pdBefore.pathShape; KoPathPointIndex piAfter = pdBefore.pointIndex; ++piAfter.second; KoPathPoint * before = pathShape->pointByIndex(pdBefore.pointIndex); m_points[i] = pathShape->removePoint(piAfter); if (m_points[i]->properties() & KoPathPoint::CloseSubpath) { piAfter.second = 0; } KoPathPoint * after = pathShape->pointByIndex(piAfter); if (before->activeControlPoint2()) { QPointF controlPoint2 = before->controlPoint2(); qSwap(controlPoint2, m_controlPoints[i].first); before->setControlPoint2(controlPoint2); } if (after->activeControlPoint1()) { QPointF controlPoint1 = after->controlPoint1(); qSwap(controlPoint1, m_controlPoints[i].second); after->setControlPoint1(controlPoint1); } pathShape->update(); } m_deletePoints = true; }
void KoPathControlPointMoveCommand::redo() { KUndo2Command::redo(); KoPathShape * pathShape = m_pointData.pathShape; KoPathPoint * point = pathShape->pointByIndex(m_pointData.pointIndex); if (point) { pathShape->update(); if (m_pointType == KoPathPoint::ControlPoint1) { point->setControlPoint1(point->controlPoint1() + m_offset); if (point->properties() & KoPathPoint::IsSymmetric) { // set the other control point so that it lies on the line between the moved // control point and the point, with the same distance to the point as the moved point point->setControlPoint2(2.0 * point->point() - point->controlPoint1()); } else if (point->properties() & KoPathPoint::IsSmooth) { // move the other control point so that it lies on the line through point and control point // keeping its distance to the point QPointF direction = point->point() - point->controlPoint1(); direction /= sqrt(direction.x() * direction.x() + direction.y() * direction.y()); QPointF distance = point->point() - point->controlPoint2(); qreal length = sqrt(distance.x() * distance.x() + distance.y() * distance.y()); point->setControlPoint2(point->point() + length * direction); } } else if (m_pointType == KoPathPoint::ControlPoint2) { point->setControlPoint2(point->controlPoint2() + m_offset); if (point->properties() & KoPathPoint::IsSymmetric) { // set the other control point so that it lies on the line between the moved // control point and the point, with the same distance to the point as the moved point point->setControlPoint1(2.0 * point->point() - point->controlPoint2()); } else if (point->properties() & KoPathPoint::IsSmooth) { // move the other control point so that it lies on the line through point and control point // keeping its distance to the point QPointF direction = point->point() - point->controlPoint2(); direction /= sqrt(direction.x() * direction.x() + direction.y() * direction.y()); QPointF distance = point->point() - point->controlPoint1(); qreal length = sqrt(distance.x() * distance.x() + distance.y() * distance.y()); point->setControlPoint1(point->point() + length * direction); } } pathShape->normalize(); pathShape->update(); } }
void KoPathPointTypeCommand::undoChanges(const QList<PointData> &data) { QList<PointData>::const_iterator it(data.begin()); for (; it != data.end(); ++it) { KoPathShape *pathShape = it->m_pointData.pathShape; KoPathPoint *point = pathShape->pointByIndex(it->m_pointData.pointIndex); point->setProperties(it->m_oldProperties); if (it->m_hadControlPoint1) point->setControlPoint1(pathShape->documentToShape(it->m_oldControlPoint1)); else point->removeControlPoint1(); if (it->m_hadControlPoint2) point->setControlPoint2(pathShape->documentToShape(it->m_oldControlPoint2)); else point->removeControlPoint2(); } }
KoPathPointInsertCommand::KoPathPointInsertCommand(const QList<KoPathPointData> & pointDataList, qreal insertPosition, QUndoCommand *parent) : QUndoCommand(parent) , m_deletePoints(true) { if (insertPosition < 0) insertPosition = 0; if (insertPosition > 1) insertPosition = 1; //TODO the list needs to be sorted QList<KoPathPointData>::const_iterator it(pointDataList.begin()); for (; it != pointDataList.end(); ++it) { KoPathShape * pathShape = it->pathShape; KoPathSegment segment = pathShape->segmentByIndex(it->pointIndex); // should not happen but to be sure if (! segment.isValid()) continue; m_pointDataList.append(*it); QPair<KoPathSegment, KoPathSegment> splitSegments = segment.splitAt( insertPosition ); KoPathPoint * split1 = splitSegments.first.second(); KoPathPoint * split2 = splitSegments.second.first(); KoPathPoint * splitPoint = new KoPathPoint( pathShape, split1->point() ); if( split1->activeControlPoint1() ) splitPoint->setControlPoint1(split1->controlPoint1()); if( split2->activeControlPoint2() ) splitPoint->setControlPoint2(split2->controlPoint2()); m_points.append(splitPoint); QPointF cp1 = splitSegments.first.first()->controlPoint2(); QPointF cp2 = splitSegments.second.second()->controlPoint1(); m_controlPoints.append(QPair<QPointF, QPointF>(cp1, cp2)); } }
void KarbonWhirlPinchCommand::redo() { d->pathShape->update(); uint subpathCount = d->pathData.count(); for( uint subpathIndex = 0; subpathIndex < subpathCount; ++subpathIndex ) { uint pointCount = d->pathData[subpathIndex].count(); for( uint pointIndex = 0; pointIndex < pointCount; ++pointIndex ) { KoPathPoint * p = d->pathShape->pointByIndex( KoPathPointIndex( subpathIndex, pointIndex ) ); p->setPoint( d->whirlPinch( p->point() ) ); if( p->activeControlPoint1() ) p->setControlPoint1( d->whirlPinch( p->controlPoint1() ) ); if( p->activeControlPoint2() ) p->setControlPoint2( d->whirlPinch( p->controlPoint2() ) ); } } d->pathShape->normalize(); d->pathShape->update(); QUndoCommand::redo(); }
void KarbonCalligraphicShape::addCap(int index1, int index2, int pointIndex, bool inverted) { QPointF p1 = m_points[index1]->point(); QPointF p2 = m_points[index2]->point(); qreal width = m_points[index2]->width(); QPointF direction = QLineF(QPointF(0, 0), p2 - p1).unitVector().p2(); QPointF p = p2 + direction * m_caps * width; KoPathPoint * newPoint = new KoPathPoint(this, p); qreal angle = m_points[index2]->angle(); if (inverted) angle += M_PI; qreal dx = std::cos(angle) * width; qreal dy = std::sin(angle) * width; newPoint->setControlPoint1(QPointF(p.x() - dx / 2, p.y() - dy / 2)); newPoint->setControlPoint2(QPointF(p.x() + dx / 2, p.y() + dy / 2)); insertPoint(newPoint, KoPathPointIndex(0, pointIndex)); }
void RoundCornersCommand::roundPath() { /* * This algorithm is worked out by <kudling AT kde DOT org> to produce similar results as * the "round corners" algorithms found in other applications. Neither code nor * algorithms from any 3rd party is used though. * * We want to replace all corners with round corners having "radius" m_radius. * The algorithm doesn't really produce circular arcs, but that's ok since * the algorithm achieves nice looking results and is generic enough to be applied * to all kind of paths. * Note also, that this algorithm doesn't touch smooth joins (in the sense of * KoPathPoint::isSmooth() ). * * We'll manipulate the input path for bookkeeping purposes and construct a new * temporary path in parallel. We finally replace the input path with the new path. * * * Without restricting generality, let's assume the input path is closed and * contains segments which build a rectangle. * * 2 * O------------O * | | Numbers reflect the segments' order * 3| |1 in the path. We neglect the "begin" * | | segment here. * O------------O * 0 * * There are three unique steps to process. The second step is processed * many times in a loop. * * 1) Begin * ----- * Split the first segment of the input path (called "path[0]" here) * at parameter t * * t = path[0]->param( m_radius ) * * and move newPath to this new knot. If current segment is too small * (smaller than 2 * m_radius), we always set t = 0.5 here and in the further * steps as well. * * path: new path: * * 2 * O------------O * | | * 3 | | 1 The current segment is marked with "#"s. * | | * O##O#########O ...O * 0 0 * * 2) Loop * ---- * The loop step is iterated over all segments. After each appliance the index n * is incremented and the loop step is reapplied until no untouched segment is left. * * Split the current segment path[n] of the input path at parameter t * * t = path[n]->param( path[n]->length() - m_radius ) * * and add the first subsegment of the curent segment to newPath. * * path: new path: * * 2 * O------------O * | | * 3 | | 1 * | | * O--O######O##O O------O... * 0 0 * * Now make the second next segment (the original path[1] segment in our example) * the current one. Split it at parameter t * * t = path[n]->param( m_radius ) * * path: new path: * * 2 * O------------O * | # * 3 | O 1 * | # * O--O------O--O O------O... * 0 0 * * Make the first subsegment of the current segment the current one. * * path: new path: * * 2 * O------------O * | | * 3 | O 1 O * | # /.1 * O--O------O--O O------O... * 0 0 * * 3) End * --- * * path: new path: * * 2 4 * O--O------O--O 5 .O------O. 3 * | | / \ * 3 O O 1 6 O O 2 * | | 7 .\ / * O--O------O--O ...O------O. 1 * 0 0 */ // TODO: not sure if we should only touch flat segment joins as the original algorithm m_path->clear(); int subpathCount = m_copy->subpathCount(); for( int subpathIndex = 0; subpathIndex < subpathCount; ++subpathIndex ) { int pointCount = m_copy->pointCountSubpath( subpathIndex ); if( ! pointCount ) continue; // check if we have sufficient number of points if( pointCount < 3 ) { // copy the only segment KoPathSegment s = m_copy->segmentByIndex( KoPathPointIndex( subpathIndex, 0 ) ); m_path->moveTo( m_copy->pointByIndex( KoPathPointIndex( subpathIndex, 0 ) )->point() ); addSegment( m_path, s ); continue; } KoPathSegment prevSeg = m_copy->segmentByIndex( KoPathPointIndex( subpathIndex, pointCount-1 ) ); KoPathSegment nextSeg = m_copy->segmentByIndex( KoPathPointIndex( subpathIndex, 0 ) ); KoPathSegment lastSeg; KoPathPoint * currPoint = nextSeg.first(); KoPathPoint * firstPoint = 0; KoPathPoint * lastPoint = 0; // check if first path point is a smooth join with the closing segment bool firstPointIsCorner = m_copy->isClosedSubpath( subpathIndex ) && ! currPoint->isSmooth( prevSeg.first(), nextSeg.second() ); // Begin: take care of the first path point if( firstPointIsCorner ) { // split the previous segment at length - radius qreal prevLength = prevSeg.length(); qreal prevSplit = prevLength > m_radius ? prevSeg.paramAtLength( prevLength-m_radius ) : 0.5; QPair<KoPathSegment,KoPathSegment> prevParts = prevSeg.splitAt( prevSplit ); // split the next segment at radius qreal nextLength = nextSeg.length(); qreal nextSplit = nextLength > m_radius ? nextSeg.paramAtLength( m_radius ) : 0.5; QPair<KoPathSegment,KoPathSegment> nextParts = nextSeg.splitAt( nextSplit ); // calculate smooth tangents QPointF P0 = prevParts.first.second()->point(); QPointF P3 = nextParts.first.second()->point(); qreal tangentLength1 = 0.5 * QLineF( P0, currPoint->point() ).length(); qreal tangentLength2 = 0.5 * QLineF( P3, currPoint->point() ).length(); QPointF P1 = P0 - tangentLength1 * tangentAtEnd( prevParts.first ); QPointF P2 = P3 - tangentLength2 * tangentAtStart( nextParts.second ); // start the subpath firstPoint = m_path->moveTo( prevParts.second.first()->point() ); // connect the split points with curve // TODO: shall we create a correct arc? m_path->curveTo( P1, P2, P3 ); prevSeg = nextParts.second; lastSeg = prevParts.first; } else { firstPoint = m_path->moveTo( currPoint->point() ); prevSeg = nextSeg; } // Loop: for( int pointIndex = 1; pointIndex < pointCount; ++pointIndex ) { nextSeg = m_copy->segmentByIndex( KoPathPointIndex( subpathIndex, pointIndex ) ); if( ! nextSeg.isValid() ) break; currPoint = nextSeg.first(); if( ! currPoint ) continue; if( currPoint->isSmooth( prevSeg.first(), nextSeg.second() ) ) { // the current point has a smooth join, so we can add the previous segment // to our new path addSegment( m_path, prevSeg ); prevSeg = nextSeg; } else { // split the previous segment at length - radius qreal prevLength = prevSeg.length(); qreal prevSplit = prevLength > m_radius ? prevSeg.paramAtLength( prevLength-m_radius ) : 0.5; QPair<KoPathSegment,KoPathSegment> prevParts = prevSeg.splitAt( prevSplit ); // add the remaining part up to the split point of the pervious segment lastPoint = addSegment( m_path, prevParts.first ); // split the next segment at radius qreal nextLength = nextSeg.length(); qreal nextSplit = nextLength > m_radius ? nextSeg.paramAtLength( m_radius ) : 0.5; QPair<KoPathSegment,KoPathSegment> nextParts = nextSeg.splitAt( nextSplit ); // calculate smooth tangents QPointF P0 = prevParts.first.second()->point(); QPointF P3 = nextParts.first.second()->point(); qreal tangentLength1 = 0.5 * QLineF( P0, currPoint->point() ).length(); qreal tangentLength2 = 0.5 * QLineF( P3, currPoint->point() ).length(); QPointF P1 = P0 - tangentLength1 * tangentAtEnd( prevParts.first ); QPointF P2 = P3 - tangentLength2 * tangentAtStart( nextParts.second ); // connect the split points with curve // TODO: shall we create a correct arc? lastPoint = m_path->curveTo( P1, P2, P3 ); prevSeg = nextParts.second; } } // End: take care of the last path point if( firstPointIsCorner ) { // construct the closing segment lastPoint->setProperty( KoPathPoint::CloseSubpath ); firstPoint->setProperty( KoPathPoint::CloseSubpath ); switch( lastSeg.degree() ) { case 1: lastPoint->removeControlPoint2(); firstPoint->removeControlPoint1(); break; case 2: if( lastSeg.first()->activeControlPoint2() ) { lastPoint->setControlPoint2( lastSeg.first()->controlPoint2() ); firstPoint->removeControlPoint1(); } else { lastPoint->removeControlPoint2(); firstPoint->setControlPoint1( lastSeg.second()->controlPoint1() ); } break; case 3: lastPoint->setControlPoint2( lastSeg.first()->controlPoint2() ); firstPoint->setControlPoint1( lastSeg.second()->controlPoint1() ); break; } } else { // add the last remaining segment addSegment( m_path, prevSeg ); } } }
void KoPathPointTypeCommand::redo() { KUndo2Command::redo(); repaint(false); m_additionalPointData.clear(); QList<PointData>::iterator it(m_oldPointData.begin()); for (; it != m_oldPointData.end(); ++it) { KoPathPoint *point = it->m_pointData.pathShape->pointByIndex(it->m_pointData.pointIndex); KoPathPoint::PointProperties properties = point->properties(); switch (m_pointType) { case Line: { point->removeControlPoint1(); point->removeControlPoint2(); break; } case Curve: { KoPathPointIndex pointIndex = it->m_pointData.pointIndex; KoPathPointIndex prevIndex; KoPathPointIndex nextIndex; KoPathShape * path = it->m_pointData.pathShape; // get previous path node if (pointIndex.second > 0) prevIndex = KoPathPointIndex(pointIndex.first, pointIndex.second - 1); else if (pointIndex.second == 0 && path->isClosedSubpath(pointIndex.first)) prevIndex = KoPathPointIndex(pointIndex.first, path->subpathPointCount(pointIndex.first) - 1); // get next node if (pointIndex.second < path->subpathPointCount(pointIndex.first) - 1) nextIndex = KoPathPointIndex(pointIndex.first, pointIndex.second + 1); else if (pointIndex.second < path->subpathPointCount(pointIndex.first) - 1 && path->isClosedSubpath(pointIndex.first)) nextIndex = KoPathPointIndex(pointIndex.first, 0); KoPathPoint * prevPoint = path->pointByIndex(prevIndex); KoPathPoint * nextPoint = path->pointByIndex(nextIndex); if (prevPoint && ! point->activeControlPoint1() && appendPointData(KoPathPointData(path, prevIndex))) { KoPathSegment cubic = KoPathSegment(prevPoint, point).toCubic(); if (prevPoint->activeControlPoint2()) { prevPoint->setControlPoint2(cubic.first()->controlPoint2()); point->setControlPoint1(cubic.second()->controlPoint1()); } else point->setControlPoint1(cubic.second()->controlPoint1()); } if (nextPoint && ! point->activeControlPoint2() && appendPointData(KoPathPointData(path, nextIndex))) { KoPathSegment cubic = KoPathSegment(point, nextPoint).toCubic(); if (nextPoint->activeControlPoint1()) { point->setControlPoint2(cubic.first()->controlPoint2()); nextPoint->setControlPoint1(cubic.second()->controlPoint1()); } else point->setControlPoint2(cubic.first()->controlPoint2()); } break; } case Symmetric: { properties &= ~KoPathPoint::IsSmooth; properties |= KoPathPoint::IsSymmetric; // calculate vector from node point to first control point and normalize it QPointF directionC1 = point->controlPoint1() - point->point(); qreal dirLengthC1 = sqrt(directionC1.x() * directionC1.x() + directionC1.y() * directionC1.y()); directionC1 /= dirLengthC1; // calculate vector from node point to second control point and normalize it QPointF directionC2 = point->controlPoint2() - point->point(); qreal dirLengthC2 = sqrt(directionC2.x() * directionC2.x() + directionC2.y() * directionC2.y()); directionC2 /= dirLengthC2; // calculate the average distance of the control points to the node point qreal averageLength = 0.5 * (dirLengthC1 + dirLengthC2); // compute position of the control points so that they lie on a line going through the node point // the new distance of the control points is the average distance to the node point point->setControlPoint1(point->point() + 0.5 * averageLength * (directionC1 - directionC2)); point->setControlPoint2(point->point() + 0.5 * averageLength * (directionC2 - directionC1)); } break; case Smooth: { properties &= ~KoPathPoint::IsSymmetric; properties |= KoPathPoint::IsSmooth; // calculate vector from node point to first control point and normalize it QPointF directionC1 = point->controlPoint1() - point->point(); qreal dirLengthC1 = sqrt(directionC1.x() * directionC1.x() + directionC1.y() * directionC1.y()); directionC1 /= dirLengthC1; // calculate vector from node point to second control point and normalize it QPointF directionC2 = point->controlPoint2() - point->point(); qreal dirLengthC2 = sqrt(directionC2.x() * directionC2.x() + directionC2.y() * directionC2.y()); directionC2 /= dirLengthC2; // compute position of the control points so that they lie on a line going through the node point // the new distance of the control points is the average distance to the node point point->setControlPoint1(point->point() + 0.5 * dirLengthC1 * (directionC1 - directionC2)); point->setControlPoint2(point->point() + 0.5 * dirLengthC2 * (directionC2 - directionC1)); } break; case Corner: default: properties &= ~KoPathPoint::IsSymmetric; properties &= ~KoPathPoint::IsSmooth; break; } point->setProperties(properties); } repaint(true); }