int main(int argc, char** argv){ typedef PinholePose<Cal3_S2> Camera; typedef SmartProjectionPoseFactor<Cal3_S2> SmartFactor; Values initial_estimate; NonlinearFactorGraph graph; const noiseModel::Isotropic::shared_ptr model = noiseModel::Isotropic::Sigma(2,1); string calibration_loc = findExampleDataFile("VO_calibration.txt"); string pose_loc = findExampleDataFile("VO_camera_poses_large.txt"); string factor_loc = findExampleDataFile("VO_stereo_factors_large.txt"); //read camera calibration info from file // focal lengths fx, fy, skew s, principal point u0, v0, baseline b cout << "Reading calibration info" << endl; ifstream calibration_file(calibration_loc.c_str()); double fx, fy, s, u0, v0, b; calibration_file >> fx >> fy >> s >> u0 >> v0 >> b; const Cal3_S2::shared_ptr K(new Cal3_S2(fx, fy, s, u0, v0)); cout << "Reading camera poses" << endl; ifstream pose_file(pose_loc.c_str()); int pose_index; MatrixRowMajor m(4,4); //read camera pose parameters and use to make initial estimates of camera poses while (pose_file >> pose_index) { for (int i = 0; i < 16; i++) pose_file >> m.data()[i]; initial_estimate.insert(pose_index, Pose3(m)); } // landmark keys size_t landmark_key; // pixel coordinates uL, uR, v (same for left/right images due to rectification) // landmark coordinates X, Y, Z in camera frame, resulting from triangulation double uL, uR, v, X, Y, Z; ifstream factor_file(factor_loc.c_str()); cout << "Reading stereo factors" << endl; //read stereo measurements and construct smart factors SmartFactor::shared_ptr factor(new SmartFactor(model, K)); size_t current_l = 3; // hardcoded landmark ID from first measurement while (factor_file >> pose_index >> landmark_key >> uL >> uR >> v >> X >> Y >> Z) { if(current_l != landmark_key) { graph.push_back(factor); factor = SmartFactor::shared_ptr(new SmartFactor(model, K)); current_l = landmark_key; } factor->add(Point2(uL,v), pose_index); } Pose3 firstPose = initial_estimate.at<Pose3>(1); //constrain the first pose such that it cannot change from its original value during optimization // NOTE: NonlinearEquality forces the optimizer to use QR rather than Cholesky // QR is much slower than Cholesky, but numerically more stable graph.push_back(NonlinearEquality<Pose3>(1,firstPose)); LevenbergMarquardtParams params; params.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA; params.verbosity = NonlinearOptimizerParams::ERROR; cout << "Optimizing" << endl; //create Levenberg-Marquardt optimizer to optimize the factor graph LevenbergMarquardtOptimizer optimizer = LevenbergMarquardtOptimizer(graph, initial_estimate, params); Values result = optimizer.optimize(); cout << "Final result sample:" << endl; Values pose_values = result.filter<Pose3>(); pose_values.print("Final camera poses:\n"); return 0; }
int main(int argc, char** argv){ Values initial_estimate; NonlinearFactorGraph graph; const noiseModel::Isotropic::shared_ptr model = noiseModel::Isotropic::Sigma(3,1); string calibration_loc = findExampleDataFile("VO_calibration.txt"); string pose_loc = findExampleDataFile("VO_camera_poses_large.txt"); string factor_loc = findExampleDataFile("VO_stereo_factors_large.txt"); //read camera calibration info from file // focal lengths fx, fy, skew s, principal point u0, v0, baseline b double fx, fy, s, u0, v0, b; ifstream calibration_file(calibration_loc.c_str()); cout << "Reading calibration info" << endl; calibration_file >> fx >> fy >> s >> u0 >> v0 >> b; //create stereo camera calibration object const Cal3_S2Stereo::shared_ptr K(new Cal3_S2Stereo(fx,fy,s,u0,v0,b)); ifstream pose_file(pose_loc.c_str()); cout << "Reading camera poses" << endl; int pose_id; MatrixRowMajor m(4,4); //read camera pose parameters and use to make initial estimates of camera poses while (pose_file >> pose_id) { for (int i = 0; i < 16; i++) { pose_file >> m.data()[i]; } initial_estimate.insert(Symbol('x', pose_id), Pose3(m)); } // camera and landmark keys size_t x, l; // pixel coordinates uL, uR, v (same for left/right images due to rectification) // landmark coordinates X, Y, Z in camera frame, resulting from triangulation double uL, uR, v, X, Y, Z; ifstream factor_file(factor_loc.c_str()); cout << "Reading stereo factors" << endl; //read stereo measurement details from file and use to create and add GenericStereoFactor objects to the graph representation while (factor_file >> x >> l >> uL >> uR >> v >> X >> Y >> Z) { graph.push_back( GenericStereoFactor<Pose3, Point3>(StereoPoint2(uL, uR, v), model, Symbol('x', x), Symbol('l', l), K)); //if the landmark variable included in this factor has not yet been added to the initial variable value estimate, add it if (!initial_estimate.exists(Symbol('l', l))) { Pose3 camPose = initial_estimate.at<Pose3>(Symbol('x', x)); //transform_from() transforms the input Point3 from the camera pose space, camPose, to the global space Point3 worldPoint = camPose.transform_from(Point3(X, Y, Z)); initial_estimate.insert(Symbol('l', l), worldPoint); } } Pose3 first_pose = initial_estimate.at<Pose3>(Symbol('x',1)); //constrain the first pose such that it cannot change from its original value during optimization // NOTE: NonlinearEquality forces the optimizer to use QR rather than Cholesky // QR is much slower than Cholesky, but numerically more stable graph.push_back(NonlinearEquality<Pose3>(Symbol('x',1),first_pose)); cout << "Optimizing" << endl; //create Levenberg-Marquardt optimizer to optimize the factor graph LevenbergMarquardtOptimizer optimizer = LevenbergMarquardtOptimizer(graph, initial_estimate); Values result = optimizer.optimize(); cout << "Final result sample:" << endl; Values pose_values = result.filter<Pose3>(); pose_values.print("Final camera poses:\n"); return 0; }