コード例 #1
0
void ScreenMVCullVisitor::apply(LightSource& node)
{
    // push the node's state.
    StateSet* node_state = node.getStateSet();
    if(node_state)
        pushStateSet(node_state);

    StateAttribute* light = node.getLight();
    if(light)
    {
        if(node.getReferenceFrame() == osg::LightSource::RELATIVE_RF)
        {
            RefMatrix& matrix = *getModelViewMatrix();
            addPositionedAttribute(&matrix,light);
        }
        else
        {
            // relative to absolute.
            addPositionedAttribute(0,light);
        }
    }

    handle_cull_callbacks_and_traverse(node);

    // pop the node's state off the geostate stack.    
    if(node_state)
        popStateSet();
}
コード例 #2
0
ファイル: object.cpp プロジェクト: laarmen/ray_tracer
//Outputs the color of the object as enlightened by at the point where `ray` hits it.
rt::color Object::render_direct(const Ray & ray, Scene & scene, const LightSource & light_source) {
    rt::color basic = compose(light_source.get_color(), color);
    Impact imp = get_impact(ray);
    Ray to_light(imp.point, light_source.get_origin());
    double scalar = -(ray.get_direction() | imp.normale);
    if (((light_source.get_origin()-imp.point) | imp.normale) <= 0) {
        return rt::color::BLACK;
    }
    std::list<Object *> others;
    Object* interceptor = scene.get_interceptor(to_light, &others);
    // In case there has been mixups due to rounding errors and the object catches
    // its own ray back to the light when it shouldn't (which is NOT always the case)
    // detect it
    if (interceptor) {
        if (interceptor != this && interceptor->intersects(ray) < (imp.point - light_source.get_origin()).norm())
            return rt::color::BLACK;
        if (intersects(to_light) >= OWNRAY_EPSILON)
            return rt::color::BLACK;
        if (others.size() > 1)
            return rt::color::BLACK;
    }
    return rt::color(
            static_cast<unsigned char>(scalar*basic.get_red()),
            static_cast<unsigned char>(scalar*basic.get_green()),
            static_cast<unsigned char>(scalar*basic.get_blue())
        );
}
コード例 #3
0
ファイル: LightSource.cpp プロジェクト: chrisfont/MetaHack
LightSource::LightSource(LightSource const& original)
  : Thing(original), impl(new Impl())
{
  impl->direction = original.get_light_direction();
  impl->level = original.get_light_level();
  impl->color = original.get_light_color();
  impl->max_strength = original.get_max_light_strength();
  impl->lit = original.is_lit();
}
コード例 #4
0
ファイル: SceneInfoDialog.cpp プロジェクト: forry/Lexoanim
   virtual void apply( LightSource &node )
   {
      if( node.getStateSet() )
      {
         apply( *node.getStateSet() );
      }

      ++_numInstancedLightSources;
      _lightSourceSet.insert( &node );
      traverse( node );
   }
コード例 #5
0
ファイル: NewHorizon.cpp プロジェクト: Starkus/NewHorizon
void init() {

    camera.position[2] = 15;

    libpng_version();

    light0.slot = GL_LIGHT0;
    light0.setDiffuse(1.0, 1.0, 1.0, 1.0);
    light0.setPosition(0.0, 0.0, 1.0, 0.0);
    light0.load();
    light0.enable();

    glewInit();

    loadObj((char*) "models/350z.obj", &mesh);
    VBOfromMesh(vbo, mesh);

    vbo.generate();

    int w, h;
    test_texture = texture_bank.findOrReg((char*) "textures/350z/vinyls.png");
    //test_texture = PNG_load((const char*) "textures/vinyls.png", &w, &h);

    glActiveTexture(GL_TEXTURE0);
    glBindTexture(GL_TEXTURE_2D, test_texture);

    programID = loadShaders("shaders/vertex.glsl", "shaders/fragment.glsl");
    glUseProgram(programID);

    uTex = glGetUniformLocation(programID, "texDiff");
    glUniform1i(uTex, 0);

    uProjection = glGetUniformLocation(programID, "projection");
    uView = glGetUniformLocation(programID, "view");
    uModel = glGetUniformLocation(programID, "model");

    uLightPos = glGetUniformLocation(programID, "lightPos");
    uLightDiff = glGetUniformLocation(programID, "lightDiff");
    uLightSpec = glGetUniformLocation(programID, "lightSpec");

    uCameraPosition = glGetUniformLocation(programID, "cameraPosition");

    glEnable(GL_LIGHTING);
    glEnable(GL_COLOR_MATERIAL);
    glEnable(GL_ALPHA_TEST);
    glEnable(GL_BLEND);
    glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
    glColorMaterial(GL_FRONT, GL_AMBIENT_AND_DIFFUSE);

    glEnable(GL_DEPTH_TEST);
}
コード例 #6
0
ファイル: canvas.cpp プロジェクト: bmdelaune/452-p4
void Canvas::setup(int bots, int lights, QVector<QPointF> botLoc, QVector<QPointF> lightLoc, int **matrix) {

    this->addLine(0,0,400,400);
    if (bots == 0)
    {
        bots = 1;
        qDebug() << "ERROR: Invalid number of robots. Defaulting to 1.";
    }
    if (lights == 0)
    {
        lights = 1;
        qDebug() << "ERROR: Invalid number of lights. Defaulting to 1.";
    }

    if (botLoc.size() < bots)
    {
        botLoc.clear();
        botLoc = defaultBotLoc(bots);
        qDebug() << "ERROR: Not enough robot locations. Using the default locations.";
    }
    if (lightLoc.size() < bots)
    {
        lightLoc.clear();
        lightLoc = defaultLightLoc(lights);
        qDebug() << "ERROR: Not enough light locations. Using the default locations.";
    }
    m_robotManager->setKMatrix(matrix);
    Robot* robot;
    for(int i = 0; i < bots; i++) {
        robot = new Robot();
        robot->setTransformOriginPoint(ROBOT_HEIGHT, ROBOT_HEIGHT);

        robot->setPos(botLoc[i]);

        createRobot(robot);
    }
    LightSource *light;
    for (int i = 0; i < lights; i++)
    {
        light = new LightSource();
        light->setPos(lightLoc[i]);
        // TODO: take intensity from a file
        light->setIntensity(100);
        createLight(light);
    }
}
コード例 #7
0
CAMLprim value lightsource_process(value record_lightsource,
                                   value list_polygon_objects,
                                   value polygon_view) {
  CAMLparam3(record_lightsource, list_polygon_objects, polygon_view);
  CAMLlocal5(polygon_prev_head, list_polygon_head, vector_prev_head,
             list_vector_head, tmp_polygon);
  CAMLlocal1(tmp_vector);
  LightSource l = LightSource(Vector_val(Field(record_lightsource, 0)),
                              Double_val(Field(record_lightsource, 1)),
                              Double_val(Field(record_lightsource, 2)));
  std::vector<Polygon> tmp_polygon_list = std::vector<Polygon>();
  polygon_list_to_std_vector(list_polygon_objects, &tmp_polygon_list);
  std::vector<Vector> tmp_vector_list = std::vector<Vector>();
  vector_list_to_std_vector(Field(polygon_view, 0), &tmp_vector_list);
  Polygon polygon = Polygon(tmp_vector_list);
  // auto start = std::chrono::steady_clock::now();
  std::vector<Polygon> list_polygon = l.process(tmp_polygon_list);
  // auto duration = std::chrono::duration_cast<std::chrono::milliseconds>(
  //     std::chrono::steady_clock::now() - start);
  // printf("--> %lld\n", duration.count());
  polygon_prev_head = Val_unit;
  for (Polygon p : list_polygon) {
    vector_prev_head = Val_unit;
    for (Vector v : p.get_vertices()) {
      tmp_vector = caml_alloc_small(2, Double_array_tag);
      Double_field(tmp_vector, 0) = v.x;
      Double_field(tmp_vector, 1) = v.y;
      list_vector_head = caml_alloc_small(2, 0);
      Field(list_vector_head, 0) = tmp_vector;
      Field(list_vector_head, 1) = vector_prev_head;
      vector_prev_head = list_vector_head;
    }
    tmp_polygon = caml_alloc_small(1, 0);
    Field(tmp_polygon, 0) = list_vector_head;

    list_polygon_head = caml_alloc_small(2, 0);
    Field(list_polygon_head, 0) = tmp_polygon;
    Field(list_polygon_head, 1) = polygon_prev_head;
    polygon_prev_head = list_polygon_head;
  }
  CAMLreturn(list_polygon_head);
}
コード例 #8
0
    void OpenGLSceneRenderer::showLight(const LightSource& l, const SkyDragonEngineOptions& engineOptions) {

        float p[4];
        float a[4];
        float d[4];
        float s[4];

        for (int i = 0; i < 4; i++) {
            p[i] = l.GetPosition()[i];
            a[i] = l.GetAmbient()[i];
            d[i] = l.GetDiffuse()[i];
            s[i] = l.GetSpecular()[i];
        }

        glLightfv(_glLightSources[_curLight], GL_POSITION, p);
        glLightfv(_glLightSources[_curLight], GL_AMBIENT, a);
        glLightfv(_glLightSources[_curLight], GL_DIFFUSE, d);
        glLightfv(_glLightSources[_curLight], GL_SPECULAR, s);

        _curLight++;
    }
コード例 #9
0
ファイル: ChessUtils.cpp プロジェクト: carlosmccosta/AR-Chess
LightSource* ChessUtils::createLightSource(StateSet* stateSet, int lightNumber,	
	Vec4 position, Vec3 direction,	
	float spotCutoff, float spotExponent,
	float constanteAttenuation,
	Vec4 ambientLight, Vec4 diffuseLight, Vec4 specularLight) {
	Light* light = new Light();
	light->setLightNum(lightNumber);
	light->setPosition(position);
	light->setDirection(direction);
	light->setAmbient(ambientLight);
	light->setDiffuse(diffuseLight);
	light->setSpecular(specularLight);
	light->setConstantAttenuation(constanteAttenuation);	
	light->setSpotCutoff(spotCutoff);
	light->setSpotExponent(spotExponent);

	LightSource* lightS = new LightSource();
	lightS->setLight(light);
	lightS->setLocalStateSetModes(osg::StateAttribute::ON);
	lightS->setStateSetModes(*stateSet, osg::StateAttribute::ON);	

	return lightS;
}
コード例 #10
0
bool SVGFESpecularLightingElement::setFilterEffectAttribute(FilterEffect* effect, const QualifiedName& attrName)
{
    FESpecularLighting* specularLighting = static_cast<FESpecularLighting*>(effect);

    if (attrName == SVGNames::lighting_colorAttr) {
        RenderObject* renderer = this->renderer();
        ASSERT(renderer);
        ASSERT(renderer->style());
        return specularLighting->setLightingColor(renderer->style()->svgStyle().lightingColor());
    }
    if (attrName == SVGNames::surfaceScaleAttr)
        return specularLighting->setSurfaceScale(m_surfaceScale->currentValue()->value());
    if (attrName == SVGNames::specularConstantAttr)
        return specularLighting->setSpecularConstant(m_specularConstant->currentValue()->value());
    if (attrName == SVGNames::specularExponentAttr)
        return specularLighting->setSpecularExponent(m_specularExponent->currentValue()->value());

    LightSource* lightSource = const_cast<LightSource*>(specularLighting->lightSource());
    SVGFELightElement* lightElement = SVGFELightElement::findLightElement(*this);
    ASSERT(lightSource);
    ASSERT(lightElement);
    ASSERT(effect->filter());

    if (attrName == SVGNames::azimuthAttr)
        return lightSource->setAzimuth(lightElement->azimuth()->currentValue()->value());
    if (attrName == SVGNames::elevationAttr)
        return lightSource->setElevation(lightElement->elevation()->currentValue()->value());
    if (attrName == SVGNames::xAttr || attrName == SVGNames::yAttr || attrName == SVGNames::zAttr)
        return lightSource->setPosition(effect->filter()->resolve3dPoint(lightElement->position()));
    if (attrName == SVGNames::pointsAtXAttr || attrName == SVGNames::pointsAtYAttr || attrName == SVGNames::pointsAtZAttr)
        return lightSource->setPointsAt(effect->filter()->resolve3dPoint(lightElement->pointsAt()));
    if (attrName == SVGNames::specularExponentAttr)
        return lightSource->setSpecularExponent(lightElement->specularExponent()->currentValue()->value());
    if (attrName == SVGNames::limitingConeAngleAttr)
        return lightSource->setLimitingConeAngle(lightElement->limitingConeAngle()->currentValue()->value());

    ASSERT_NOT_REACHED();
    return false;
}
コード例 #11
0
ファイル: Config.cpp プロジェクト: Tug/RayTracer
void Config::load(SceneRenderer * sceneRenderer, Manager * manager) {
    Json::Value root;   // will contains the root value after parsing.
	Json::Reader reader;

	std::ifstream file;
	file.open(fileName);
    bool parsingSuccessful = reader.parse(file, root, false);
	file.close();
	if(!parsingSuccessful) {
		// report to the user the failure and their locations in the document.
		System::Console::WriteLine("Failed to parse configuration\n");
		System::Console::WriteLine(gcnew System::String(reader.getFormatedErrorMessages().c_str()));
		throw std::runtime_error("Failed to parse configuration file: "+fileName);
	}

	Json::Value sceneJSON = root.get("scene", NULL);
	Scene * scene = sceneRenderer->getScene();
	Json::Value bgColorJSON = sceneJSON.get("backgroundColor", NULL);
	if(bgColorJSON != NULL) {
		scene->setBackgroundColor(jsonToColor(bgColorJSON));
	}

	Json::Value lightsJSON = sceneJSON.get("lights", NULL);
	if(lightsJSON != NULL) {
		Json::Value::Members lightsName = lightsJSON.getMemberNames();
		for(std::vector<std::string>::iterator it = lightsName.begin(); it != lightsName.end(); it++) {
			std::string lightName = *it;
			Json::Value lightJSON = lightsJSON[lightName];
			RGBColor lightColor = jsonToColor(lightJSON["color"]);
			LightSource * light;
			std::string lightTypeStr = lightJSON["type"].asString();
			if(lightTypeStr == "AmbientLightSource") {
				light = new AmbientLightSource(lightColor);
			} else if(lightTypeStr == "PointLightSource") {
				light = new PointLightSource(jsonToP3(lightJSON["position"]), lightColor);
				Json::Value specularCoefJSON = lightJSON.get("specularCoef", NULL);
				PointLightSource * pLight = static_cast<PointLightSource*>(light);
				if(specularCoefJSON != NULL) {
					pLight->setSpecularCoef(specularCoefJSON.asDouble());
				}
				Json::Value specularExpJSON = lightJSON.get("specularExponent", NULL);
				if(specularExpJSON != NULL) {
					pLight->setSpecularExponent(specularExpJSON.asDouble());
				}
			}
			Json::Value diffuseCoefJSON = lightJSON.get("diffuseCoef", NULL);
			if(diffuseCoefJSON != NULL) {
				light->setDiffuseCoef(diffuseCoefJSON.asDouble());
			}
			//scene->addLightSource(light);
			manager->getLightSources()->add(lightName, light, lightTypeStr);
		}
	}

	Json::Value objectsJSON = sceneJSON.get("objects", NULL);
	if(objectsJSON != NULL) {
		Json::Value::Members objectsName = objectsJSON.getMemberNames();
		for(std::vector<std::string>::iterator it = objectsName.begin(); it != objectsName.end(); it++) {
			std::string objectName = *it;
			Json::Value object3DJSON = objectsJSON[objectName];
			Object3D * object3D;
			std::string oject3DTypeStr = object3DJSON["type"].asString();
			if(oject3DTypeStr == "Sphere") {
				object3D = new Sphere(jsonToP3(object3DJSON["center"]),
									  object3DJSON["radius"].asDouble());
			} else if(oject3DTypeStr == "Plane") {
				
				if(object3DJSON.get("u", NULL) != NULL) {
					object3D = new Plane(jsonToP3(object3DJSON["p"]),
									 jsonToP3(object3DJSON["u"]),
									 jsonToP3(object3DJSON["v"]));
				} else {
					object3D = new Plane(jsonToP3(object3DJSON["p"]),
										 jsonToP3(object3DJSON["normal"]));
				}
			} else if(oject3DTypeStr == "Triangle") {
				object3D = new Triangle(jsonToP3(object3DJSON["A"]),
									    jsonToP3(object3DJSON["B"]),
										jsonToP3(object3DJSON["C"]));
			}
			//scene->addObject3D(object3D);
			manager->getObjects3D()->add(objectName, object3D, oject3DTypeStr);
		}
	}

	Json::Value polyhedraJSON = sceneJSON.get("polyhedra", NULL);
	if(polyhedraJSON != NULL) {
		Json::Value::Members polyhedraName = polyhedraJSON.getMemberNames();
		for(std::vector<std::string>::iterator it = polyhedraName.begin(); it != polyhedraName.end(); it++) {
			std::string objectName = *it;
			Json::Value polyhedronJSON = polyhedraJSON[objectName];
			Polyhedron * polyhedron;
			std::string polyhedronTypeStr = polyhedronJSON["type"].asString();
			if(polyhedronTypeStr == "Parallelepiped") {
				polyhedron = new Parallelepiped(jsonToP3(polyhedronJSON["A"]),
												jsonToP3(polyhedronJSON["B"]),
												jsonToP3(polyhedronJSON["C"]),
												jsonToP3(polyhedronJSON["D"]));
			} else if(polyhedronTypeStr == "Maya") {
				std::vector<Triangle*> triangles;
				std::string filename = polyhedronJSON["FileName"].asString();
				Json::Value pJSON = polyhedronJSON.get("p", NULL);
				P3 centerObj(0,0,0);
				if(pJSON != NULL) centerObj = jsonToP3(polyhedronJSON["p"]);
				Json::Value scaleJSON = polyhedronJSON.get("scale", NULL);
				double scale = 1.0;
				if(scaleJSON != NULL) scale = scaleJSON.asDouble();
				parseObjFile(filename, &triangles, centerObj, scale);
				polyhedron = new Polyhedron(triangles);
			} else continue;
			/*std::vector<Triangle*> triangles = polyhedron->getTriangles();
			for(std::vector<Triangle*>::iterator it = triangles.begin(); it != triangles.end(); it++) {
				scene->addObject3D(*it);
			}*/
			manager->getPolyhedra()->add(objectName, polyhedron, polyhedronTypeStr);
		}
	}

	Json::Value texturesJSON = root.get("textures", NULL);
	if(texturesJSON != NULL) {
		Json::Value::Members texturesName = texturesJSON.getMemberNames();
		for(std::vector<std::string>::iterator it = texturesName.begin(); it != texturesName.end(); it++) {
			std::string textureName = *it;
			Json::Value textureJSON = texturesJSON[textureName];
			Texture * texture = new Texture(textureJSON["FileName"].asString());
			manager->getTextures()->add(textureName, texture);
		}
	}

	Json::Value sceneRendererJSON = root.get("sceneRenderer", NULL);
	if(sceneRendererJSON == NULL) 
		throw std::runtime_error("sceneRenderer not defined in "+fileName);
	Json::Value cameraJSON = sceneRendererJSON["camera"];
	Camera * camera = new Camera(jsonToP3(cameraJSON["position"]),
								 jsonToP3(cameraJSON["direction"]),
								 cameraJSON.get("rotation", 0).asDouble());
	sceneRenderer->setCamera(camera);
	sceneRenderer->setCameraScreenDist(sceneRendererJSON.get("cameraScreenDist", 200).asDouble());
	manager->getCameras()->add("camera1", camera);

	std::string methodType = sceneRendererJSON["method"].get("type", "OrthographicProjection").asString();
	RenderingMethod * renderingMethod = NULL;
	if(methodType == "OrthographicProjection") {
		renderingMethod = new OrthographicProjection();
	} else if(methodType == "RayCasting") {
		renderingMethod = new RayCasting();
	} else if(methodType == "RayTracing") {
		renderingMethod = new RayTracing();
	}
	if(renderingMethod != NULL)
		sceneRenderer->setRenderingMethod(renderingMethod);

	Json::Value modelsJSON = sceneRendererJSON.get("models", NULL);
	if(modelsJSON != NULL) {
		Json::Value::Members modelsName = modelsJSON.getMemberNames();
		for(std::vector<std::string>::iterator it = modelsName.begin(); it != modelsName.end(); it++) {
			std::string modelName = *it;
			Json::Value modelJSON = modelsJSON[modelName];
			Json::Value modelTypeJSON = modelJSON.get("type", NULL);
			if(modelTypeJSON != NULL) {
				std::string modelTypeStr = modelTypeJSON.asString();
				Model * model;
				if(modelTypeStr == "SphereModel") {
					model = new SphereModel();
				} else if( modelTypeStr == "PlaneModel"	|| modelTypeStr == "TriangleModel") {
					model = new PlaneModel();
				} else if(modelTypeStr == "PolyhedronModel" || modelTypeStr == "ParallelepipedModel" || modelTypeStr == "MayaModel") {
					model = new PolyhedronModel();
				}
				Json::Value textureJSON = modelJSON.get("texture", NULL);
				if(textureJSON != NULL) {
					model->setTexture(manager->getTextures()->get(textureJSON.asString()));
				}
				Json::Value colorJSON = modelJSON.get("color", NULL);
				if(colorJSON != NULL) {
					model->setColor(jsonToColor(colorJSON));
				}
				Json::Value bumpJSON = modelJSON.get("bump", NULL);
				if(bumpJSON != NULL) {
					model->setBump(manager->getTextures()->get(bumpJSON.asString()));
				}
				Json::Value materialJSON = modelJSON.get("material", NULL);
				if(materialJSON != NULL) {
					model->setMaterial(jsonToMaterial(materialJSON));
				}
				Json::Value textureScaleJSON = modelJSON.get("textureScale", NULL);
				if(textureScaleJSON != NULL) {
					model->setTextureScale(textureScaleJSON.asDouble());
				}
				manager->getModels()->add(modelName, model);
				Json::Value modelObjectsJSON = modelJSON.get("objects", NULL);
				if(modelObjectsJSON != NULL) {
					for(unsigned int i=0; i < modelObjectsJSON.size(); i++) {
						std::string objectName = modelObjectsJSON[i].asString();
						Object3D * object3D = manager->getObjects3D()->get(objectName);
						Polyhedron * polyhedron = manager->getPolyhedra()->get(objectName);
						if(object3D != NULL) {
							sceneRenderer->getObject3DRenderer(object3D)->setModel(model);
						} else if(polyhedron != NULL) {
							std::vector<Triangle*> triangles = polyhedron->getTriangles();
							for(std::vector<Triangle*>::iterator it = triangles.begin(); it != triangles.end(); it++) {
								sceneRenderer->getObject3DRenderer(*it)->setModel(model);
							}
						} else continue;
					}
				}
			}
		}
	}
}
コード例 #12
0
ファイル: Universe.cpp プロジェクト: bhulliger/CRF
Node* Universe::createUniverse() {
	// we need the scene's state set to enable the light for the entire scene
	Group *scene = new Group();
	lightStateSet = scene->getOrCreateStateSet();
	lightStateSet->ref();
	
	// create a light
	LightSource *lightSource = new LightSource();
	lightSource->setLight(createLight(Vec4(0.9, 0.9, 0.9, 1.0)));
	// enable the light for the entire scene
	lightSource->setLocalStateSetModes(StateAttribute::ON);
	lightSource->setStateSetModes(*lightStateSet, StateAttribute::ON);
	
	lightTransform = new PositionAttitudeTransform();
	lightTransform->addChild(lightSource);
	lightTransform->setPosition(Vec3(3, 0, 0));
	
	// create objects
	try {
		CrfGeometry* crfGeometry = new CrfGeometry();
		
               
                    // Stars
                    Material *material = new Material();
                    material->setEmission(Material::FRONT, Vec4(1.0, 1.0, 1.0, 1.0));
                    material->setAmbient(Material::FRONT,  Vec4(1.0, 1.0, 1.0, 1.0));
                    material->setShininess(Material::FRONT, 25.0);

                    crfGeometry->prepareMaterial(material);
                
                if(_starfield_enabled) {
                    for (int i = 0; i < 6; i++) {
                            starField[i] = crfGeometry->createPlane(_diameter, "./textures/stars.jpg", true);
                            scene->addChild(starField[i]);
                    }
                    
                    this->positionStarField();
                }
                
                if(_spacewarp_enabled) 
                    scene->addChild(this->createSpacewarp());
                    
		// sun
		crfGeometry->prepareMaterial(material);
		sun = crfGeometry->createSphere(300, "./textures/sunmap.jpg", false);
		
		// planets
		Material *material2 = new Material();
		material2->setEmission(Material::FRONT, Vec4(0.1, 0.1, 0.1, 1.0));
		crfGeometry->prepareMaterial(material2);
		mercury= crfGeometry->createSphere(3.8, "./textures/mercurymap.jpg", false);
		venus = crfGeometry->createSphere(9.5, "./textures/venusmap.jpg", false);
		earth = crfGeometry->createSphere(10, "./textures/earthmap1k.jpg", false);
		emoon = crfGeometry->createSphere(2, "./textures/moonmap1k.jpg", false);
		mars = crfGeometry->createSphere(5.3, "./textures/mars_1k_color.jpg", false);
		jupiter = crfGeometry->createSphere(109, "./textures/jupitermap.jpg", false);
		saturn = crfGeometry->createSphere(91, "./textures/saturnmap.jpg", false);
	} catch (char *e) {
		std::cerr << e;
	}
        
        
	
	lightTransform->addChild(sun);
	scene->addChild(lightTransform);
	scene->addChild(mercury);
	scene->addChild(venus);
	earth->addChild(emoon);
	scene->addChild(earth);
	scene->addChild(mars);
	scene->addChild(jupiter);
	scene->addChild(saturn);
	
	return scene;
}
コード例 #13
0
void GameManager::init()
{
	int quadrante;
	double direction;

	std::srand(std::time(0));


	//Initializing Flags
	wireFlag = false;
	dirLightFlag = false;
	spotLightFlag = false;
	pointLightFlag = false;
	activateLights = false;
	shadeFlag = false;
	pauseFlag = false;
	startFlag = false;


	//Constructing Textures
	//_pauseTex = new Texture("C:\\Users\\DanielaD\\Desktop\\MicroMachines CG\\pause.jpg");
	//_gameOverTex = new Texture("C:\\Users\\DanielaD\\Desktop\\MicroMachines CG\\gameover.jpg");

	_pausePlane = new Plane(0, 0, 10);
	_pausePlane->setFileName("C:\\Users\\DanielaD\\Desktop\\MicroMachines CG\\pause.png");
	_gameOverPlane = new Plane(0, 0, 10);
	_gameOverPlane->setFileName("C:\\Users\\DanielaD\\Desktop\\MicroMachines CG\\rip.png");
	
	//Constructing Objects//
	Table * table = new Table();
	table->setPosition(0, 0, 0);
	//table->setTexture("C:\\Users\\DanielaD\\Desktop\\MicroMachines CG\\wood.png");
	_gameObjects.push_back(table);

	Roadside * roadside = new Roadside();
	roadside->setPosition(0, 0, 0.05);
	_gameObjects.push_back(roadside);


	//criar a posicao de cada cheerio (outer road)
	int angle = 0;
	double x, y;

	while (angle < 360) {
		x = OUTTERLENGTH * cos((angle)*(PI / 180));
		y = OUTTERLENGTH * sin((angle)*(PI / 180));

		Cheerio *cNew = new Cheerio(x, y, 1.6);
		roadside->insertCheerio(cNew);
		_gameObjects.push_back(cNew);
		angle += OUTTER_ANGLE_INCREASE;
	}

	//criar a posicao de cada cheerio (inner road)
	angle = 0;

	while (angle < 360) {
		x = INNERLENGTH * cos((angle)*(PI / 180));
		y = INNERLENGTH * sin((angle)*(PI / 180));

		Cheerio *cNew = new Cheerio(x, y, 1.6);
		roadside->insertCheerio(cNew);
		_gameObjects.push_back(cNew);
		angle += INNER_ANGLE_INCREASE;
	}

	_car = new Car();
	_car->setPosition(-12, 0, 1.7);
	_car->setRight(false);
	_car->setLeft(false);
	_car->setUp(false);
	_car->setDown(false);
	_gameObjects.push_back(_car);

	x = -14, y = -14;
	for (int i = 0; i < _lifes; i++) {
		Car* tempLife = new Car();
		tempLife->setPosition(x, y, 10);
		tempLife->setRight(false);
		tempLife->setLeft(false);
		tempLife->setUp(false);
		tempLife->setDown(false);
		_lifeVector.push_back(tempLife);
		x += 1.5;
	}


	Butter * butter1 = new Butter();
	butter1->setPosition(3, 12, 1.6);
	_gameObjects.push_back(butter1);

	Butter * butter2 = new Butter();
	butter2->setPosition(4, 13, 1.6);
	_gameObjects.push_back(butter2);

	Butter * butter3 = new Butter();
	butter3->setPosition(5, 12, 1.6);
	_gameObjects.push_back(butter3);

	Butter * butter4 = new Butter();
	butter4->setPosition(-3, -10, 1.6);
	_gameObjects.push_back(butter4);

	Butter * butter5 = new Butter();
	butter5->setPosition(-2, -11, 1.6);
	_gameObjects.push_back(butter5);


	for (int i = 0; i < NORANGES; i++) {

		Orange * orange = new Orange();

		quadrante = rand() % NQUADRANTES;
		direction = generateNumber(365, 1);

		orange->setId(i);
		orange->setPosition(generatePosition(quadrante, 0), generatePosition(quadrante, 1), 2.5);
		orange->setCurrentSpeed(generateNumber(SPEEDHIGHERINI, SPEEDLOWERINI));
		orange->setDirection(cos(direction*(PI / 180)), sin(direction*(PI / 180)), 0);
		orange->setLifeState(true);

		_gameObjects.push_back(orange);
		_oranges.push_back(orange);
	}


	//Constructing Camera
	_2dCamera = new OrthogonalCamera();
	_2dCamera->setEye(0, 0, 15);
	_2dCamera->setCenter(0, 0, 1);
	_2dCamera->setUp(0, 1, 0);
	_2dCamera->setLowerLimits(-15, -15, -15);
	_2dCamera->setUpperLimits(15, 15, 15);
	_activeCamera = _2dCamera;

	_guiCamera = new OrthogonalCamera();
	_guiCamera->setEye(0, 0, 20);
	_guiCamera->setCenter(0, 0, 1);
	_guiCamera->setUp(0, 1, 0);
	_guiCamera->setLowerLimits(-15, -15, -15);
	_guiCamera->setUpperLimits(15, 15, 15);

	_fieldCamera = new PerspectiveCamera();
	_fieldCamera->setEye(-20, -20, 20);
	_fieldCamera->setCenter(0, 0, 2);
	_fieldCamera->setUp(20, 20, 19);
	_fieldCamera->update(90, 1, 0.01, 150);

	_carCamera = new PerspectiveCamera();
	_carCamera->setEye(_car->getPosition()->getX() - (CAR_CAMERA_DISTANCE * (cos(_car->getCurrentAngle() * (PI / 180)))),
		_car->getPosition()->getY() - (CAR_CAMERA_DISTANCE * (sin(_car->getCurrentAngle() * (PI / 180)))),
		CAR_CAMERA_DISTANCE);
	_carCamera->setCenter(_car->getPosition()->getX(), _car->getPosition()->getY(), _car->getPosition()->getZ());
	//_carCamera->setUp(_car->getSpeed()->getX(), _car->getSpeed()->getY(), _car->getSpeed()->getZ());
	_carCamera->setUp(0, 0, 1);
	_carCamera->update(60, 1, 0.01, 150);


	//Constructing light sources

	Vela* vela1 = new Vela();
	vela1->setPosition(-6, 6, 1.6);
	_gameObjects.push_back(vela1);

	Vela* vela2 = new Vela();
	vela2->setPosition(6, 6, 1.6);
	_gameObjects.push_back(vela2);

	Vela* vela3 = new Vela();
	vela3->setPosition(0, -6, 1.6);
	_gameObjects.push_back(vela3);

	Vela* vela4 = new Vela();
	vela4->setPosition(-10, -10, 1.6);
	_gameObjects.push_back(vela4);

	Vela* vela5 = new Vela();
	vela5->setPosition(10, -10, 1.6);
	_gameObjects.push_back(vela5);

	Vela* vela6 = new Vela();
	vela6->setPosition(0, 14, 1.6);
	_gameObjects.push_back(vela6);


	LightSource* daylight = new LightSource(0);
	daylight->setPosition(0, 0, 10, 0);
	daylight->setAmbient(0.5, 0.5, 0.5, 1);
	daylight->setDiffuse(1, 1, 1, 1);
	daylight->setSpecular(1, 1, 1, 1);
	_lightSources.push_back(daylight);

	LightSource* candle1 = new LightSource(1);
	candle1->setPosition(-6, 6, 1, 1);
	candle1->setAmbient(0.7, 0.7, 0.7, 1);
	candle1->setDiffuse(1, 1, 1, 1);
	candle1->setSpecular(1, 1, 1, 1);
	candle1->setAttenuation(1, 0, 0.1);
	_lightSources.push_back(candle1);

	LightSource* candle2 = new LightSource(2);
	candle2->setPosition(6, 6, 1, 1);
	candle2->setAmbient(0.7, 0.7, 0.7, 1);
	candle2->setDiffuse(1, 1, 1, 1);
	candle2->setSpecular(1, 1, 1, 1);
	candle2->setAttenuation(1, 0, 0.1);
	_lightSources.push_back(candle2);

	LightSource* candle3 = new LightSource(3);
	candle3->setPosition(0, -6, 1, 1);
	candle3->setAmbient(0.7, 0.7, 0.7, 1);
	candle3->setDiffuse(1, 1, 1, 1);
	candle3->setSpecular(1, 1, 1, 1);
	candle3->setAttenuation(1, 0, 0.1);
	_lightSources.push_back(candle3);

	LightSource* candle4 = new LightSource(4);
	candle4->setPosition(-10, -10, 1, 1);
	candle4->setAmbient(0.7, 0.7, 0.7, 1);
	candle4->setDiffuse(1, 1, 1, 1);
	candle4->setSpecular(1, 1, 1, 1);
	candle4->setAttenuation(1, 0, 0.1);
	_lightSources.push_back(candle4);

	LightSource* candle5 = new LightSource(5);
	candle5->setPosition(10, -10, 1, 1);
	candle5->setAmbient(0.7, 0.7, 0.7, 1);
	candle5->setDiffuse(1, 1, 1, 1);
	candle5->setSpecular(1, 1, 1, 1);
	candle5->setAttenuation(1, 0, 0.1);
	_lightSources.push_back(candle5);

	LightSource* candle6 = new LightSource(6);
	candle6->setPosition(0, 15, 1, 1);
	candle6->setAmbient(0.7, 0.7, 0.7, 1);
	candle6->setDiffuse(1, 1, 1, 1);
	candle6->setSpecular(1, 1, 1, 1);
	candle6->setAttenuation(1.0, 0, 0.1);
	_lightSources.push_back(candle6);

	LightSource* spotlight = new LightSource(7);
	spotlight->setAmbient(0.8, 0.8, 0.8, 1);
	spotlight->setDiffuse(1, 1, 1, 1);
	spotlight->setSpecular(1, 1, 1, 1);
	spotlight->setExponent(new GLfloat(5));
	spotlight->setCutOff(new GLfloat(40));
	spotlight->setAttenuation(0, 0.6, 0.3);
	_lightSources.push_back(spotlight);

	initIsDone = true;
}
コード例 #14
0
void InstantRadiosity::castIndirect(RayTracer *rt, MeshWithColors *scene, const LightSource& ls, int num)
{
    // If the caller requests a different number of lights than before, reallocate everything.
    // (This is OpenGL resource management stuff, don't touch unless you specifically need to)
    if (m_indirectLights.size() != num)
    {
        printf("Deleting %i indirect light sources.\n", num);
        for (auto iter = m_indirectLights.begin(); iter != m_indirectLights.end(); iter++)
            iter->freeShadowMap();
        m_indirectLights.resize(num);
        for (auto iter = m_indirectLights.begin(); iter != m_indirectLights.end(); iter++)
            iter->setEnabled(false);
    }

    // Request #num exiting rays from the light.
    std::vector<Vec3f> origs, dirs, E_times_pdf;
    ls.sampleEmittedRays(num, origs, dirs, E_times_pdf);

    // At this point m_indirectLights holds #num lights that are off.
    // Loop through the rays and fill in the corresponding lights in m_indirectLights
    // based on what happens to the ray.
    for (int i = 0; i < num; i++)
    {
        // Intersect against the scene
        Hit h = rt->rayCast(origs[i], dirs[i]);
        const RTTriangle* tri = h.triangle;

        if ( tri != 0 )
        {
            // YOUR CODE HERE
            // Ray hit the scene, now position the light m_indirectLights[i] correctly,
            // color it based on the texture or diffuse color, etc. (see the LightSource declaration for the list
            // of things that a light source needs to have)
            // A lot of this code is like in the Assignment 2's corresponding routine.

            const RTToMesh* map = (const RTToMesh*)tri->m_userPointer;
            const Vec3i& indices = scene->indices( map->submesh )[ map->tri_idx ];

            // Fetch the barycentrics
            Vec3f barycentrics = tri->getBarycentrics(h.intersection);

            // Check for backfaces => don't accumulate if we hit a surface from below!
            const Vec3f tnormal = tri->getNormal(h.intersection, barycentrics);

            // Divide incident irradiance by PI so that we can turn it into outgoing
            // radiosity by multiplying by the reflectance factor below.
            //Ei *= (1.0f / FW_PI);

            Vec3f Ei;
            // check for texture
            const MeshBase::Material& mat = scene->material(map->submesh);
            if ( mat.textures[MeshBase::TextureType_Diffuse].exists() )
            {
                // Yes, texture; fetch diffuse albedo from there.
                // First interpolate UV coordinates from the vertices using barycentrics
                // Then turn those into pixel coordinates within the texture
                // Finally fetch the color using Image::getVec4f() (point sampling is fine).
                // Use the result as the diffuse reflectance instead of mat.diffuse.

                const Texture& tex = mat.textures[MeshBase::TextureType_Diffuse];
                const Image& teximg = *tex.getImage();

                Vec2f texCoord = barycentrics[0] * scene->vertex(indices[0]).t +
                                 barycentrics[1] * scene->vertex(indices[1]).t +
                                 barycentrics[2] * scene->vertex(indices[2]).t;

                Vec2i texCoordi = Vec2i( (texCoord.x - floor(texCoord.x))*teximg.getSize().x,
                                         (texCoord.y - floor(texCoord.y))*teximg.getSize().y );

                Ei = teximg.getVec4f(texCoordi).getXYZ();
            }
            else
            {
                Ei = mat.diffuse.getXYZ();
            }

            Vec3f emission = E_times_pdf[i] * Ei;

            // Set the indirect light parameters
            m_indirectLights[i].setPosition(h.intersection);
            Mat3f orientation = LightSource::formBasis(-tnormal);
            m_indirectLights[i].setOrientation(orientation);
            m_indirectLights[i].setEmission(emission);
            m_indirectLights[i].setFOV(m_indirectFOV);

            // Replace this with true once your light is ready to be used in rendering
            m_indirectLights[i].setEnabled(true);
        }
        else
        {
            // If we missed the scene, disable the light so it's skipped in all rendering operations.
            m_indirectLights[i].setEnabled(false);
        }
    }
}
コード例 #15
0
bool SVGFEDiffuseLightingElement::setFilterEffectAttribute(FilterEffect* effect, const QualifiedName& attrName)
{
    FEDiffuseLighting* diffuseLighting = static_cast<FEDiffuseLighting*>(effect);

    if (attrName == SVGNames::lighting_colorAttr) {
        RenderObject* renderer = this->renderer();
        ASSERT(renderer);
        ASSERT(renderer->style());
        return diffuseLighting->setLightingColor(renderer->style()->svgStyle()->lightingColor());
    }
    if (attrName == SVGNames::surfaceScaleAttr)
        return diffuseLighting->setSurfaceScale(surfaceScale());
    if (attrName == SVGNames::diffuseConstantAttr)
        return diffuseLighting->setDiffuseConstant(diffuseConstant());

    LightSource* lightSource = const_cast<LightSource*>(diffuseLighting->lightSource());
    const SVGFELightElement* lightElement = SVGFELightElement::findLightElement(this);
    ASSERT(lightSource);
    ASSERT(lightElement);

    if (attrName == SVGNames::azimuthAttr)
        return lightSource->setAzimuth(lightElement->azimuth());
    if (attrName == SVGNames::elevationAttr)
        return lightSource->setElevation(lightElement->elevation());
    if (attrName == SVGNames::xAttr)
        return lightSource->setX(lightElement->x());
    if (attrName == SVGNames::yAttr)
        return lightSource->setY(lightElement->y());
    if (attrName == SVGNames::zAttr)
        return lightSource->setZ(lightElement->z());
    if (attrName == SVGNames::pointsAtXAttr)
        return lightSource->setPointsAtX(lightElement->pointsAtX());
    if (attrName == SVGNames::pointsAtYAttr)
        return lightSource->setPointsAtY(lightElement->pointsAtY());
    if (attrName == SVGNames::pointsAtZAttr)
        return lightSource->setPointsAtZ(lightElement->pointsAtZ());
    if (attrName == SVGNames::specularExponentAttr)
        return lightSource->setSpecularExponent(lightElement->specularExponent());
    if (attrName == SVGNames::limitingConeAngleAttr)
        return lightSource->setLimitingConeAngle(lightElement->limitingConeAngle());

    ASSERT_NOT_REACHED();
    return false;
}
コード例 #16
0
ファイル: WorldObject.cpp プロジェクト: lucasbiagini/PG
void WorldObject::Draw(Camera* camera)
{
    glMatrixMode(GL_MODELVIEW);
    camera->LoadMatrix();
    glTranslatef(this->position.x, this->position.y, this->position.z);
    
    glRotatef(this->rotation.z, 0, 0, 1.0f);
    glRotatef(this->rotation.y, 0, 1.0f, 0);
    glRotatef(this->rotation.x, 1.f, 0, 0);
    glScalef(this->scale, this->scale, this->scale);
    
    
    glBegin(GL_TRIANGLES);
    for(int i = 0; i < this->faceCount; i++)
    {
        modelFace face = this->faces[i];
        vector3 v1 = this->vertices[face.v1];
        vector3 v2 = this->vertices[face.v2];
        vector3 v3 = this->vertices[face.v3];
        
        vector3 transformedv1 = this->GetTransformedVertex(face.v1);
        vector3 transformedv2 = this->GetTransformedVertex(face.v2);
        vector3 transformedv3 = this->GetTransformedVertex(face.v3);
        
        vector3 v1norm = this->GetVertexNormal(face.v1);
        vector3 v2norm = this->GetVertexNormal(face.v2);
        vector3 v3norm = this->GetVertexNormal(face.v3);
        
        vector3 v1Color = { 0, 0, 0 };
        vector3 v2Color = { 0, 0, 0 };
        vector3 v3Color = { 0, 0, 0 };
        
        std::vector<LightSource*> lightSources = this->world->GetLightSources();
        for(int i = 0; i < lightSources.size(); i++)
        {
            LightSource* ls = lightSources[i];
            
            vector3 v1LightColor = ls->CalculateLight(this, transformedv1, v1norm, camera);
            vector3 v2LightColor = ls->CalculateLight(this, transformedv2, v2norm, camera);
            vector3 v3LightColor = ls->CalculateLight(this, transformedv3, v3norm, camera);
            
            v1Color.x += v1LightColor.x;
            v1Color.y += v1LightColor.y;
            v1Color.z += v1LightColor.z;
            
            v2Color.x += v2LightColor.x;
            v2Color.y += v2LightColor.y;
            v2Color.z += v2LightColor.z;
            
            v3Color.x += v3LightColor.x;
            v3Color.y += v3LightColor.y;
            v3Color.z += v3LightColor.z;
        }
        
        glColor3f(v1Color.x, v1Color.y, v1Color.z);
        glVertex3f(v1.x, v1.y, v1.z);
        
        glColor3f(v2Color.x, v2Color.y, v2Color.z);
        glVertex3f(v2.x, v2.y, v2.z);
        
        glColor3f(v3Color.x, v3Color.y, v3Color.z);
        glVertex3f(v3.x, v3.y, v3.z);
    }
    glEnd();
    
    this->transformedNormalsAreValid = true;
}
コード例 #17
0
ファイル: Scene.cpp プロジェクト: vmichele/RAY_TRACER
void Scene::addLightSource(const LightSource& lightSource) {
    _lightSources.push_back(lightSource.clone());
}
コード例 #18
0
ファイル: Tuto12.cpp プロジェクト: fkanehiro/etc
int main()
{
	//Declaration of the objects that will form our scene
	osgViewer::Viewer viewer;
	ref_ptr<Group> scene (new Group);
	ref_ptr<Geode> objectGeode (new Geode);
	ref_ptr<Geode> terrainGeode (new Geode);
	ref_ptr<Geode> lightMarkerGeode (new Geode);
	
	//Shadow stuff!!!	
	ref_ptr<osgShadow::ShadowedScene> shadowedScene = new osgShadow::ShadowedScene;
	ref_ptr<osgShadow::ShadowMap> sm = new osgShadow::ShadowMap;
        shadowedScene->setShadowTechnique(sm.get());

	//Main light source 
	Vec3 lightPosition(0,0,3); 
	LightSource* ls = new LightSource;
  	ls->getLight()->setPosition(Vec4(lightPosition,1));
	ls->getLight()->setAmbient(Vec4(0.2,0.2,0.2,1.0));
        ls->getLight()->setDiffuse(Vec4(0.6,0.6,0.6,1.0));

	
	
	shadowedScene->addChild(scene.get());
	shadowedScene->addChild(ls);
	shadowedScene->addChild(lightMarkerGeode.get());
	//Next we define the material property of our objects 
	// material
        ref_ptr<Material> matirial = new Material;
        matirial->setColorMode(Material::DIFFUSE);
        matirial->setAmbient(Material::FRONT_AND_BACK, Vec4(0, 0, 0, 1));
        matirial->setSpecular(Material::FRONT_AND_BACK, Vec4(1, 1, 1, 1));
        matirial->setShininess(Material::FRONT_AND_BACK, 64);
        scene->getOrCreateStateSet()->setAttributeAndModes(matirial.get(), StateAttribute::ON);

	//Adding the terrain and object nodes to the root node
	scene->addChild(objectGeode.get());
	scene->addChild(terrainGeode.get());

	
	//The terrain first, a flatten box
	terrainGeode->addDrawable(new ShapeDrawable(new Box(Vec3f(),5,7,0.05f)));
	terrainGeode->getOrCreateStateSet()->setTextureAttributeAndModes(0, new osg::Texture2D(osgDB::readImageFile("terrain.jpg")));

	//Now we can define our world made of several objects  
	
	//The capsule
	objectGeode->getOrCreateStateSet()->setTextureAttributeAndModes(0, new Texture2D(osgDB::readImageFile("Fieldstone.jpg")));
	objectGeode->addDrawable(new ShapeDrawable(new Capsule(Vec3(1,-1,1),0.3f,0.5f)));

	//The box
	objectGeode->addDrawable(new ShapeDrawable(new Box(Vec3(-1,1,1),1,1,1)));
	
	//The sphere
	objectGeode->addDrawable(new ShapeDrawable(new Sphere(Vec3(1,2,1),0.5f)));
	
	//objectGeode->addDrawable(new ShapeDrawable(new Sphere(Vec3(0,0,4.5f),0.1f)));

	//And finally the light marker: a small sphere
	lightMarkerGeode->addDrawable(new ShapeDrawable(new Sphere(lightPosition+osg::Vec3(0,0,0.5f),0.1f)));
	
	viewer.setSceneData( shadowedScene.get() );
	
	//Stats Event Handler s key
	viewer.addEventHandler(new osgViewer::StatsHandler);

	// add the state manipulator
    	viewer.addEventHandler( new osgGA::StateSetManipulator(viewer.getCamera()->getOrCreateStateSet()) );

	//Windows size handler
	viewer.addEventHandler(new osgViewer::WindowSizeHandler);

	
	return (viewer.run());
}