コード例 #1
0
ファイル: test_hdf5data_layer.cpp プロジェクト: BVLC/caffe
TYPED_TEST(HDF5DataLayerTest, TestSkip) {
  typedef typename TypeParam::Dtype Dtype;
  LayerParameter param;
  param.add_top("data");
  param.add_top("label");

  HDF5DataParameter* hdf5_data_param = param.mutable_hdf5_data_param();
  int batch_size = 5;
  hdf5_data_param->set_batch_size(batch_size);
  hdf5_data_param->set_source(*(this->filename));

  Caffe::set_solver_count(8);
  for (int dev = 0; dev < Caffe::solver_count(); ++dev) {
    Caffe::set_solver_rank(dev);

    HDF5DataLayer<Dtype> layer(param);
    layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_);
    int label = dev;
    for (int iter = 0; iter < 1; ++iter) {
      layer.Forward(this->blob_bottom_vec_, this->blob_top_vec_);
      for (int i = 0; i < batch_size; ++i) {
        EXPECT_EQ(1 + label, this->blob_top_label_->cpu_data()[i]);
        label = (label + Caffe::solver_count()) % (batch_size * 2);
      }
    }
  }
  Caffe::set_solver_count(1);
  Caffe::set_solver_rank(0);
}
コード例 #2
0
TYPED_TEST(HDF5DataLayerTest, TestSkip) {
  typedef typename TypeParam::Dtype Dtype;
  LayerParameter param;
  param.set_type("HDF5Data");
  param.add_top("data");
  param.add_top("label");

  if (std::is_same<Dtype, half_fp>::value) {
    param.set_bottom_data_type(CAFFE_FLOAT);
    param.set_compute_data_type(CAFFE_FLOAT);
    param.set_top_data_type(proto_data_type<Dtype>());
  }

  HDF5DataParameter* hdf5_data_param = param.mutable_hdf5_data_param();
  int batch_size = 5;
  hdf5_data_param->set_batch_size(batch_size);
  hdf5_data_param->set_source(*(this->filename));
  int_tp num_cols = 8;
  int_tp height = 6;
  int_tp width = 5;

  Caffe::set_solver_count(8);
  for (int dev = 0; dev < Caffe::solver_count(); ++dev) {
    Caffe::set_solver_rank(dev);

    shared_ptr<LayerBase> layer = CreateLayer(param);
    layer->SetUp(this->blob_bottom_base_vec_, this->blob_top_base_vec_);
    EXPECT_EQ(this->blob_top_data_->num(), batch_size);
    EXPECT_EQ(this->blob_top_data_->channels(), num_cols);
    EXPECT_EQ(this->blob_top_data_->height(), height);
    EXPECT_EQ(this->blob_top_data_->width(), width);

    EXPECT_EQ(this->blob_top_label_->num_axes(), 2);
    EXPECT_EQ(this->blob_top_label_->shape(0), batch_size);
    EXPECT_EQ(this->blob_top_label_->shape(1), 1);

    int label = dev;
    for (int iter = 0; iter < 1; ++iter) {
      layer->Forward(this->blob_bottom_base_vec_, this->blob_top_base_vec_,
                     nullptr);
      for (int i = 0; i < batch_size; ++i) {
        EXPECT_EQ(1 + label, this->blob_top_label_->cpu_data()[i]);
        label = (label + Caffe::solver_count()) % (batch_size * 2);
      }
    }
  }
  Caffe::set_solver_count(1);
  Caffe::set_solver_rank(0);
}
コード例 #3
0
TYPED_TEST(HDF5DataLayerTest, TestRead) {
  typedef typename TypeParam::Dtype Dtype;
  this->blob_top_vec_.push_back(this->blob_top_label2_);
  this->blob_top_base_vec_.push_back(this->blob_top_label2_);


  // Create LayerParameter with the known parameters.
  // The data file we are reading has 10 rows and 8 columns,
  // with values from 0 to 10*8 reshaped in row-major order.
  LayerParameter param;
  param.set_type("HDF5Data");
  param.add_top("data");
  param.add_top("label");
  param.add_top("label2");

  if (std::is_same<Dtype, half_fp>::value) {
    param.set_bottom_data_type(CAFFE_FLOAT);
    param.set_compute_data_type(CAFFE_FLOAT);
    param.set_top_data_type(proto_data_type<Dtype>());
  }

  HDF5DataParameter* hdf5_data_param = param.mutable_hdf5_data_param();
  int_tp batch_size = 5;
  hdf5_data_param->set_batch_size(batch_size);
  hdf5_data_param->set_source(*(this->filename));
  int_tp num_cols = 8;
  int_tp height = 6;
  int_tp width = 5;

  // Test that the layer setup gives correct parameters.
  shared_ptr<LayerBase> layer = CreateLayer(param);
  layer->SetUp(this->blob_bottom_base_vec_, this->blob_top_base_vec_);

  EXPECT_EQ(this->blob_top_data_->num(), batch_size);
  EXPECT_EQ(this->blob_top_data_->channels(), num_cols);
  EXPECT_EQ(this->blob_top_data_->height(), height);
  EXPECT_EQ(this->blob_top_data_->width(), width);

  EXPECT_EQ(this->blob_top_label_->num_axes(), 2);
  EXPECT_EQ(this->blob_top_label_->shape(0), batch_size);
  EXPECT_EQ(this->blob_top_label_->shape(1), 1);

  EXPECT_EQ(this->blob_top_label2_->num_axes(), 2);
  EXPECT_EQ(this->blob_top_label2_->shape(0), batch_size);
  EXPECT_EQ(this->blob_top_label2_->shape(1), 1);

  layer->SetUp(this->blob_bottom_base_vec_, this->blob_top_base_vec_);

  // Go through the data 10 times (5 batches).
  const int_tp data_size = num_cols * height * width;
  for (int_tp iter = 0; iter < 10; ++iter) {
    layer->Forward(this->blob_bottom_base_vec_,
                   this->blob_top_base_vec_, nullptr);

    // On even iterations, we're reading the first half_fp of the data.
    // On odd iterations, we're reading the second half_fp of the data.
    // NB: label is 1-indexed
    int_tp label_offset = 1 + ((iter % 2 == 0) ? 0 : batch_size);
    int_tp label2_offset = 1 + label_offset;
    int_tp data_offset = (iter % 2 == 0) ? 0 : batch_size * data_size;

    // Every two iterations we are reading the second file,
    // which has the same labels, but data is offset by total data size,
    // which is 2400 (see generate_sample_data).
    int_tp file_offset = (iter % 4 < 2) ? 0 : 2400;

    for (int_tp i = 0; i < batch_size; ++i) {
      if (label_offset + i <= type_max_integer_representable<Dtype>()) {
        EXPECT_EQ(
          label_offset + i,
          this->blob_top_label_->cpu_data()[i]);
      }
      if (label2_offset + i <= type_max_integer_representable<Dtype>()) {
        EXPECT_EQ(
          label2_offset + i,
          this->blob_top_label2_->cpu_data()[i]);
      }
    }
    for (int_tp i = 0; i < batch_size; ++i) {
      for (int_tp j = 0; j < num_cols; ++j) {
        for (int_tp h = 0; h < height; ++h) {
          for (int_tp w = 0; w < width; ++w) {
            int_tp idx = (
              i * num_cols * height * width +
              j * height * width +
              h * width + w);
            if (file_offset + data_offset + idx
                                   <= type_max_integer_representable<Dtype>()) {
              EXPECT_EQ(
                file_offset + data_offset + idx,
                this->blob_top_data_->cpu_data()[idx])
                << "debug: i " << i << " j " << j
                << " iter " << iter;
            }
          }
        }
      }
    }
  }
}
コード例 #4
0
ファイル: recurrent_layer.cpp プロジェクト: naibaf7/caffe
void RecurrentLayer<Dtype, MItype, MOtype>::LayerSetUp(
      const vector<Blob<MItype>*>& bottom,
      const vector<Blob<MOtype>*>& top) {
  CHECK_GE(bottom[0]->num_axes(), 2)
      << "bottom[0] must have at least 2 axes -- (#timesteps, #streams, ...)";
  T_ = bottom[0]->shape(0);
  N_ = bottom[0]->shape(1);
  LOG(INFO) << "Initializing recurrent layer: assuming input batch contains "
            << T_ << " timesteps of " << N_ << " independent streams.";

  CHECK_EQ(bottom[1]->num_axes(), 2)
      << "bottom[1] must have exactly 2 axes -- (#timesteps, #streams)";
  CHECK_EQ(T_, bottom[1]->shape(0));
  CHECK_EQ(N_, bottom[1]->shape(1));

  // If expose_hidden is set, we take as input and produce as output
  // the hidden state blobs at the first and last timesteps.
  expose_hidden_ = this->layer_param_.recurrent_param().expose_hidden();

  // Get (recurrent) input/output names.
  vector<string> output_names;
  OutputBlobNames(&output_names);
  vector<string> recur_input_names;
  RecurrentInputBlobNames(&recur_input_names);
  vector<string> recur_output_names;
  RecurrentOutputBlobNames(&recur_output_names);
  const int num_recur_blobs = recur_input_names.size();
  CHECK_EQ(num_recur_blobs, recur_output_names.size());

  // If provided, bottom[2] is a static input to the recurrent net.
  const int num_hidden_exposed = expose_hidden_ * num_recur_blobs;
  static_input_ = (bottom.size() > 2 + num_hidden_exposed);
  if (static_input_) {
    CHECK_GE(bottom[2]->num_axes(), 1);
    CHECK_EQ(N_, bottom[2]->shape(0));
  }

  // Create a NetParameter; setup the inputs that aren't unique to particular
  // recurrent architectures.
  NetParameter net_param;

  LayerParameter* input_layer_param = net_param.add_layer();
  input_layer_param->set_type("Input");
  InputParameter* input_param = input_layer_param->mutable_input_param();
  input_layer_param->add_top("X");
  BlobShape input_shape;
  for (int i = 0; i < bottom[0]->num_axes(); ++i) {
    input_shape.add_dim(bottom[0]->shape(i));
  }
  input_param->add_shape()->CopyFrom(input_shape);

  input_shape.Clear();
  for (int i = 0; i < bottom[1]->num_axes(); ++i) {
    input_shape.add_dim(bottom[1]->shape(i));
  }
  input_layer_param->add_top("cont");
  input_param->add_shape()->CopyFrom(input_shape);

  if (static_input_) {
    input_shape.Clear();
    for (int i = 0; i < bottom[2]->num_axes(); ++i) {
      input_shape.add_dim(bottom[2]->shape(i));
    }
    input_layer_param->add_top("x_static");
    input_param->add_shape()->CopyFrom(input_shape);
  }

  // Call the child's FillUnrolledNet implementation to specify the unrolled
  // recurrent architecture.
  this->FillUnrolledNet(&net_param);

  // Prepend this layer's name to the names of each layer in the unrolled net.
  const string& layer_name = this->layer_param_.name();
  if (layer_name.size()) {
    for (int i = 0; i < net_param.layer_size(); ++i) {
      LayerParameter* layer = net_param.mutable_layer(i);
      layer->set_name(layer_name + "_" + layer->name());
    }
  }

  // Add "pseudo-losses" to all outputs to force backpropagation.
  // (Setting force_backward is too aggressive as we may not need to backprop to
  // all inputs, e.g., the sequence continuation indicators.)
  vector<string> pseudo_losses(output_names.size());
  for (int i = 0; i < output_names.size(); ++i) {
    LayerParameter* layer = net_param.add_layer();
    pseudo_losses[i] = output_names[i] + "_pseudoloss";
    layer->set_name(pseudo_losses[i]);
    layer->set_type("Reduction");
    layer->add_bottom(output_names[i]);
    layer->add_top(pseudo_losses[i]);
    layer->add_loss_weight(1);
  }

  // Create the unrolled net.
  unrolled_net_.reset(new Net<Dtype>(net_param, this->device_));
  unrolled_net_->set_debug_info(
      this->layer_param_.recurrent_param().debug_info());

  // Setup pointers to the inputs.
  x_input_blob_ = static_cast<Blob<Dtype>*>(
      CHECK_NOTNULL(unrolled_net_->blob_by_name("X").get()));
  cont_input_blob_ = static_cast<Blob<Dtype>*>(
      CHECK_NOTNULL(unrolled_net_->blob_by_name("cont").get()));
  if (static_input_) {
    x_static_input_blob_ = static_cast<Blob<Dtype>*>(
        CHECK_NOTNULL(unrolled_net_->blob_by_name("x_static").get()));
  }

  // Setup pointers to paired recurrent inputs/outputs.
  recur_input_blobs_.resize(num_recur_blobs);
  recur_output_blobs_.resize(num_recur_blobs);
  for (int i = 0; i < recur_input_names.size(); ++i) {
    recur_input_blobs_[i] = static_cast<Blob<Dtype>*>(
      CHECK_NOTNULL(unrolled_net_->blob_by_name(recur_input_names[i]).get()));
    recur_output_blobs_[i] = static_cast<Blob<Dtype>*>(
      CHECK_NOTNULL(unrolled_net_->blob_by_name(recur_output_names[i]).get()));
  }

  // Setup pointers to outputs.
  CHECK_EQ(top.size() - num_hidden_exposed, output_names.size())
      << "OutputBlobNames must provide an output blob name for each top.";
  output_blobs_.resize(output_names.size());
  for (int i = 0; i < output_names.size(); ++i) {
    output_blobs_[i] = static_cast<Blob<Dtype>*>(
        CHECK_NOTNULL(unrolled_net_->blob_by_name(output_names[i]).get()));
  }

  // We should have 2 inputs (X and cont), plus a number of recurrent inputs,
  // plus maybe a static input.
  CHECK_EQ(2 + num_recur_blobs + static_input_,
           unrolled_net_->input_blobs().size());

  // This layer's parameters are any parameters in the layers of the unrolled
  // net. We only want one copy of each parameter, so check that the parameter
  // is "owned" by the layer, rather than shared with another.
  this->blobs_.clear();
  for (int i = 0; i < unrolled_net_->params().size(); ++i) {
    if (unrolled_net_->param_owners()[i] == -1) {
      LOG(INFO) << "Adding parameter " << i << ": "
                << unrolled_net_->param_display_names()[i];
      this->blobs_.push_back(
          static_pointer_cast<Blob<Dtype> >(unrolled_net_->params()[i]));
    }
  }
  // Check that param_propagate_down is set for all of the parameters in the
  // unrolled net; set param_propagate_down to true in this layer.
  for (int i = 0; i < unrolled_net_->layers().size(); ++i) {

    for (int j = 0; j < unrolled_net_->layers()[i]->blobs_size(); ++j) {
      CHECK(unrolled_net_->layers()[i]->param_propagate_down(j))
          << "param_propagate_down not set for layer " << i << ", param " << j;
    }
  }
  this->param_propagate_down_.clear();
  this->param_propagate_down_.resize(this->blobs_.size(), true);

  // Set the diffs of recurrent outputs to 0 -- we can't backpropagate across
  // batches.
  for (int i = 0; i < recur_output_blobs_.size(); ++i) {
    caffe_set(recur_output_blobs_[i]->count(), Dtype(0),
              recur_output_blobs_[i]->mutable_cpu_diff());
  }

  // Check that the last output_names.size() layers are the pseudo-losses;
  // set last_layer_index so that we don't actually run these layers.
  const vector<string>& layer_names = unrolled_net_->layer_names();
  last_layer_index_ = layer_names.size() - 1 - pseudo_losses.size();
  for (int i = last_layer_index_ + 1, j = 0; i < layer_names.size(); ++i, ++j) {
    CHECK_EQ(layer_names[i], pseudo_losses[j]);
  }

  this->InitializeQuantizers(bottom, top);
}
コード例 #5
0
TYPED_TEST(HDF5DataLayerTest, TestRead) {
  typedef typename TypeParam::Dtype Dtype;
  // Create LayerParameter with the known parameters.
  // The data file we are reading has 10 rows and 8 columns,
  // with values from 0 to 10*8 reshaped in row-major order.
  LayerParameter param;
  param.add_top("data");
  param.add_top("label");
  param.add_top("label2");

  HDF5DataParameter* hdf5_data_param = param.mutable_hdf5_data_param();
  int batch_size = 5;
  hdf5_data_param->set_batch_size(batch_size);
  hdf5_data_param->set_source(*(this->filename));
  int num_cols = 8;
  int height = 6;
  int width = 5;

  // Test that the layer setup got the correct parameters.
  HDF5DataLayer<Dtype> layer(param);
  layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_);
  EXPECT_EQ(this->blob_top_data_->num(), batch_size);
  EXPECT_EQ(this->blob_top_data_->channels(), num_cols);
  EXPECT_EQ(this->blob_top_data_->height(), height);
  EXPECT_EQ(this->blob_top_data_->width(), width);

  EXPECT_EQ(this->blob_top_label_->num_axes(), 2);
  EXPECT_EQ(this->blob_top_label_->shape(0), batch_size);
  EXPECT_EQ(this->blob_top_label_->shape(1), 1);

  EXPECT_EQ(this->blob_top_label2_->num_axes(), 2);
  EXPECT_EQ(this->blob_top_label2_->shape(0), batch_size);
  EXPECT_EQ(this->blob_top_label2_->shape(1), 1);

  layer.SetUp(this->blob_bottom_vec_, this->blob_top_vec_);

  // Go through the data 10 times (5 batches).
  const int data_size = num_cols * height * width;
  for (int iter = 0; iter < 10; ++iter) {
    layer.Forward(this->blob_bottom_vec_, this->blob_top_vec_);

    // On even iterations, we're reading the first half of the data.
    // On odd iterations, we're reading the second half of the data.
    // NB: label is 1-indexed
    int label_offset = 1 + ((iter % 2 == 0) ? 0 : batch_size);
    int label2_offset = 1 + label_offset;
    int data_offset = (iter % 2 == 0) ? 0 : batch_size * data_size;

    // Every two iterations we are reading the second file,
    // which has the same labels, but data is offset by total data size,
    // which is 2400 (see generate_sample_data).
    int file_offset = (iter % 4 < 2) ? 0 : 2400;

    for (int i = 0; i < batch_size; ++i) {
      EXPECT_EQ(
        label_offset + i,
        this->blob_top_label_->cpu_data()[i]);
      EXPECT_EQ(
        label2_offset + i,
        this->blob_top_label2_->cpu_data()[i]);
    }
    for (int i = 0; i < batch_size; ++i) {
      for (int j = 0; j < num_cols; ++j) {
        for (int h = 0; h < height; ++h) {
          for (int w = 0; w < width; ++w) {
            int idx = (
              i * num_cols * height * width +
              j * height * width +
              h * width + w);
            EXPECT_EQ(
              file_offset + data_offset + idx,
              this->blob_top_data_->cpu_data()[idx])
              << "debug: i " << i << " j " << j
              << " iter " << iter;
          }
        }
      }
    }
  }
}