TEST(SLOW_testbackward, perf_kgsgo_32c5) { int batchSize = 128; LayerDimensions dim; dim.setInputPlanes(32).setInputSize(19).setNumFilters(32).setFilterSize(5) .setPadZeros(true).setBiased(true); cout << dim.buildOptionsString() << endl; // ActivationFunction *fn = new ReluActivation(); measurePerf(2, batchSize, dim); }
TEST(SLOW_testbackward, compare_kgsgo_32c5mini) { int batchSize = 4; LayerDimensions dim; dim.setInputPlanes(2).setInputSize(3).setNumFilters(2).setFilterSize(3) .setPadZeros(true).setBiased(true); cout << dim.buildOptionsString() << endl; // ActivationFunction *fn = new ReluActivation(); compareSpecific(1, 2, 1, batchSize, dim); }
BackpropWeightsScratchBias::BackpropWeightsScratchBias( OpenCLHelper *cl, LayerDimensions dim, ActivationFunction const *fn ) : BackpropWeights( cl, dim, fn ) { // [[[cog // import stringify // # stringify.write_kernel( "kernelSource", "ClConvolve.cl") // ]]] // [[[end]]] std::string options = dim.buildOptionsString(); options += " -D " + fn->getDefineName(); kernel = cl->buildKernel( "backpropweights.cl", "backprop_floats_withscratch_dobias", options ); // kernel = cl->buildKernelFromString( kernelSource, "calcErrorsForUpstream", options ); }
TEST(testbackward, compare_1_n_kgsgo_32c5) { int batchSize = 8; LayerDimensions dim; dim.setInputPlanes(32).setInputSize(19).setNumFilters(32).setFilterSize(5) .setPadZeros(true).setBiased(true); cout << dim.buildOptionsString() << endl; // ActivationFunction *fn = new ReluActivation(); compareSpecific(0, 1, 1, batchSize, dim); for(int i=2; i < Backward::getNumImplementations(); i++) { compareSpecific(1, i, 1, batchSize, dim); } }
void testPerf( int instance, int N, int batchSize, LayerDimensions dim ) { cout << dim.buildOptionsString() << endl; int inputsSize = batchSize * dim.inputCubeSize; int filtersSize = dim.filtersSize; int biasSize = dim.numFilters; int inputsAllocated = std::max( inputsSize, 10000 ); int filtersAllocated = std::max( filtersSize, 10000 ); int biasFiltersAllocated = std::max( biasSize, 10000 ); float *inputs = new float[ inputsAllocated ]; float *filters = new float[ filtersAllocated ]; float *biasFilters = new float[ biasFiltersAllocated ]; memset( inputs, 0, sizeof(float) * inputsAllocated ); memset( filters, 0, sizeof(float) * filtersAllocated ); memset( biasFilters, 0, sizeof(float) * biasFiltersAllocated ); WeightRandomizer::randomize( inputs, inputsAllocated, -0.1f, 0.1f ); WeightRandomizer::randomize( filters, filtersAllocated, -0.1f, 0.1f ); WeightRandomizer::randomize( biasFilters, biasFiltersAllocated, -0.1f, 0.1f ); EasyCL *cl = EasyCL::createForFirstGpuOtherwiseCpu(); Forward *p1 = Forward::instanceSpecific( instance, cl, dim ); for( int it = 0; it < (N + batchSize - 1 ) / batchSize; it++ ) { int thisBatchSize = it < N - 1 ? batchSize : N - batchSize * it; float *output1 = new float[p1->getOutputTotalSize(thisBatchSize)]; p1->forward( thisBatchSize, inputs, filters, biasFilters, output1 ); delete[] output1; } StatefulTimer::dump(true); delete p1; delete cl; delete[] inputs; delete[] filters; delete[] biasFilters; }
void testPerf( int instance, int N, int batchSize, LayerDimensions dim, ActivationFunction *fn ) { cout << dim.buildOptionsString() << endl; int inputsSize = batchSize * dim.inputCubeSize; int filtersSize = dim.filtersSize; int biasSize = dim.numFilters; int inputsAllocated = std::max( inputsSize, 10000 ); int filtersAllocated = std::max( filtersSize, 10000 ); int biasFiltersAllocated = std::max( biasSize, 10000 ); float *inputs = new float[ inputsAllocated ]; float *filters = new float[ filtersAllocated ]; float *biasFilters = new float[ biasFiltersAllocated ]; memset( inputs, 0, sizeof(float) * inputsAllocated ); memset( filters, 0, sizeof(float) * filtersAllocated ); memset( biasFilters, 0, sizeof(float) * biasFiltersAllocated ); WeightRandomizer::randomize( inputs, inputsAllocated, -0.1f, 0.1f ); WeightRandomizer::randomize( filters, filtersAllocated, -0.1f, 0.1f ); WeightRandomizer::randomize( biasFilters, biasFiltersAllocated, -0.1f, 0.1f ); OpenCLHelper *cl = OpenCLHelper::createForFirstGpuOtherwiseCpu(); Propagate *p1 = Propagate::instanceSpecific( instance, cl, dim, fn ); for( int it = 0; it < (N + batchSize - 1 ) / batchSize; it++ ) { int thisBatchSize = it < N - 1 ? batchSize : N - batchSize * it; float *results1 = p1->propagate( thisBatchSize, inputs, filters, biasFilters ); delete[] results1; } StatefulTimer::dump(true); delete p1; delete cl; delete[] inputs; delete[] filters; delete[] biasFilters; }
BackwardGpuNaive::BackwardGpuNaive( EasyCL *cl, LayerDimensions dim ) : Backward( cl, dim ) { std::string options = dim.buildOptionsString(); options += ""; // " -D " + upstreamFn->getDefineName(); // [[[cog // import stringify // stringify.write_kernel2( "kernel", "cl/backward.cl", "calcGradInput", 'options' ) // # stringify.write_kernel2( "broadcastMultiply", "cl/backproperrorsv2.cl", "broadcast_multiply", 'options' ) // # stringify.write_kernel2( "applyActivationDeriv", "cl/applyActivationDeriv.cl", "applyActivationDeriv", 'options' ) // # stringify.write_kernel( "kernelSource", "ClConvolve.cl") // ]]] // generated using cog, from cl/backward.cl: const char * kernelSource = "// Copyright Hugh Perkins 2014 hughperkins at gmail\n" "//\n" "// This Source Code Form is subject to the terms of the Mozilla Public License,\n" "// v. 2.0. If a copy of the MPL was not distributed with this file, You can\n" "// obtain one at http://mozilla.org/MPL/2.0/.\n" "\n" "// expected defines:\n" "// - none\n" "\n" "// globalid as: [n][upstreamPlane][upstreamrow][upstreamcol]\n" "// inputdata: [n][upstreamPlane][upstreamrow][upstreamcol] 128 * 32 * 19 * 19 * 4 = 6MB\n" "// gradOutput: [n][outPlane][outRow][outCol] 128 * 32 * 19 * 19 * 4 = 6MB\n" "// weights: [filterId][inputPlane][filterRow][filterCol] 32 * 32 * 5 * 5 * 4 = 409KB\n" "void kernel calcGradInput(\n" " const int batchSize,\n" " global const float *gradOutput, global float *weights, global float *gradInput ) {\n" " int globalId = get_global_id(0);\n" "\n" " const int upstreamImage2dId = globalId / gInputImageSizeSquared;\n" "\n" " const int intraImageOffset = globalId % gInputImageSizeSquared;\n" " const int upstreamRow = intraImageOffset / gInputImageSize;\n" " const int upstreamCol = intraImageOffset % gInputImageSize;\n" "\n" " const int upstreamPlane = upstreamImage2dId % gInputPlanes;\n" " const int n = upstreamImage2dId / gInputPlanes;\n" "\n" " if( n >= batchSize ) {\n" " return;\n" " }\n" "\n" " const int minFilterRow = max( 0, upstreamRow + gMargin - (gOutputImageSize - 1) );\n" " const int maxFilterRow = min( gFilterSize - 1, upstreamRow + gMargin );\n" " const int minFilterCol = max( 0, upstreamCol + gMargin - (gOutputImageSize -1) );\n" " const int maxFilterCol = min( gFilterSize - 1, upstreamCol + gMargin );\n" "\n" " float sumWeightTimesOutError = 0;\n" " // aggregate over [outPlane][outRow][outCol]\n" " for( int outPlane = 0; outPlane < gNumFilters; outPlane++ ) {\n" " for( int filterRow = minFilterRow; filterRow <= maxFilterRow; filterRow++ ) {\n" " int outRow = upstreamRow + gMargin - filterRow;\n" " for( int filterCol = minFilterCol; filterCol <= maxFilterCol; filterCol++ ) {\n" " int outCol = upstreamCol + gMargin - filterCol;\n" " int resultIndex = ( ( n * gNumFilters\n" " + outPlane ) * gOutputImageSize\n" " + outRow ) * gOutputImageSize\n" " + outCol;\n" " float thisError = gradOutput[resultIndex];\n" " int thisWeightIndex = ( ( outPlane * gInputPlanes\n" " + upstreamPlane ) * gFilterSize\n" " + filterRow ) * gFilterSize\n" " + filterCol;\n" " float thisWeight = weights[thisWeightIndex];\n" " float thisWeightTimesError = thisWeight * thisError;\n" " sumWeightTimesOutError += thisWeightTimesError;\n" " }\n" " }\n" " }\n" " gradInput[globalId] = sumWeightTimesOutError;\n" "}\n" "\n" ""; kernel = cl->buildKernelFromString( kernelSource, "calcGradInput", options, "cl/backward.cl" ); // [[[end]]] // kernel = cl->buildKernel( "backproperrorsv2.cl", "calcGradInput", options ); // kernel = cl->buildKernelFromString( kernelSource, "calcGradInput", options ); }
Forward1::Forward1( EasyCL *cl, LayerDimensions dim ) : Forward( cl, dim ) { addBias = new AddBias( cl ); std::string options = ""; options += dim.buildOptionsString(); // [[[cog // import stringify // stringify.write_kernel2( "kernel", "cl/forward1.cl", "convolve_imagecubes_float2", 'options' ) // ]]] // generated using cog, from cl/forward1.cl: const char * kernelSource = "// Copyright Hugh Perkins 2014, 2015 hughperkins at gmail\n" "//\n" "// This Source Code Form is subject to the terms of the Mozilla Public License,\n" "// v. 2.0. If a copy of the MPL was not distributed with this file, You can\n" "// obtain one at http://mozilla.org/MPL/2.0/.\n" "\n" "// notes on non-odd filtersizes:\n" "// for odd, imagesize and filtersize 3, padZeros = 0:\n" "// output is a single square\n" "// m and n should vary between -1,0,1\n" "// for even, imagesize and filtersize 2, padzeros = 0\n" "// output is a single square, which we can position at topleft or bottomrigth\n" "// lets position it in bottomright\n" "// then m and n should vary as -1,0\n" "//\n" "// for even, imagesize and filtersize 2, padzeros = 1\n" "// output is 2 by 2\n" "// well... if it is even:\n" "// - if we are not padding zeros, then we simply move our filter around the image somehow\n" "// - if we are padding zeros, then we conceptually pad the bottom and right edge of the image with zeros by 1\n" "// filtersize remains the same\n" "// m will vary as -1,0,1\n" "// outputrow is fixed by globalid\n" "// inputrow should be unchanged...\n" "// padzeros = 0:\n" "// x x . . . .\n" "// x x . . x x\n" "// . . . . x x\n" "// when filtersize even:\n" "// new imagesize = oldimagesize - filtersize + 1\n" "// when filtersize odd:\n" "// x x x .\n" "// x x x .\n" "// x x x .\n" "// . . . .\n" "// new imagesize = oldimagesize - filtersize + 1\n" "// padzeros = 1:\n" "// x x\n" "// x x . . x x . . . . . . .\n" "// . . . x x . . x x . . .\n" "// . . . . . . . x x . . x x\n" "// outrow=0 outrow=1 outrow=2 x x\n" "// outcol=0 outcol=1 outcol=2 outrow=3\n" "// outcol=3\n" "// when filtersize is even, and padzeros, imagesize grows by 1 each time...\n" "// imagesize = oldimagesize + 1\n" "// when filtersize is odd\n" "// x x x\n" "// x x x . x x x . . .\n" "// x x x . x x x . x x x\n" "// . . . x x x . x x x\n" "// x x x\n" "\n" "// images are organized like [imageId][plane][row][col]\n" "// filters are organized like [filterid][inplane][filterrow][filtercol]\n" "// output are organized like [imageid][filterid][row][col]\n" "// global id is organized like output, ie: [imageid][outplane][outrow][outcol]\n" "// - no local memory used currently\n" "// - each thread:\n" "// - loads a whole upstream cube\n" "// - loads a whole filter cube\n" "// - writes one output...\n" "void kernel convolve_imagecubes_float2(\n" " const int numExamples,\n" " global const float *inputs, global const float *filters,\n" " global float *output ) {\n" " int globalId = get_global_id(0);\n" "\n" " int outputImage2Id = globalId / gOutputImageSizeSquared;\n" " int exampleId = outputImage2Id / gNumFilters;\n" " int filterId = outputImage2Id % gNumFilters;\n" "\n" " // intraimage coords\n" " int localid = globalId % gOutputImageSizeSquared;\n" " int outputRow = localid / gOutputImageSize;\n" " int outputCol = localid % gOutputImageSize;\n" "\n" " global float const*inputCube = inputs + exampleId * gNumInputPlanes * gInputImageSizeSquared;\n" " global float const*filterCube = filters + filterId * gNumInputPlanes * gFilterSizeSquared;\n" "\n" " float sum = 0;\n" " if( exampleId < numExamples ) {\n" " for( int inputPlaneIdx = 0; inputPlaneIdx < gNumInputPlanes; inputPlaneIdx++ ) {\n" " global float const*inputPlane = inputCube + inputPlaneIdx * gInputImageSizeSquared;\n" " global float const*filterPlane = filterCube + inputPlaneIdx * gFilterSizeSquared;\n" " for( int u = -gHalfFilterSize; u <= gHalfFilterSize - gEven; u++ ) {\n" " // trying to reduce register pressure...\n" " #if gPadZeros == 1\n" " #define inputRowIdx ( outputRow + u )\n" " #else\n" " #define inputRowIdx ( outputRow + u + gHalfFilterSize )\n" " #endif\n" " global float const *inputRow = inputPlane + inputRowIdx * gInputImageSize;\n" " global float const *filterRow = filterPlane + (u+gHalfFilterSize) * gFilterSize + gHalfFilterSize;\n" " bool rowOk = inputRowIdx >= 0 && inputRowIdx < gInputImageSize;\n" " #pragma unroll\n" " for( int v = -gHalfFilterSize; v <= gHalfFilterSize - gEven; v++ ) {\n" " #if gPadZeros == 1\n" " #define inputColIdx ( outputCol + v )\n" " #else\n" " #define inputColIdx ( outputCol + v + gHalfFilterSize )\n" " #endif\n" " bool process = rowOk && inputColIdx >= 0 && inputColIdx < gInputImageSize;\n" " if( process ) {\n" " sum += inputRow[inputColIdx] * filterRow[v];\n" " }\n" " }\n" " }\n" " }\n" " }\n" "\n" " if( exampleId < numExamples ) {\n" " output[globalId] = sum;\n" " }\n" "}\n" "\n" ""; kernel = cl->buildKernelFromString( kernelSource, "convolve_imagecubes_float2", options, "cl/forward1.cl" ); // [[[end]]] }
BackpropWeightsScratchLarge::BackpropWeightsScratchLarge(EasyCL *cl, LayerDimensions dim) : BackpropWeights(cl, dim) { if(square(dim.filterSize) > cl->getMaxWorkgroupSize()) { throw runtime_error("cannot use BackpropWeightsScratchLarge, since filterSize * filterSize > maxworkgroupsize"); } // [[[cog // import stringify // # stringify.write_kernel("kernelSource", "ClConvolve.cl") // ]]] // [[[end]]] // cout << "dim: " << dim << endl; std::string options = dim.buildOptionsString(); int localMemoryRequirementsFullImage = dim.inputSize * dim.inputSize * 4 + dim.outputSize * dim.outputSize * 4; int availableLocal = cl->getLocalMemorySize(); // cout << "localmemoryrequirementsfullimage: " << localMemoryRequirementsFullImage << endl; // cout << "availablelocal: " << availableLocal << endl; // make the local memory used about one quarter of what is available? half of what is available? // let's try one quarter :-) int localWeCanUse = availableLocal / 4; numStripes = (localMemoryRequirementsFullImage + localWeCanUse - 1) / localWeCanUse; // cout << "numStripes: " << numStripes << endl; // make it a power of 2 numStripes = EasyCL::getNextPower2(numStripes); // cout << "numStripes: " << numStripes << endl; int inputStripeMarginRows = dim.filterSize - 1; int inputStripeInnerNumRows = dim.inputSize / numStripes; int inputStripeOuterNumRows = inputStripeInnerNumRows + 2 * inputStripeMarginRows; int inputStripeInnerSize = inputStripeInnerNumRows * dim.inputSize; inputStripeOuterSize = inputStripeOuterNumRows * dim.inputSize; int inputStripeMarginSize = inputStripeMarginRows * dim.inputSize; int outputStripeNumRows = (dim.outputSize + numStripes - 1) / numStripes; outputStripeSize = outputStripeNumRows * dim.outputSize; // [[[cog // import cog_optionswriter // cog_optionswriter.write_options(['numStripes','inputStripeMarginRows','inputStripeInnerNumRows', // 'inputStripeOuterNumRows', 'inputStripeInnerSize', 'inputStripeOuterSize', 'inputStripeMarginSize', // 'outputStripeNumRows', 'outputStripeSize' ]) // ]]] // generated, using cog: options += " -DgNumStripes=" + toString(numStripes); options += " -DgInputStripeMarginRows=" + toString(inputStripeMarginRows); options += " -DgInputStripeInnerNumRows=" + toString(inputStripeInnerNumRows); options += " -DgInputStripeOuterNumRows=" + toString(inputStripeOuterNumRows); options += " -DgInputStripeInnerSize=" + toString(inputStripeInnerSize); options += " -DgInputStripeOuterSize=" + toString(inputStripeOuterSize); options += " -DgInputStripeMarginSize=" + toString(inputStripeMarginSize); options += " -DgOutputStripeNumRows=" + toString(outputStripeNumRows); options += " -DgOutputStripeSize=" + toString(outputStripeSize); // [[[end]]] cout << "options: " << options << endl; // [[[cog // import stringify // stringify.write_kernel2("kernel", "cl/BackpropWeightsScratchLarge.cl", "backprop_floats_withscratch_dobias_striped", 'options') // ]]] // generated using cog, from cl/BackpropWeightsScratchLarge.cl: const char * kernelSource = "// Copyright Hugh Perkins 2014,2015 hughperkins at gmail\n" "//\n" "// This Source Code Form is subject to the terms of the Mozilla Public License,\n" "// v. 2.0. If a copy of the MPL was not distributed with this file, You can\n" "// obtain one at http://mozilla.org/MPL/2.0/.\n" "\n" "// expected defines:\n" "// BIASED (or not)\n" "\n" "// workgroupId: [outputPlane][inputPlane]\n" "// localId: [filterRow][filterCol]\n" "// per-thread iteration: [n][outputRow][outputCol]\n" "// local: errorimage: outputSize * outputSize\n" "// imageimage: inputSize * inputSize\n" "// specific characteristic: load one stripe of each image at a time,\n" "// so we dont run out of memory\n" "// number of stripes set in: gNumStripes\n" "// note that whilst we can stripe the gradOutput simply,\n" "// we actually need to add a half-filter widthed additional few rows\n" "// onto the images stripe, otherwise we will be missing data\n" "// we will call the size of the non-overlapping image stripes: gInputStripeInnerSize\n" "// the outersize, including the two margins is: gInputStripeOuterSize\n" "// of course, the first and last stripes will be missing a bit off the top/bottom, where the\n" "// corresponding outer margin would be\n" "void kernel backprop_floats_withscratch_dobias_striped(\n" " const float learningRateMultiplier, const int batchSize,\n" " global const float *gradOutput, global const float *images,\n" " global float *gradWeights,\n" " #ifdef BIASED\n" " global float *gradBiasWeights,\n" " #endif\n" " local float *_errorStripe, local float *_imageStripe\n" " ) {\n" " // gHalfFilterSize\n" " // gInputSize\n" " //\n" " // gInputStripeMarginRows => basically equal to gHalfFilterSize\n" " // gInputStripeInnerNumRows = gInputSize / gNumStripes\n" " // gInputStripeOuterNumRows = gInputStripeInnerNumRows + 2 * gHalfFilterSize (note: one row less than\n" " // if we just added gFilterSize)\n" " // gInputStripeInnerSize = gInputStripeInnerNumRows * gInputSize\n" " // gInputStripeOuterSize = gInputStripeOuterNumRows * gInputSize\n" " // gInputStripeMarginSize = gInputStripeMarginRows * gInputSize\n" " //\n" " // gOutputStripeNumRows\n" " // gOutputStripeSize\n" "\n" " const int globalId = get_global_id(0);\n" " const int localId = get_local_id(0);\n" " const int workgroupId = get_group_id(0);\n" " const int workgroupSize = get_local_size(0);\n" "\n" " const int filterRow = localId / gFilterSize;\n" " const int filterCol = localId % gFilterSize;\n" "\n" " const int outPlane = workgroupId / gInputPlanes;\n" " const int upstreamPlane = workgroupId % gInputPlanes;\n" "\n" " // gradWeights: [outPlane][upstreamPlane][filterRow][filterCol]\n" " // aggregate over: [outRow][outCol][n]\n" " float thiswchange = 0;\n" "#ifdef BIASED\n" " float thisbiaschange = 0;\n" "#endif\n" " const int numLoopsForImageStripe = (gInputStripeOuterSize + workgroupSize - 1) / workgroupSize;\n" " const int numLoopsForErrorStripe = (gOutputSizeSquared + workgroupSize - 1) / workgroupSize;\n" " for (int n = 0; n < batchSize; n++) {\n" " const int imageImageGlobalOffset = (n * gInputPlanes + upstreamPlane) * gInputSizeSquared;\n" " const int imageImageGlobalOffsetAfter = imageImageGlobalOffset + gInputSizeSquared;\n" " const int errorImageGlobalOffset = (n * gNumFilters + outPlane) * gOutputSizeSquared;\n" " const int errorImageGlobalOffsetAfter = errorImageGlobalOffset + gOutputSizeSquared;\n" " for (int stripe = 0; stripe < gNumStripes; stripe++) {\n" " const int imageStripeInnerOffset = imageImageGlobalOffset + stripe * gInputStripeInnerSize;\n" " const int imageStripeOuterOffset = imageStripeInnerOffset - gInputStripeMarginSize;\n" " // need to fetch the image, but it's bigger than us, so will need to loop...\n" " barrier(CLK_LOCAL_MEM_FENCE);\n" " for (int i = 0; i < numLoopsForImageStripe; i++) {\n" " int thisOffset = i * workgroupSize + localId;\n" " int thisGlobalImagesOffset = imageStripeOuterOffset + thisOffset;\n" " bool process = thisOffset < gInputStripeOuterSize\n" " && thisGlobalImagesOffset >= imageImageGlobalOffset\n" " && thisGlobalImagesOffset < imageImageGlobalOffsetAfter;\n" " if (process) {\n" " _imageStripe[thisOffset] = images[ thisGlobalImagesOffset ];\n" " }\n" " }\n" " int errorStripeOffset = errorImageGlobalOffset + stripe * gOutputStripeSize;\n" " for (int i = 0; i < numLoopsForErrorStripe; i++) {\n" " int thisOffset = i * workgroupSize + localId;\n" " int globalErrorsOffset = errorStripeOffset + thisOffset;\n" " bool process = thisOffset < gOutputStripeSize\n" " && globalErrorsOffset < errorImageGlobalOffsetAfter;\n" " if (process) {\n" " _errorStripe[thisOffset ] = gradOutput[globalErrorsOffset];\n" " }\n" " }\n" " const int stripeOutRowStart = stripe * gOutputStripeNumRows;\n" " const int stripeOutRowEndExcl = stripeOutRowStart + gOutputStripeNumRows;\n" " barrier(CLK_LOCAL_MEM_FENCE);\n" "// if (localId == 13) {\n" "// for (int i = 0; i < 12; i++) {\n" "// gradWeights[100 + stripe * 12 + i ] = _errorStripe[i * gOutputSize];\n" "// }\n" "// for (int i = 0; i < 20; i++) {\n" "// gradWeights[200 + stripe * 20 + i ] = _imageStripe[i * gInputSize];\n" "// }\n" "// }\n" " if (localId < gFilterSizeSquared) {\n" " for (int outRow = stripeOutRowStart; outRow < stripeOutRowEndExcl; outRow++) {\n" " int upstreamRow = outRow - gMargin + filterRow;\n" " for (int outCol = 0; outCol < gOutputSize; outCol++) {\n" " int upstreamCol = outCol - gMargin + filterCol;\n" " bool proceed =\n" " upstreamRow >= 0 && upstreamCol >= 0\n" " && upstreamRow < gInputSize && upstreamCol < gInputSize\n" " && outRow < gOutputSize;\n" " if (proceed) {\n" " int resultIndex = outRow * gOutputSize + outCol;\n" " float error = _errorStripe[resultIndex - stripe * gOutputStripeSize];\n" " int upstreamDataIndex = upstreamRow * gInputSize + upstreamCol;\n" " float upstreamResult = _imageStripe[upstreamDataIndex + gInputStripeMarginSize\n" " - stripe * gInputStripeInnerSize ];\n" " thiswchange += upstreamResult * error;\n" " #ifdef BIASED\n" " thisbiaschange += error;\n" " #endif\n" " }\n" " }\n" " }\n" " }\n" " }\n" " }\n" " if (localId < gFilterSizeSquared) {\n" " gradWeights[ workgroupId * gFilterSizeSquared + localId ] = learningRateMultiplier * thiswchange;\n" "// weightChanges[ workgroupId * gFilterSizeSquared + localId ] = workgroupId;\n" " }\n" "#ifdef BIASED\n" " bool writeBias = upstreamPlane == 0 && filterRow == gMargin && filterCol == gMargin;\n" " if (writeBias) {\n" " gradBiasWeights[outPlane] = learningRateMultiplier * thisbiaschange;\n" " }\n" "#endif\n" " // gradWeights: [outPlane][upstreamPlane][filterRow][filterCol]\n" " // aggregate over: [outRow][outCol][n]\n" "}\n" "\n" ""; kernel = cl->buildKernelFromString(kernelSource, "backprop_floats_withscratch_dobias_striped", options, "cl/BackpropWeightsScratchLarge.cl"); // [[[end]]] }
BackpropWeightsNaive::BackpropWeightsNaive(EasyCL *cl, LayerDimensions dim) : BackpropWeights(cl, dim) { std::string options = dim.buildOptionsString(); // [[[cog // import stringify // stringify.write_kernel2("kernel", "cl/backpropweights.cl", "backprop_floats", 'options') // ]]] // generated using cog, from cl/backpropweights.cl: const char * kernelSource = "// Copyright Hugh Perkins 2014,2015 hughperkins at gmail\n" "//\n" "// This Source Code Form is subject to the terms of the Mozilla Public License,\n" "// v. 2.0. If a copy of the MPL was not distributed with this file, You can\n" "// obtain one at http://mozilla.org/MPL/2.0/.\n" "\n" "// expected defines:\n" "// BIASED (or not)\n" "\n" "// globalId: [outPlane][inputPlane][filterRow][filterCol]\n" "// per-thread iteration: [n][outputRow][outputCol]\n" "void kernel backprop_floats(const float learningRateMultiplier,\n" " const int batchSize,\n" " global const float *gradOutput, global const float *images,\n" " global float *gradWeights\n" " #ifdef BIASED\n" " , global float *gradBiasWeights\n" " #endif\n" " ) {\n" " int globalId = get_global_id(0);\n" " if (globalId >= gNumFilters * gInputPlanes * gFilterSize * gFilterSize) {\n" " return;\n" " }\n" "\n" " int IntraFilterOffset = globalId % gFilterSizeSquared;\n" " int filterRow = IntraFilterOffset / gFilterSize;\n" " int filterCol = IntraFilterOffset % gFilterSize;\n" "\n" " int filter2Id = globalId / gFilterSizeSquared;\n" " int outPlane = filter2Id / gInputPlanes;\n" " int upstreamPlane = filter2Id % gInputPlanes;\n" "\n" " float thiswchange = 0;\n" " // gradWeights: [outPlane][upstreamPlane][filterRow][filterCol]\n" " // aggregate over: [outRow][outCol][n]\n" "#ifdef BIASED\n" " float thisbiaschange = 0;\n" "#endif\n" " for (int n = 0; n < batchSize; n++) {\n" " for (int outRow = 0; outRow < gOutputSize; outRow++) {\n" " int upstreamRow = outRow - gMargin + filterRow;\n" " for (int outCol = 0; outCol < gOutputSize; outCol++) {\n" " int upstreamCol = outCol - gMargin + filterCol;\n" " bool proceed = upstreamRow >= 0 && upstreamCol >= 0 && upstreamRow < gInputSize\n" " && upstreamCol < gInputSize;\n" " if (proceed) {\n" " int resultIndex = (( n * gNumFilters\n" " + outPlane) * gOutputSize\n" " + outRow) * gOutputSize\n" " + outCol;\n" " float error = gradOutput[resultIndex];\n" " int upstreamDataIndex = (( n * gInputPlanes\n" " + upstreamPlane) * gInputSize\n" " + upstreamRow) * gInputSize\n" " + upstreamCol;\n" " float upstreamResult = images[upstreamDataIndex];\n" " float thisimagethiswchange = upstreamResult * error;\n" " thiswchange += thisimagethiswchange;\n" " #ifdef BIASED\n" " thisbiaschange += error;\n" " #endif\n" " }\n" " }\n" " }\n" " }\n" " // gradWeights: [outPlane][upstreamPlane][filterRow][filterCol]\n" " // aggregate over: [outRow][outCol][n]\n" " gradWeights[ globalId ] = learningRateMultiplier * thiswchange;\n" "#ifdef BIASED\n" " bool writeBias = upstreamPlane == 0 && filterRow == gMargin && filterCol == gMargin;\n" " if (writeBias) {\n" " gradBiasWeights[outPlane] = learningRateMultiplier * thisbiaschange;\n" " }\n" "#endif\n" "}\n" "\n" "\n" "\n" ""; kernel = cl->buildKernelFromString(kernelSource, "backprop_floats", options, "cl/backpropweights.cl"); // [[[end]]] }
ForwardFc_workgroupPerFilterPlane::ForwardFc_workgroupPerFilterPlane( EasyCL *cl, LayerDimensions dim ) : Forward( cl, dim ) { std::string options = ""; // "-D " + fn->getDefineName(); options += dim.buildOptionsString(); // [[[cog // import stringify // stringify.write_kernel2( "kernel1", "cl/forward_fc_wgperrow.cl", "forward_fc_workgroup_perrow", 'options' ) // stringify.write_kernel2( "kernel2", "cl/forward_fc.cl", "reduce_rows", 'options' ) // ]]] // generated using cog, from cl/forward_fc_wgperrow.cl: const char * kernel1Source = "// Copyright Hugh Perkins 2014, 2015 hughperkins at gmail\n" "//\n" "// This Source Code Form is subject to the terms of the Mozilla Public License,\n" "// v. 2.0. If a copy of the MPL was not distributed with this file, You can\n" "// obtain one at http://mozilla.org/MPL/2.0/.\n" "\n" "void copyLocal( local float *restrict target, global float const *restrict source, int N ) {\n" " int numLoops = ( N + get_local_size(0) - 1 ) / get_local_size(0);\n" " for( int loop = 0; loop < numLoops; loop++ ) {\n" " int offset = loop * get_local_size(0) + get_local_id(0);\n" " if( offset < N ) {\n" " target[offset] = source[offset];\n" " }\n" " }\n" "}\n" "\n" "// concept:\n" "// we want to share each input example across multiple filters\n" "// but an entire filter plane is 19*19*4 = 1.4KB\n" "// so eg 500 filter planes is 500* 1.4KB = 700KB, much larger than local storage\n" "// of ~43KB\n" "// - we could take eg 16 filters at a time, store one filter plane from each in local storage,\n" "// and then bring down one example plane at a time, into local storage, during iteration over n\n" "// - here though, we are going to store one row from one plane from each filter,\n" "// and process against one row, from same plane, from each example\n" "// so each workgroup will have one thread per filterId, eg 351 threads\n" "// each thread will add up over its assigned row\n" "// then, later we need to reduce over the rows\n" "// ... and also over the input planes?\n" "//\n" "// workgroupid [inputplane][filterrow]\n" "// localid: [filterId]\n" "// each thread iterates over: [n][filtercol]\n" "// each thread is assigned to: one row, of one filter\n" "// workgroup is assigned to: same row, from each input plane\n" "// local memory: one row from each output, = 128 * 19 * 4 = 9.8KB\n" "// 1 * input row = \"0.076KB\"\n" "// output1 structured as: [n][inputplane][filter][row], need to reduce again after\n" "// this kernel assumes:\n" "// padzeros == 0 (mandatory)\n" "// filtersize == inputimagesize (mandatory)\n" "// inputimagesize == 19\n" "// filtersize == 19\n" "// outputImageSize == 1\n" "// lots of outplanes/filters, hundreds, but less than max work groupsize, eg 350, 500, 361\n" "// lots of inplanes, eg 32-128\n" "// inputimagesize around 19, not too small\n" "#if (gFilterSize == gInputImageSize) && (gPadZeros == 0)\n" "void kernel forward_fc_workgroup_perrow( const int batchSize,\n" " global const float *images, global const float *filters,\n" " global float *output1,\n" " local float *_imageRow, local float *_filterRows ) {\n" " const int globalId = get_global_id(0);\n" "\n" " const int workgroupId = get_group_id(0);\n" " const int workgroupSize = get_local_size(0);\n" " const int localId = get_local_id(0);\n" "\n" " const int inputPlaneId = workgroupId / gFilterSize;\n" " const int filterRowId = workgroupId % gFilterSize;\n" "\n" " const int filterId = localId;\n" "\n" " // first copy down filter row, which is per-thread, so we have to copy it all ourselves...\n" " global const float *filterRow = filters\n" " + filterId * gNumInputPlanes * gFilterSizeSquared\n" " + inputPlaneId * gFilterSizeSquared\n" " + filterRowId * gFilterSize;\n" " local float *_threadFilterRow = _filterRows + localId * gFilterSize;\n" " for( int i = 0; i < gFilterSize; i++ ) {\n" " _threadFilterRow[i] = filterRow[i];\n" " }\n" " const int loopsPerExample = ( gInputImageSize + workgroupSize - 1 ) / workgroupSize;\n" " // now loop over examples...\n" " for( int n = 0; n < batchSize; n++ ) {\n" " // copy down example row, which is global to all threads in workgroup\n" " // hopefully should be enough threads....\n" " // but we should check anyway really, since depends on number of filters configured,\n" " // not on relative size of filter and input image\n" " barrier(CLK_LOCAL_MEM_FENCE);\n" " copyLocal( _imageRow, images\n" " + ( ( n\n" " * gNumInputPlanes + inputPlaneId )\n" " * gInputImageSize + filterRowId )\n" " * gInputImageSize,\n" " gInputImageSize );\n" " barrier(CLK_LOCAL_MEM_FENCE);\n" " // add up the values in our row...\n" " float sum = 0;\n" " for( int filterCol = 0; filterCol < gFilterSize; filterCol++ ) {\n" " sum += _imageRow[ filterCol ] * _threadFilterRow[ filterCol ];\n" " }\n" " // note: dont activate yet, since need to reduce again\n" " // output structured as: [n][filter][inputplane][filterrow], need to reduce again after\n" " if( localId < gNumFilters ) {\n" " output1[ n * gNumInputPlanes * gNumFilters * gFilterSize\n" " + inputPlaneId * gFilterSize\n" " + filterId * gNumInputPlanes * gFilterSize + filterRowId ] = sum;\n" " }\n" " }\n" "}\n" "#endif\n" "\n" ""; kernel1 = cl->buildKernelFromString( kernel1Source, "forward_fc_workgroup_perrow", options, "cl/forward_fc_wgperrow.cl" ); // generated using cog, from cl/forward_fc.cl: const char * kernel2Source = "// Copyright Hugh Perkins 2014, 2015 hughperkins at gmail\n" "//\n" "// This Source Code Form is subject to the terms of the Mozilla Public License,\n" "// v. 2.0. If a copy of the MPL was not distributed with this file, You can\n" "// obtain one at http://mozilla.org/MPL/2.0/.\n" "\n" "// expected defines:\n" "// one of: [ TANH | RELU | LINEAR ]\n" "// BIASED (or not)\n" "\n" "#ifdef TANH\n" " #define ACTIVATION_FUNCTION(output) (tanh(output))\n" "#elif defined SCALEDTANH\n" " #define ACTIVATION_FUNCTION(output) ( 1.7159f * tanh( 0.66667f * output))\n" "#elif SIGMOID\n" " #define ACTIVATION_FUNCTION(output) (1.0f / (1 + exp(-output)))\n" "#elif defined RELU\n" " #define ACTIVATION_FUNCTION(output) (output> 0 ? output : 0)\n" "#elif defined LINEAR\n" " #define ACTIVATION_FUNCTION(output) (output)\n" "#endif\n" "\n" "\n" "// each thread handles one filter, ie globalId as [n][inputplane][filterId]\n" "// output1: [n][inputplane][filter][filterrow]\n" "// output2: [n][inputplane][filter]\n" "#ifdef ACTIVATION_FUNCTION // protect against not defined\n" "kernel void reduce_rows( const int batchSize, global float const *output1, global float*output2 ) {\n" " const int globalId = get_global_id(0);\n" " const int n = globalId / gNumInputPlanes / gNumFilters;\n" " if( n >= batchSize ) {\n" " return;\n" " }\n" " const int filterId = globalId % gNumFilters;\n" " float sum = 0;\n" " global const float *output1Col = output1 + globalId * gFilterSize;\n" " for( int filterRow = 0; filterRow < gFilterSize; filterRow++ ) {\n" " sum += output1Col[filterRow];\n" " }\n" " output2[globalId] = sum;\n" "}\n" "#endif\n" "\n" "// each thread handles one filter, ie globalId as [n][filterId]\n" "// output2: [n][inputplane][filter]\n" "// output: [n][filter]\n" "#ifdef ACTIVATION_FUNCTION // protect against not defined\n" "kernel void reduce_inputplanes( const int batchSize, global float const *output2, global float*output ) {\n" " const int globalId = get_global_id(0);\n" " const int n = globalId / gNumFilters;\n" " if( n >= batchSize ) {\n" " return;\n" " }\n" " const int filterId = globalId % gNumFilters;\n" " float sum = 0;\n" " global const float *output2Col = output2 + globalId * gNumInputPlanes;\n" " for( int inputPlane = 0; inputPlane < gNumInputPlanes; inputPlane++ ) {\n" " sum += output2Col[inputPlane];\n" " }\n" " // activate...\n" " output[globalId] = ACTIVATION_FUNCTION(sum);\n" "}\n" "#endif\n" "\n" "#ifdef gOutImageSize // for previous tests that dont define it\n" "#ifdef ACTIVATION_FUNCTION // protect against not defined\n" "// workgroupid [n][outputplane]\n" "// localid: [filterrow][filtercol]\n" "// each thread iterates over: [inplane]\n" "// this kernel assumes:\n" "// padzeros == 0 (mandatory)\n" "// filtersize == inputimagesize (mandatory)\n" "// outputImageSize == 1\n" "// lots of outplanes, hundreds, but less than max work groupsize, eg 350, 500, 361\n" "// lots of inplanes, eg 32\n" "// inputimagesize around 19, not too small\n" "#if gFilterSize == gInputImageSize && gPadZeros == 0\n" "void kernel forward_filter_matches_inimage( const int batchSize,\n" " global const float *images, global const float *filters,\n" " #ifdef BIASED\n" " global const float*biases,\n" " #endif\n" " global float *output,\n" " local float *_upstreamImage, local float *_filterImage ) {\n" " const int globalId = get_global_id(0);\n" "\n" " const int workgroupId = get_group_id(0);\n" " const int workgroupSize = get_local_size(0);\n" " const int n = workgroupId / gNumOutPlanes;\n" " const int outPlane = workgroupId % gNumOutPlanes;\n" "\n" " const int localId = get_local_id(0);\n" " const int filterRow = localId / gFilterSize;\n" " const int filterCol = localId % gFilterSize;\n" "\n" " float sum = 0;\n" " for( int upstreamPlane = 0; upstreamPlane < gUpstreamNumPlanes; upstreamPlane++ ) {\n" " int thisUpstreamImageOffset = ( n * gUpstreamNumPlanes + upstreamPlane ) * gUpstreamImageSizeSquared;\n" " barrier(CLK_LOCAL_MEM_FENCE);\n" " for( int i = 0; i < numUpstreamsPerThread; i++ ) {\n" " int thisOffset = workgroupSize * i + localId;\n" " if( thisOffset < gUpstreamImageSizeSquared ) {\n" " _upstreamImage[ thisOffset ] = images[ thisUpstreamImageOffset + thisOffset ];\n" " }\n" " }\n" " const int filterGlobalOffset = ( outPlane * gUpstreamNumPlanes + upstreamPlane ) * gFilterSizeSquared;\n" " for( int i = 0; i < numFilterPixelsPerThread; i++ ) {\n" " int thisOffset = workgroupSize * i + localId;\n" " if( thisOffset < gFilterSizeSquared ) {\n" " _filterCube[thisOffset] = filters[filterGlobalOffset + thisOffset];\n" " }\n" " }\n" " barrier(CLK_LOCAL_MEM_FENCE);\n" " if( localId < gOutImageSizeSquared ) {\n" " for( int u = minu; u <= maxu; u++ ) {\n" " int inputRow = outputRow + u + ( gPadZeros ? 0 : gHalfFilterSize );\n" " int inputimagerowoffset = inputRow * gUpstreamImageSize;\n" " int filterrowoffset = (u+gHalfFilterSize) * gFilterSize + gHalfFilterSize;\n" " for( int v = minv; v <= maxv; v++ ) {\n" " int inputCol = outputCol + v + ( gPadZeros ? 0 : gHalfFilterSize );\n" " sum += _upstreamImage[ inputimagerowoffset + inputCol] * _filterCube[ filterrowoffset + v ];\n" " }\n" " }\n" " }\n" " }\n" " #ifdef BIASED\n" " sum += biases[outPlane];\n" " #endif\n" " // output are organized like [imageid][filterid][row][col]\n" " int resultIndex = ( n * gNumOutPlanes + outPlane ) * gOutImageSizeSquared + localId;\n" " if( localId < gOutImageSizeSquared ) {\n" " output[resultIndex ] = ACTIVATION_FUNCTION(sum);\n" "// output[resultIndex ] = 123;\n" " }\n" "}\n" "#endif\n" "#endif\n" "#endif\n" "\n" "\n" ""; kernel2 = cl->buildKernelFromString( kernel2Source, "reduce_rows", options, "cl/forward_fc.cl" ); // [[[end]]] }
BackwardGpuCached::BackwardGpuCached(EasyCL *cl, LayerDimensions dim) : Backward(cl, dim) { if(square(dim.inputSize) > cl->getMaxWorkgroupSize()) { throw runtime_error("cannot use BackwardGpuCached, since inputSize * inputSize > maxworkgroupsize"); } std::string options = dim.buildOptionsString(); options += ""; // " -D " + upstreamFn->getDefineName(); // [[[cog // import stringify // stringify.write_kernel2("kernel", "cl/backward_cached.cl", "calcGradInputCached", 'options') // # stringify.write_kernel2("broadcastMultiply", "cl/backproperrorsv2.cl", "broadcast_multiply", 'options') // # stringify.write_kernel2("applyActivationDeriv", "cl/applyActivationDeriv.cl", "applyActivationDeriv", 'options') // # stringify.write_kernel("kernelSource", "ClConvolve.cl") // ]]] // generated using cog, from cl/backward_cached.cl: const char * kernelSource = "// Copyright Hugh Perkins 2014, 2015 hughperkins at gmail\n" "//\n" "// This Source Code Form is subject to the terms of the Mozilla Public License,\n" "// v. 2.0. If a copy of the MPL was not distributed with this file, You can\n" "// obtain one at http://mozilla.org/MPL/2.0/.\n" "\n" "void copyLocal(local float *target, global float const *source, int N) {\n" " int numLoops = (N + get_local_size(0) - 1) / get_local_size(0);\n" " for (int loop = 0; loop < numLoops; loop++) {\n" " int offset = loop * get_local_size(0) + get_local_id(0);\n" " if (offset < N) {\n" " target[offset] = source[offset];\n" " }\n" " }\n" "}\n" "\n" "// as calcGradInput, but with local cache\n" "// convolve weights with gradOutput to produce gradInput\n" "// workgroupid: [n][inputPlane]\n" "// localid: [upstreamrow][upstreamcol]\n" "// per-thread aggregation: [outPlane][filterRow][filterCol]\n" "// need to store locally:\n" "// - _gradOutputPlane. size = outputSizeSquared\n" "// - _filterPlane. size = filtersizesquared\n" "// note: currently doesnt use bias as input. thats probably an error?\n" "// inputs: gradOutput :convolve: filters => gradInput\n" "//\n" "// global:\n" "// gradOutput: [n][outPlane][outRow][outCol] 128 * 32 * 19 * 19 * 4\n" "// weights: [filterId][upstreamplane][filterRow][filterCol] 32 * 32 * 5 * 5 * 4\n" "// per workgroup:\n" "// gradOutput: [outPlane][outRow][outCol] 32 * 19 * 19 * 4 = 46KB\n" "// weights: [filterId][filterRow][filterCol] 32 * 5 * 5 * 4 = 3.2KB\n" "// gradOutputforupstream: [n][upstreamPlane][upstreamRow][upstreamCol]\n" "void kernel calcGradInputCached(\n" " const int batchSize,\n" " global const float *gradOutputGlobal,\n" " global const float *filtersGlobal,\n" " global float *gradInput,\n" " local float *_gradOutputPlane,\n" " local float *_filterPlane) {\n" "\n" " #define globalId get_global_id(0)\n" " #define localId get_local_id(0)\n" " #define workgroupId get_group_id(0)\n" " #define workgroupSize get_local_size(0)\n" "\n" " const int n = workgroupId / gInputPlanes;\n" " const int upstreamPlane = workgroupId % gInputPlanes;\n" "\n" " const int upstreamRow = localId / gInputSize;\n" " const int upstreamCol = localId % gInputSize;\n" "\n" " float sumWeightTimesOutError = 0;\n" " for (int outPlane = 0; outPlane < gNumFilters; outPlane++) {\n" " barrier(CLK_LOCAL_MEM_FENCE);\n" " copyLocal(_filterPlane, filtersGlobal + (outPlane * gInputPlanes + upstreamPlane) * gFilterSizeSquared, gFilterSizeSquared);\n" " copyLocal(_gradOutputPlane, gradOutputGlobal + (n * gNumFilters + outPlane) * gOutputSizeSquared, gOutputSizeSquared);\n" " barrier(CLK_LOCAL_MEM_FENCE);\n" " for (int filterRow = 0; filterRow < gFilterSize; filterRow++) {\n" " int outRow = upstreamRow + gMargin - filterRow;\n" " for (int filterCol = 0; filterCol < gFilterSize; filterCol++) {\n" " int outCol = upstreamCol + gMargin - filterCol;\n" " if (outCol >= 0 && outCol < gOutputSize && outRow >= 0 && outRow < gOutputSize) {\n" " float thisWeightTimesError =\n" " _gradOutputPlane[outRow * gOutputSize + outCol] *\n" " _filterPlane[filterRow * gFilterSize + filterCol];\n" " sumWeightTimesOutError += thisWeightTimesError;\n" " }\n" " }\n" " }\n" " }\n" " const int upstreamImageGlobalOffset = (n * gInputPlanes + upstreamPlane) * gInputSizeSquared;\n" " if (localId < gInputSizeSquared) {\n" " gradInput[upstreamImageGlobalOffset + localId] = sumWeightTimesOutError;\n" " }\n" "}\n" "\n" ""; kernel = cl->buildKernelFromString(kernelSource, "calcGradInputCached", options, "cl/backward_cached.cl"); // [[[end]]] // kernel = cl->buildKernel("backproperrorsv2.cl", "calcGradInput", options); // kernel = cl->buildKernelFromString(kernelSource, "calcGradInput", options); }
Forward3::Forward3( EasyCL *cl, LayerDimensions dim ) : Forward( cl, dim ) { addBias = new AddBias( cl ); if( square( dim.outputImageSize ) > cl->getMaxWorkgroupSize() ) { throw runtime_error("cannot use forward3, since outputimagesize * outputimagesize > maxworkgroupsize"); } std::string options = ""; // "-D " + fn->getDefineName(); options += dim.buildOptionsString(); // [[[cog // import stringify // stringify.write_kernel2( "kernel", "cl/forward3.cl", "forward_3_by_n_outplane", 'options' ) // # stringify.write_kernel2( "repeatedAdd", "cl/per_element_add.cl", "repeated_add", 'options' ) // ]]] // generated using cog, from cl/forward3.cl: const char * kernelSource = "// Copyright Hugh Perkins 2014, 2015 hughperkins at gmail\n" "//\n" "// This Source Code Form is subject to the terms of the Mozilla Public License,\n" "// v. 2.0. If a copy of the MPL was not distributed with this file, You can\n" "// obtain one at http://mozilla.org/MPL/2.0/.\n" "\n" "// concept: each workgroup handles convolving one input example with one filtercube\n" "// and writing out one single output plane\n" "//\n" "// workgroup id organized like: [imageid][outplane]\n" "// local id organized like: [outrow][outcol]\n" "// each thread iterates over: [upstreamplane][filterrow][filtercol]\n" "// number workgroups = 32\n" "// one filter plane takes up 5 * 5 * 4 = 100 bytes\n" "// one filter cube (corresponding to one outplane) = 5*5 * 32 * 4 = 3.2KB (ok)\n" "// all filter cubes = 3.2KB * 32 = 102KB (too big)\n" "// output are organized like [imageid][filterid][row][col]\n" "void kernel forward_3_by_n_outplane( const int batchSize,\n" " global const float *images, global const float *filters,\n" " global float *output,\n" " local float *_upstreamImage, local float *_filterCube ) {\n" " const int globalId = get_global_id(0);\n" "\n" " const int workgroupId = get_group_id(0);\n" " const int workgroupSize = get_local_size(0);\n" " const int n = workgroupId / gNumFilters;\n" " const int outPlane = workgroupId % gNumFilters;\n" "\n" " const int localId = get_local_id(0);\n" " const int outputRow = localId / gOutputImageSize;\n" " const int outputCol = localId % gOutputImageSize;\n" "\n" " const int minu = gPadZeros ? max( -gHalfFilterSize, -outputRow ) : -gHalfFilterSize;\n" " const int maxu = gPadZeros ? min( gHalfFilterSize - gEven, gOutputImageSize - 1 - outputRow - gEven) : gHalfFilterSize - gEven;\n" " const int minv = gPadZeros ? max( -gHalfFilterSize, -outputCol ) : - gHalfFilterSize;\n" " const int maxv = gPadZeros ? min( gHalfFilterSize - gEven, gOutputImageSize - 1 - outputCol - gEven) : gHalfFilterSize - gEven;\n" "\n" " const int numUpstreamsPerThread = ( gInputImageSizeSquared + workgroupSize - 1 ) / workgroupSize;\n" "\n" " const int filterCubeLength = gInputPlanes * gFilterSizeSquared;\n" " const int filterCubeGlobalOffset = outPlane * filterCubeLength;\n" " const int numPixelsPerThread = ( filterCubeLength + workgroupSize - 1 ) / workgroupSize;\n" " for( int i = 0; i < numPixelsPerThread; i++ ) {\n" " int thisOffset = localId + i * workgroupSize;\n" " if( thisOffset < filterCubeLength ) {\n" " _filterCube[thisOffset] = filters[filterCubeGlobalOffset + thisOffset];\n" " }\n" " }\n" " // dont need a barrier, since we'll just run behind the barrier from the upstream image download\n" "\n" " float sum = 0;\n" " for( int upstreamPlane = 0; upstreamPlane < gInputPlanes; upstreamPlane++ ) {\n" " int thisUpstreamImageOffset = ( n * gInputPlanes + upstreamPlane ) * gInputImageSizeSquared;\n" " barrier(CLK_LOCAL_MEM_FENCE);\n" " for( int i = 0; i < numUpstreamsPerThread; i++ ) {\n" " int thisOffset = workgroupSize * i + localId;\n" " if( thisOffset < gInputImageSizeSquared ) {\n" " _upstreamImage[ thisOffset ] = images[ thisUpstreamImageOffset + thisOffset ];\n" " }\n" " }\n" " barrier(CLK_LOCAL_MEM_FENCE);\n" " int filterImageOffset = upstreamPlane * gFilterSizeSquared;\n" " for( int u = minu; u <= maxu; u++ ) {\n" " int inputRow = outputRow + u;\n" " #if gPadZeros == 0\n" " inputRow += gHalfFilterSize;\n" " #endif\n" " int inputimagerowoffset = inputRow * gInputImageSize;\n" " int filterrowoffset = filterImageOffset + (u+gHalfFilterSize) * gFilterSize + gHalfFilterSize;\n" " for( int v = minv; v <= maxv; v++ ) {\n" " int inputCol = outputCol + v;\n" " #if gPadZeros == 0\n" " inputCol += gHalfFilterSize;\n" " #endif\n" " if( localId < gOutputImageSizeSquared ) {\n" " sum += _upstreamImage[ inputimagerowoffset + inputCol] * _filterCube[ filterrowoffset + v ];\n" " }\n" " }\n" " }\n" " }\n" "\n" " // output are organized like [imageid][filterid][row][col]\n" " int resultIndex = ( n * gNumFilters + outPlane ) * gOutputImageSizeSquared + localId;\n" " if( localId < gOutputImageSizeSquared ) {\n" " output[resultIndex ] = sum;\n" " }\n" "}\n" "\n" ""; kernel = cl->buildKernelFromString( kernelSource, "forward_3_by_n_outplane", options, "cl/forward3.cl" ); // [[[end]]] }