コード例 #1
0
ファイル: XMLTester.cpp プロジェクト: cumtmyf/MFC_Viewer
void
XMLTester::parseTest(const TiXmlNode* node)
{
    using namespace operation::overlay;

    typedef std::auto_ptr< geom::Geometry > GeomAutoPtr;

    int success=0; // no success by default
    std::string opName;
    std::string opArg1;
    std::string opArg2;
    std::string opArg3;
    std::string opArg4;
    std::string opRes;

    ++testCount;

    const TiXmlNode* opnode = node->FirstChild("op");
    if ( ! opnode ) throw(runtime_error("case has no op"));

    //dump_to_stdout(opnode);

    const TiXmlElement* opel = opnode->ToElement();

    const char* tmp = opel->Attribute("name");
    if ( tmp ) opName = tmp;

    tmp = opel->Attribute("arg1");
    if ( tmp ) opArg1 = tmp;

    tmp = opel->Attribute("arg2");
    if ( tmp ) opArg2 = tmp;

    tmp = opel->Attribute("arg3");
    if ( tmp ) opArg3 = tmp;

    tmp = opel->Attribute("arg4");
    if ( tmp ) opArg4 = tmp;

    const TiXmlNode* resnode = opnode->FirstChild();
    if ( ! resnode )
    {
        std::stringstream tmp;
        tmp << "op of test " << testCount
            << " of case " << caseCount
            << " has no expected result child";
        throw(runtime_error(tmp.str()));
    }
    opRes = resnode->Value();

    // trim blanks
    opRes=trimBlanks(opRes);
    opName=trimBlanks(opName);
    tolower(opName);

    std::string opSig="";

    if ( opArg1 != "" ) opSig=opArg1;
    if ( opArg2 != "" ) {
        if ( opSig != "" ) opSig += ", ";
        opSig += opArg2;
    }
    if ( opArg3 != "" ) {
        if ( opSig != "" ) opSig += ", ";
        opSig += opArg3;
    }
    if ( opArg4 != "" ) {
        if ( opSig != "" ) opSig += ", ";
        opSig += opArg4;
    }

    opSignature = opName + "(" + opSig + ")";

    std::string actual_result="NONE";

    // expected_result will be modified by specific tests
    // if needed (geometry normalization, for example)
    std::string expected_result=opRes;

    try
    {

        util::Profile profile("op");

        if (opName=="relate")
        {
            std::auto_ptr<geom::IntersectionMatrix> im(gA->relate(gB));
            assert(im.get());

            if (im->matches(opArg3)) actual_result="true";
            else actual_result="false";

            if (actual_result==opRes) success=1;
        }

        else if (opName=="isvalid")
        {
            geom::Geometry *gT=gA;
            if ( ( opArg1 == "B" || opArg1 == "b" ) && gB ) {
                gT=gB;
            } 

            if (gT->isValid()) actual_result="true";
            else actual_result="false";

            if (actual_result==opRes) success=1;

        }

        else if (opName=="intersection")
        {

            GeomAutoPtr gRes(parseGeometry(opRes, "expected"));
            gRes->normalize();

#ifndef USE_BINARYOP
            GeomAutoPtr gRealRes(gA->intersection(gB));
#else
            GeomAutoPtr gRealRes = BinaryOp(gA, gB, overlayOp(OverlayOp::opINTERSECTION));
#endif

            gRealRes->normalize();

            if (gRes->compareTo(gRealRes.get())==0) success=1;

            actual_result=printGeom(gRealRes.get());
            expected_result=printGeom(gRes.get());

            if ( testValidOutput )
                success &= int(testValid(gRealRes.get(), "result"));
        }

        else if (opName=="union")
        {
            GeomAutoPtr gRes(parseGeometry(opRes, "expected"));

            GeomAutoPtr gRealRes;
            if ( gB ) {
#ifndef USE_BINARYOP
                gRealRes.reset(gA->Union(gB));
#else
                gRealRes = BinaryOp(gA, gB, overlayOp(OverlayOp::opUNION));
#endif
            } else {
                gRealRes = gA->Union();
            }

            if (gRes->equals(gRealRes.get())) success=1;

            actual_result=printGeom(gRealRes.get());
            expected_result=printGeom(gRes.get());

            if ( testValidOutput )
                success &= int(testValid(gRealRes.get(), "result"));
        }

        else if (opName=="difference")
        {

            GeomAutoPtr gRes(parseGeometry(opRes, "expected"));
            gRes->normalize();

#ifndef USE_BINARYOP
            GeomAutoPtr gRealRes(gA->difference(gB));
#else
            GeomAutoPtr gRealRes = BinaryOp(gA, gB, overlayOp(OverlayOp::opDIFFERENCE));
#endif
            
            gRealRes->normalize();

            if (gRes->compareTo(gRealRes.get())==0) success=1;

            actual_result=printGeom(gRealRes.get());
            expected_result=printGeom(gRes.get());

            if ( testValidOutput )
                success &= int(testValid(gRealRes.get(), "result"));
        }

        else if (opName=="symdifference")
        {
            GeomAutoPtr gRes(parseGeometry(opRes, "expected"));
            gRes->normalize();

#ifndef USE_BINARYOP
            GeomAutoPtr gRealRes(gA->symDifference(gB));
#else
            GeomAutoPtr gRealRes = BinaryOp(gA, gB, overlayOp(OverlayOp::opSYMDIFFERENCE));
#endif

            gRealRes->normalize();

            if (gRes->compareTo(gRealRes.get())==0) success=1;

            actual_result=printGeom(gRealRes.get());
            expected_result=printGeom(gRes.get());

            if ( testValidOutput )
                success &= int(testValid(gRealRes.get(), "result"));
        }

        else if (opName=="intersects")
        {
            geom::Geometry *g1 = opArg1 == "B" ? gB : gA;
            geom::Geometry *g2 = opArg2 == "B" ? gB : gA;

            if (g1->intersects(g2)) actual_result="true";
            else actual_result="false";
            
            if (actual_result==opRes) success=1;
        }

        else if (opName=="contains")
        {
            geom::Geometry *g1 = opArg1 == "B" ? gB : gA;
            geom::Geometry *g2 = opArg2 == "B" ? gB : gA;

            if (g1->contains(g2)) actual_result="true";
            else actual_result="false";
            
            if (actual_result==opRes) success=1;
        }

        else if (opName=="within")
        {
            geom::Geometry *g1 = opArg1 == "B" ? gB : gA;
            geom::Geometry *g2 = opArg2 == "B" ? gB : gA;

            if (g1->within(g2)) actual_result="true";
            else actual_result="false";
            
            if (actual_result==opRes) success=1;
        }

        else if (opName=="covers")
        {
            geom::Geometry *g1 = opArg1 == "B" ? gB : gA;
            geom::Geometry *g2 = opArg2 == "B" ? gB : gA;

            if (g1->covers(g2)) actual_result="true";
            else actual_result="false";
            
            if (actual_result==opRes) success=1;
        }

        else if (opName=="coveredby")
        {
            geom::Geometry *g1 = opArg1 == "B" ? gB : gA;
            geom::Geometry *g2 = opArg2 == "B" ? gB : gA;

            if (g1->coveredBy(g2)) actual_result="true";
            else actual_result="false";
            
            if (actual_result==opRes) success=1;
        }

        else if (opName=="getboundary")
        {
            geom::Geometry *gT=gA;
            if ( ( opArg1 == "B" || opArg1 == "b" ) && gB ) gT=gB;

            GeomAutoPtr gRes(parseGeometry(opRes, "expected"));
            gRes->normalize();

            GeomAutoPtr gRealRes(gT->getBoundary());
            gRealRes->normalize();

            if (gRes->compareTo(gRealRes.get())==0) success=1;

            actual_result=printGeom(gRealRes.get());
            expected_result=printGeom(gRes.get());

            if ( testValidOutput )
                success &= int(testValid(gRealRes.get(), "result"));
        }

        else if (opName=="getcentroid")
        {
            geom::Geometry *gT=gA;
            if ( ( opArg1 == "B" || opArg1 == "b" ) && gB ) gT=gB;

            GeomAutoPtr gRes(parseGeometry(opRes, "expected"));
            gRes->normalize();

            GeomAutoPtr gRealRes(gT->getCentroid());

            if ( gRealRes.get() ) gRealRes->normalize();
            else gRealRes.reset(factory->createPoint());
            gRealRes->normalize();

            if (gRes->compareTo(gRealRes.get())==0) success=1;

            actual_result=printGeom(gRealRes.get());
            expected_result=printGeom(gRes.get());

            if ( testValidOutput ) 
                success &= int(testValid(gRealRes.get(), "result"));
        }

        else if (opName=="issimple")
        {
            geom::Geometry *gT=gA;
            if ( ( opArg1 == "B" || opArg1 == "b" ) && gB ) gT=gB;

            if (gT->isSimple()) actual_result="true";
            else actual_result="false";

            if (actual_result==opRes) success=1;

        }

        else if (opName=="convexhull")
        {
            geom::Geometry *gT=gA;
            if ( ( opArg1 == "B" || opArg1 == "b" ) && gB ) gT=gB;

            GeomAutoPtr gRes(parseGeometry(opRes, "expected"));
            gRes->normalize();

            GeomAutoPtr gRealRes(gT->convexHull());
            gRealRes->normalize();

            if (gRes->compareTo(gRealRes.get())==0) success=1;

            actual_result=printGeom(gRealRes.get());
            expected_result=printGeom(gRes.get());

            if ( testValidOutput ) 
                success &= int(testValid(gRealRes.get(), "result"));
        }

        else if (opName=="buffer")
        {
            using namespace operation::buffer;

            geom::Geometry *gT=gA;
            if ( ( opArg1 == "B" || opArg1 == "b" ) && gB ) gT=gB;

            GeomAutoPtr gRes(parseGeometry(opRes, "expected"));
            gRes->normalize();

            profile.start();

            GeomAutoPtr gRealRes;
            double dist = std::atof(opArg2.c_str());

            BufferParameters params;
            if ( opArg3 != "" ) {
        params.setQuadrantSegments(std::atoi(opArg3.c_str()));
            }
            

            BufferOp op(gT, params);
            gRealRes.reset(op.getResultGeometry(dist));

            profile.stop();
            gRealRes->normalize();

            // Validate the buffer operation
            success = checkBufferSuccess(*gRes, *gRealRes, dist);

            actual_result=printGeom(gRealRes.get());
            expected_result=printGeom(gRes.get());

            if ( testValidOutput )
                success &= int(testValid(gRealRes.get(), "result"));
        }

        else if (opName=="buffersinglesided")
        {
            using namespace operation::buffer;

            geom::Geometry *gT=gA;
            if ( ( opArg1 == "B" || opArg1 == "b" ) && gB ) gT=gB;

            GeomAutoPtr gRes(parseGeometry(opRes, "expected"));
            gRes->normalize();

            profile.start();

            GeomAutoPtr gRealRes;
            double dist = std::atof(opArg2.c_str());
                
            BufferParameters params ;
            params.setJoinStyle( BufferParameters::JOIN_ROUND ) ;
            if ( opArg3 != "" ) {
        params.setQuadrantSegments( std::atoi(opArg3.c_str()));
            }
            
            bool leftSide = true ;
            if ( opArg4 == "right" )
            {
                leftSide = false ;
            }

            BufferBuilder bufBuilder( params ) ;
            gRealRes.reset( bufBuilder.bufferLineSingleSided(
                                         gT, dist, leftSide ) ) ;

            profile.stop();
            gRealRes->normalize();

            // Validate the single sided buffer operation
            success = checkSingleSidedBufferSuccess(*gRes,
                    *gRealRes, dist);

            actual_result=printGeom(gRealRes.get());
            expected_result=printGeom(gRes.get());

            if ( testValidOutput )
                success &= int(testValid(gRealRes.get(), "result"));
        }

        else if (opName=="buffermitredjoin")
        {
            using namespace operation::buffer;

            geom::Geometry *gT=gA;
            if ( ( opArg1 == "B" || opArg1 == "b" ) && gB ) gT=gB;

            GeomAutoPtr gRes(parseGeometry(opRes, "expected"));
            gRes->normalize();

            profile.start();

            GeomAutoPtr gRealRes;
            double dist = std::atof(opArg2.c_str());

            BufferParameters params;
            params.setJoinStyle(BufferParameters::JOIN_MITRE);

            if ( opArg3 != "" ) {
        params.setQuadrantSegments(std::atoi(opArg3.c_str()));
            }

            BufferOp op(gT, params);
            gRealRes.reset(op.getResultGeometry(dist));

            profile.stop();
            gRealRes->normalize();

            // Validate the buffer operation
            success = checkBufferSuccess(*gRes, *gRealRes, dist);

            actual_result=printGeom(gRealRes.get());
            expected_result=printGeom(gRes.get());

            if ( testValidOutput ) 
                success &= int(testValid(gRealRes.get(), "result"));
        }


        else if (opName=="getinteriorpoint")
        {
            geom::Geometry *gT=gA;
            if ( ( opArg1 == "B" || opArg1 == "b" ) && gB ) gT=gB;

            GeomAutoPtr gRes(parseGeometry(opRes, "expected"));
            gRes->normalize();

            GeomAutoPtr gRealRes(gT->getInteriorPoint());
            if ( gRealRes.get() ) gRealRes->normalize();
            else gRealRes.reset(factory->createPoint());

            if (gRes->compareTo(gRealRes.get())==0) success=1;

            actual_result=printGeom(gRealRes.get());
            expected_result=printGeom(gRes.get());

            if ( testValidOutput ) 
                success &= int(testValid(gRealRes.get(), "result"));
        }

        else if (opName=="iswithindistance")
        {
            double dist=std::atof(opArg3.c_str());
            if (gA->isWithinDistance(gB, dist)) {
                actual_result="true";
            } else {
                actual_result="false";
            }

            if (actual_result==opRes) success=1;

        }

        else if (opName=="polygonize")
        {

            GeomAutoPtr gRes(wktreader->read(opRes));
            gRes->normalize();

            Polygonizer plgnzr;
            plgnzr.add(gA);


            std::vector<geos::geom::Polygon *>*polys = plgnzr.getPolygons();
            std::vector<geom::Geometry *>*newgeoms = new std::vector<geom::Geometry *>;
            for (unsigned int i=0; i<polys->size(); i++)
                newgeoms->push_back((*polys)[i]);
            delete polys;

            GeomAutoPtr gRealRes(factory->createGeometryCollection(newgeoms));
            gRealRes->normalize();


            if (gRes->compareTo(gRealRes.get())==0) success=1;

            actual_result=printGeom(gRealRes.get());
            expected_result=printGeom(gRes.get());

            if ( testValidOutput )
                success &= int(testValid(gRealRes.get(), "result"));
        }

        else if (opName=="linemerge")
        {
            GeomAutoPtr gRes(wktreader->read(opRes));
            gRes->normalize();

            geom::Geometry *gT=gA;

            if ( ( opArg1 == "B" || opArg1 == "b" ) && gB ) gT=gB;

            LineMerger merger;
            merger.add(gT);
            std::auto_ptr< std::vector<geom::LineString *> > lines ( merger.getMergedLineStrings() );
            std::vector<geom::Geometry *>*newgeoms = new std::vector<geom::Geometry *>(lines->begin(),
                    lines->end());

            GeomAutoPtr gRealRes(factory->createGeometryCollection(newgeoms));
            gRealRes->normalize();

            if (gRes->compareTo(gRealRes.get())==0) success=1;

            actual_result=printGeom(gRealRes.get());
            expected_result=printGeom(gRes.get());

            if ( testValidOutput ) 
                success &= int(testValid(gRealRes.get(), "result"));
        }

        else if (opName=="areatest")
        {
            char* rest;
            double toleratedDiff = std::strtod(opRes.c_str(), &rest);
            int validOut = 1;

            if ( rest == opRes.c_str() )
            {
                throw std::runtime_error("malformed testcase: missing tolerated area difference in 'areatest' op");
            }

            if ( verbose > 1 )
            {
        std::cerr << "Running intersection for areatest" << std::endl;
            }
#ifndef USE_BINARYOP
            GeomAutoPtr gI(gA->intersection(gB));
#else
            GeomAutoPtr gI = BinaryOp(gA, gB,
                    overlayOp(OverlayOp::opINTERSECTION));
#endif

            if ( testValidOutput )
            {
                validOut &= int(testValid(gI.get(), "areatest intersection"));
            }

            if ( verbose > 1 )
            {
        std::cerr << "Running difference(A,B) for areatest" << std::endl;
            }

#ifndef USE_BINARYOP
            GeomAutoPtr gDab(gA->difference(gB));
#else
            GeomAutoPtr gDab = BinaryOp(gA, gB,
                    overlayOp(OverlayOp::opDIFFERENCE));
#endif

            if ( testValidOutput )
            {
                validOut &= int(testValid(gI.get(), "areatest difference(a,b)"));
            }

            if ( verbose > 1 )
            {
        std::cerr << "Running difference(B,A) for areatest" << std::endl;
            }

#ifndef USE_BINARYOP
            GeomAutoPtr gDba(gB->difference(gA));
#else
            GeomAutoPtr gDba = BinaryOp(gB, gA,
                    overlayOp(OverlayOp::opDIFFERENCE));
#endif

            if ( testValidOutput )
            {
                validOut &= int(testValid(gI.get(), "areatest difference(b,a)"));
            }

            if ( verbose > 1 )
            {
        std::cerr << "Running symdifference for areatest" << std::endl;
            }

#ifndef USE_BINARYOP
            GeomAutoPtr gSD(gA->symDifference(gB));
#else
            GeomAutoPtr gSD = BinaryOp(gA, gB,
                    overlayOp(OverlayOp::opSYMDIFFERENCE));
#endif

            if ( testValidOutput )
            {
                validOut &= int(testValid(gI.get(), "areatest symdifference"));
            }

            if ( verbose > 1 )
            {
        std::cerr << "Running union for areatest" << std::endl;
            }

#ifndef USE_BINARYOP
            GeomAutoPtr gU(gA->Union(gB));
#else
            GeomAutoPtr gU = BinaryOp(gA, gB,
                    overlayOp(OverlayOp::opUNION));
#endif

            double areaA = gA->getArea();
            double areaB = gB->getArea();
            double areaI = gI->getArea(); 
            double areaDab = gDab->getArea();
            double areaDba = gDba->getArea();
            double areaSD = gSD->getArea();
            double areaU = gU->getArea();

            double maxdiff = 0;
            std::string maxdiffop;

            // @ : symdifference
            // - : difference
            // + : union
            // ^ : intersection
        
            // A == ( A ^ B ) + ( A - B )
            double diff = std::fabs ( areaA - areaI - areaDab );
            if ( diff > maxdiff ) {
                maxdiffop = "A == ( A ^ B ) + ( A - B )";
                maxdiff = diff;
            }

            // B == ( A ^ B ) + ( B - A )
            diff = std::fabs ( areaB - areaI - areaDba );
            if ( diff > maxdiff ) {
                maxdiffop = "B == ( A ^ B ) + ( B - A )";
                maxdiff = diff;
            }

            //  ( A @ B ) == ( A - B ) + ( B - A )
            diff = std::fabs ( areaDab + areaDba - areaSD );
            if ( diff > maxdiff ) {
                maxdiffop = "( A @ B ) == ( A - B ) + ( B - A )";
                maxdiff = diff;
            }

            //  ( A u B ) == ( A ^ B ) + ( A @ B )
            diff = std::fabs ( areaI + areaSD - areaU );
            if ( diff > maxdiff ) {
                maxdiffop = "( A u B ) == ( A ^ B ) + ( A @ B )";
                maxdiff = diff;
            }

            if ( maxdiff <= toleratedDiff )
            {
                success = 1 && validOut;
            }

            std::stringstream tmp;
            tmp << maxdiffop << ": " << maxdiff;
            actual_result=tmp.str();
            expected_result=opRes;

        }
        else if (opName=="distance")
        {
            char* rest;
            double distE = std::strtod(opRes.c_str(), &rest);
            if ( rest == opRes.c_str() )
            {
                throw std::runtime_error("malformed testcase: missing expected result in 'distance' op");
            }

            geom::Geometry *g1 = opArg1 == "B" ? gB : gA;
            geom::Geometry *g2 = opArg2 == "B" ? gB : gA;
            double distO = g1->distance(g2);
            std::stringstream ss; ss << distO; 
            actual_result = ss.str();

            // TODO: Use a tolerance ?
            success = ( distO == distE ) ? 1 : 0;
        }

        else
        {
            std::cerr << *curr_file << ":";
            std::cerr << " case" << caseCount << ":";
            std::cerr << " test" << testCount << ": "
                      << opName << "(" << opSig << ")";
            std::cerr << ": skipped (unrecognized)." << std::endl;
            return;
        }

    }
    catch (const std::exception &e)
    {
        std::cerr<<"EXCEPTION on case "<<caseCount
            <<" test "<<testCount<<": "<<e.what()
            <<std::endl;
        actual_result = e.what();
    }
    catch (...)
    {
        std::cerr << "Unknown EXEPTION on case "
                  << caseCount
                  << std::endl;
        actual_result = "Unknown exception thrown";
    }

    if ( success ) ++succeeded;
    else ++failed;

    if ((!success && verbose) || verbose > 1)
    {
        printTest(!!success, expected_result, actual_result);
    }

    if (test_predicates && gB && gA) {
        runPredicates(gA, gB);
    }

}
コード例 #2
0
ファイル: example.cpp プロジェクト: h4ck3rm1k3/geos
// Start reading here
void do_all()
{
	vector<Geometry *> *geoms = new vector<Geometry *>;
	vector<Geometry *> *newgeoms;
	
	// Define a precision model using 0,0 as the reference origin
	// and 2.0 as coordinates scale.
	PrecisionModel *pm = new PrecisionModel(2.0, 0, 0);

	// Initialize global factory with defined PrecisionModel
	// and a SRID of -1 (undefined).
	global_factory = new GeometryFactory(pm, -1);

	// We do not need PrecisionMode object anymore, it has
	// been copied to global_factory private storage
	delete pm;

////////////////////////////////////////////////////////////////////////
// GEOMETRY CREATION
////////////////////////////////////////////////////////////////////////

	// Read function bodies to see the magic behind them
	geoms->push_back(create_point(150, 350));
	geoms->push_back(create_square_linearring(0,0,100));
	geoms->push_back(create_ushaped_linestring(60,60,100));
	geoms->push_back(create_square_linearring(0,0,100));
	geoms->push_back(create_square_polygon(0,200,300));
	geoms->push_back(create_square_polygon(0,250,300));
	geoms->push_back(create_simple_collection(geoms));

#if GEOMETRIC_SHAPES
	// These ones use a GeometricShapeFactory
	geoms->push_back(create_circle(0, 0, 10));
	geoms->push_back(create_ellipse(0, 0, 8, 12));
	geoms->push_back(create_rectangle(-5, -5, 10, 10)); // a square
	geoms->push_back(create_rectangle(-5, -5, 10, 20)); // a rectangle
	// The upper-right quarter of a vertical ellipse
	geoms->push_back(create_arc(0, 0, 10, 20, 0, M_PI/2));
	geoms->push_back(create_sinestar(10, 10, 100, 5, 2).release()); // a sine star
#endif

	// Print all geoms.
	cout<<"--------HERE ARE THE BASE GEOMS ----------"<<endl;
	wkt_print_geoms(geoms);


#if UNARY_OPERATIONS

////////////////////////////////////////////////////////////////////////
// UNARY OPERATIONS
////////////////////////////////////////////////////////////////////////

	/////////////////////////////////////////////
	// CENTROID
	/////////////////////////////////////////////
	
	// Find centroid of each base geometry
	newgeoms = new vector<Geometry *>;
	for (unsigned int i=0; i<geoms->size(); i++) {
		Geometry *g = (*geoms)[i];
		newgeoms->push_back( g->getCentroid() );
	}

	// Print all convex hulls
	cout<<endl<<"------- AND HERE ARE THEIR CENTROIDS -----"<<endl;
	wkt_print_geoms(newgeoms);

	// Delete the centroids
	for (unsigned int i=0; i<newgeoms->size(); i++) {
		delete (*newgeoms)[i];
	}
	delete newgeoms;
	
	/////////////////////////////////////////////
	// BUFFER
	/////////////////////////////////////////////
	
	newgeoms = new vector<Geometry *>;
	for (unsigned int i=0; i<geoms->size(); i++) {
		Geometry *g = (*geoms)[i];
		try {
			Geometry *g2 = g->buffer(10);
			newgeoms->push_back(g2);
		}
		catch (const GEOSException& exc) {
			cerr <<"GEOS Exception: geometry "<<i<<"->buffer(10): "<<exc.what()<<"\n";
		}
	}

	cout<<endl<<"--------HERE COMES THE BUFFERED GEOMS ----------"<<endl;
	wkt_print_geoms(newgeoms);

	for (unsigned int i=0; i<newgeoms->size(); i++) {
		delete (*newgeoms)[i];
	}
	delete newgeoms;
	
	/////////////////////////////////////////////
	// CONVEX HULL
	/////////////////////////////////////////////
	
	// Make convex hulls of geometries
	newgeoms = new vector<Geometry *>;
	for (unsigned int i=0; i<geoms->size(); i++) {
		Geometry *g = (*geoms)[i];
		newgeoms->push_back( g->convexHull() );
	}

	// Print all convex hulls
	cout<<endl<<"--------HERE COMES THE HULLS----------"<<endl;
	wkt_print_geoms(newgeoms);

	// Delete the hulls
	for (unsigned int i=0; i<newgeoms->size(); i++) {
		delete (*newgeoms)[i];
	}
	delete newgeoms;

#endif // UNARY_OPERATIONS

#if RELATIONAL_OPERATORS

////////////////////////////////////////////////////////////////////////
// RELATIONAL OPERATORS
////////////////////////////////////////////////////////////////////////

cout<<"-------------------------------------------------------------------------------"<<endl;
cout<<"RELATIONAL OPERATORS"<<endl;
cout<<"-------------------------------------------------------------------------------"<<endl;

	/////////////////////////////////////////////
	// DISJOINT
	/////////////////////////////////////////////

	cout<<endl;
	cout<<"   DISJOINT   ";
	for (unsigned int i=0; i<geoms->size(); i++) {
		cout<<"\t["<<i<<"]";
	}
	cout<<endl;
	for (unsigned int i=0; i<geoms->size(); i++) {
		Geometry *g1 = (*geoms)[i];
		cout<<"      ["<<i<<"]\t";
		for (unsigned int j=0; j<geoms->size(); j++) {
			Geometry *g2 = (*geoms)[j];
			try {
				if ( g1->disjoint(g2) ) cout<<" 1\t";
				else cout<<" 0\t";
			}
			// Geometry Collection is not a valid argument
			catch (const IllegalArgumentException& exc) {
				cout<<" X\t";
			}
			catch (const std::exception& exc) {
				cerr<<exc.what()<<endl;
			}
		}
		cout<<endl;
	}
	
	/////////////////////////////////////////////
	// TOUCHES
	/////////////////////////////////////////////

	cout<<endl;
	cout<<"    TOUCHES   ";
	for (unsigned int i=0; i<geoms->size(); i++) {
		cout<<"\t["<<i<<"]";
	}
	cout<<endl;
	for (unsigned int i=0; i<geoms->size(); i++) {
		Geometry *g1 = (*geoms)[i];
		cout<<"      ["<<i<<"]\t";
		for (unsigned int j=0; j<geoms->size(); j++) {
			Geometry *g2 = (*geoms)[j];
			try {
				if ( g1->touches(g2) ) cout<<" 1\t";
				else cout<<" 0\t";
			}
			// Geometry Collection is not a valid argument
			catch (const IllegalArgumentException& exc) {
				cout<<" X\t";
			}
			catch (const std::exception& exc) {
				cerr<<exc.what()<<endl;
			}
		}
		cout<<endl;
	}

	/////////////////////////////////////////////
	// INTERSECTS
	/////////////////////////////////////////////

	cout<<endl;
	cout<<" INTERSECTS   ";
	for (unsigned int i=0; i<geoms->size(); i++) {
		cout<<"\t["<<i<<"]";
	}
	cout<<endl;
	for (unsigned int i=0; i<geoms->size(); i++) {
		Geometry *g1 = (*geoms)[i];
		cout<<"      ["<<i<<"]\t";
		for (unsigned int j=0; j<geoms->size(); j++) {
			Geometry *g2 = (*geoms)[j];
			try {
				if ( g1->intersects(g2) ) cout<<" 1\t";
				else cout<<" 0\t";
			}
			// Geometry Collection is not a valid argument
			catch (const IllegalArgumentException& exc) {
				cout<<" X\t";
			}
			catch (const std::exception& exc) {
				cerr<<exc.what()<<endl;
			}
		}
		cout<<endl;
	}

	/////////////////////////////////////////////
	// CROSSES
	/////////////////////////////////////////////

	cout<<endl;
	cout<<"    CROSSES   ";
	for (unsigned int i=0; i<geoms->size(); i++) {
		cout<<"\t["<<i<<"]";
	}
	cout<<endl;
	for (unsigned int i=0; i<geoms->size(); i++) {
		Geometry *g1 = (*geoms)[i];
		cout<<"      ["<<i<<"]\t";
		for (unsigned int j=0; j<geoms->size(); j++) {
			Geometry *g2 = (*geoms)[j];
			try {
				if ( g1->crosses(g2) ) cout<<" 1\t";
				else cout<<" 0\t";
			}
			// Geometry Collection is not a valid argument
			catch (const IllegalArgumentException& exc) {
				cout<<" X\t";
			}
			catch (const std::exception& exc) {
				cerr<<exc.what()<<endl;
			}
		}
		cout<<endl;
	}

	/////////////////////////////////////////////
	// WITHIN
	/////////////////////////////////////////////

	cout<<endl;
	cout<<"     WITHIN   ";
	for (unsigned int i=0; i<geoms->size(); i++) {
		cout<<"\t["<<i<<"]";
	}
	cout<<endl;
	for (unsigned int i=0; i<geoms->size(); i++) {
		Geometry *g1 = (*geoms)[i];
		cout<<"      ["<<i<<"]\t";
		for (unsigned int j=0; j<geoms->size(); j++) {
			Geometry *g2 = (*geoms)[j];
			try {
				if ( g1->within(g2) ) cout<<" 1\t";
				else cout<<" 0\t";
			}
			// Geometry Collection is not a valid argument
			catch (const IllegalArgumentException& exc) {
				cout<<" X\t";
			}
			catch (const std::exception& exc) {
				cerr<<exc.what()<<endl;
			}
		}
		cout<<endl;
	}

	/////////////////////////////////////////////
	// CONTAINS
	/////////////////////////////////////////////

	cout<<endl;
	cout<<"   CONTAINS   ";
	for (unsigned int i=0; i<geoms->size(); i++) {
		cout<<"\t["<<i<<"]";
	}
	cout<<endl;
	for (unsigned int i=0; i<geoms->size(); i++) {
		Geometry *g1 = (*geoms)[i];
		cout<<"      ["<<i<<"]\t";
		for (unsigned int j=0; j<geoms->size(); j++) {
			Geometry *g2 = (*geoms)[j];
			try {
				if ( g1->contains(g2) ) cout<<" 1\t";
				else cout<<" 0\t";
			}
			// Geometry Collection is not a valid argument
			catch (const IllegalArgumentException& exc) {
				cout<<" X\t";
			}
			catch (const std::exception& exc) {
				cerr<<exc.what()<<endl;
			}
		}
		cout<<endl;
	}

	/////////////////////////////////////////////
	// OVERLAPS
	/////////////////////////////////////////////
	
	cout<<endl;
	cout<<"   OVERLAPS   ";
	for (unsigned int i=0; i<geoms->size(); i++) {
		cout<<"\t["<<i<<"]";
	}
	cout<<endl;
	for (unsigned int i=0; i<geoms->size(); i++) {
		Geometry *g1 = (*geoms)[i];
		cout<<"      ["<<i<<"]\t";
		for (unsigned int j=0; j<geoms->size(); j++) {
			Geometry *g2 = (*geoms)[j];
			try {
				if ( g1->overlaps(g2) ) cout<<" 1\t";
				else cout<<" 0\t";
			}
			// Geometry Collection is not a valid argument
			catch (const IllegalArgumentException& exc) {
				cout<<" X\t";
			}
			catch (const std::exception& exc) {
				cerr<<exc.what()<<endl;
			}
		}
		cout<<endl;
	}

	/////////////////////////////////////////////
	// RELATE
	/////////////////////////////////////////////

	cout<<endl;
	cout<<"     RELATE   ";
	for (unsigned int i=0; i<geoms->size(); i++) {
		cout<<"\t["<<i<<"]";
	}
	cout<<endl;
	for (unsigned int i=0; i<geoms->size(); i++) {
		Geometry *g1 = (*geoms)[i];
		cout<<"      ["<<i<<"]\t";
		for (unsigned int j=0; j<geoms->size(); j++) {
			Geometry *g2 = (*geoms)[j];
			IntersectionMatrix *im=NULL;
			try {
				// second argument is intersectionPattern
				string pattern = "212101212";
				if ( g1->relate(g2, pattern) ) cout<<" 1\t";
				else cout<<" 0\t";
				
				// get the intersectionMatrix itself
				im=g1->relate(g2);
				delete im; // delete afterwards
			}
			// Geometry Collection is not a valid argument
			catch (const IllegalArgumentException& exc) {
				cout<<" X\t";
			}
			catch (const std::exception& exc) {
				cerr<<exc.what()<<endl;
			}
		}
		cout<<endl;
	}

	/////////////////////////////////////////////
	// EQUALS
	/////////////////////////////////////////////

	cout<<endl;
	cout<<"     EQUALS   ";
	for (unsigned int i=0; i<geoms->size(); i++) {
		cout<<"\t["<<i<<"]";
	}
	cout<<endl;
	for (unsigned int i=0; i<geoms->size(); i++) {
		Geometry *g1 = (*geoms)[i];
		cout<<"      ["<<i<<"]\t";
		for (unsigned int j=0; j<geoms->size(); j++) {
			Geometry *g2 = (*geoms)[j];
			try {
				if ( g1->equals(g2) ) cout<<" 1\t";
				else cout<<" 0\t";
			}
			// Geometry Collection is not a valid argument
			catch (const IllegalArgumentException& exc) {
				cout<<" X\t";
			}
			catch (const std::exception& exc) {
				cerr<<exc.what()<<endl;
			}
		}
		cout<<endl;
	}

	/////////////////////////////////////////////
	// EQUALS_EXACT
	/////////////////////////////////////////////

	cout<<endl;
	cout<<"EQUALS_EXACT  ";
	for (unsigned int i=0; i<geoms->size(); i++) {
		cout<<"\t["<<i<<"]";
	}
	cout<<endl;
	for (unsigned int i=0; i<geoms->size(); i++) {
		Geometry *g1 = (*geoms)[i];
		cout<<"      ["<<i<<"]\t";
		for (unsigned int j=0; j<geoms->size(); j++) {
			Geometry *g2 = (*geoms)[j];
			try {
				// second argument is a tolerance
				if ( g1->equalsExact(g2, 0.5) ) cout<<" 1\t";
				else cout<<" 0\t";
			}
			// Geometry Collection is not a valid argument
			catch (const IllegalArgumentException& exc) {
				cout<<" X\t";
			}
			catch (const std::exception& exc) {
				cerr<<exc.what()<<endl;
			}
		}
		cout<<endl;
	}

	/////////////////////////////////////////////
	// IS_WITHIN_DISTANCE
	/////////////////////////////////////////////

	cout<<endl;
	cout<<"IS_WITHIN_DIST";
	for (unsigned int i=0; i<geoms->size(); i++) {
		cout<<"\t["<<i<<"]";
	}
	cout<<endl;
	for (unsigned int i=0; i<geoms->size(); i++) {
		Geometry *g1 = (*geoms)[i];
		cout<<"      ["<<i<<"]\t";
		for (unsigned int j=0; j<geoms->size(); j++) {
			Geometry *g2 = (*geoms)[j];
			try {
				// second argument is the distance
				if ( g1->isWithinDistance(g2,2) ) cout<<" 1\t";
				else cout<<" 0\t";
			}
			// Geometry Collection is not a valid argument
			catch (const IllegalArgumentException& exc) {
				cout<<" X\t";
			}
			catch (const std::exception& exc) {
				cerr<<exc.what()<<endl;
			}
		}
		cout<<endl;
	}

#endif // RELATIONAL_OPERATORS

#if COMBINATIONS

////////////////////////////////////////////////////////////////////////
// COMBINATIONS
////////////////////////////////////////////////////////////////////////

cout<<endl;
cout<<"-------------------------------------------------------------------------------"<<endl;
cout<<"COMBINATIONS"<<endl;
cout<<"-------------------------------------------------------------------------------"<<endl;

	/////////////////////////////////////////////
	// UNION
	/////////////////////////////////////////////

	// Make unions of all geoms
	newgeoms = new vector<Geometry *>;
	for (unsigned int i=0; i<geoms->size()-1; i++) {
		Geometry *g1 = (*geoms)[i];
		for (unsigned int j=i+1; j<geoms->size(); j++) {
			Geometry *g2 = (*geoms)[j];
			try {
				Geometry *g3 = g1->Union(g2);
				newgeoms->push_back(g3);
			}
			// It's illegal to union a collection ...
			catch (const IllegalArgumentException& ill) {
				//cerr <<ill.toString()<<"\n";
			}
			catch (const std::exception& exc) {
				cerr<<exc.what()<<endl;
			}
		}
	}

	// Print all unions
	cout<<endl<<"----- AND HERE ARE SOME UNION COMBINATIONS ------"<<endl;
	wkt_print_geoms(newgeoms);

	// Delete the resulting geoms
	for (unsigned int i=0; i<newgeoms->size(); i++) {
		delete (*newgeoms)[i];
	}
	delete newgeoms;
	

	/////////////////////////////////////////////
	// INTERSECTION
	/////////////////////////////////////////////
	
	// Compute intersection of adhiacent geometries
	newgeoms = new vector<Geometry *>;
	for (unsigned int i=0; i<geoms->size()-1; i++) {
		Geometry *g1 = (*geoms)[i];
		for (unsigned int j=i+1; j<geoms->size(); j++) {
			Geometry *g2 = (*geoms)[j];
			try {
				Geometry *g3 = g1->intersection(g2);
				newgeoms->push_back(g3);
			}
			// Collection are illegal as intersection argument
			catch (const IllegalArgumentException& ill) {
				//cerr <<ill.toString()<<"\n";
			}
			catch (const std::exception& exc) {
				cerr<<exc.what()<<endl;
			}
		}
	}

	cout<<endl<<"----- HERE ARE SOME INTERSECTIONS COMBINATIONS ------"<<endl;
	wkt_print_geoms(newgeoms);

	// Delete the resulting geoms
	for (unsigned int i=0; i<newgeoms->size(); i++) {
		delete (*newgeoms)[i];
	}
	delete newgeoms;

	/////////////////////////////////////////////
	// DIFFERENCE
	/////////////////////////////////////////////
	
	// Compute difference of adhiacent geometries
	newgeoms = new vector<Geometry *>;
	for (unsigned int i=0; i<geoms->size()-1; i++) {
		Geometry *g1 = (*geoms)[i];
		for (unsigned int j=i+1; j<geoms->size(); j++) {
			Geometry *g2 = (*geoms)[j];
			try {
				Geometry *g3 = g1->difference(g2);
				newgeoms->push_back(g3);
			}
			// Collection are illegal as difference argument
			catch (const IllegalArgumentException& ill) {
				//cerr <<ill.toString()<<"\n";
			}
			catch (const std::exception& exc) {
				cerr<<exc.what()<<endl;
			}
		}
	}

	cout<<endl<<"----- HERE ARE SOME DIFFERENCE COMBINATIONS ------"<<endl;
	wkt_print_geoms(newgeoms);

	// Delete the resulting geoms
	for (unsigned int i=0; i<newgeoms->size(); i++) {
		delete (*newgeoms)[i];
	}
	delete newgeoms;
	
	/////////////////////////////////////////////
	// SYMMETRIC DIFFERENCE
	/////////////////////////////////////////////
	
	// Compute symmetric difference of adhiacent geometries
	newgeoms = new vector<Geometry *>;
	for (unsigned int i=0; i<geoms->size()-1; i++) {
		Geometry *g1 = (*geoms)[i];
		for (unsigned int j=i+1; j<geoms->size(); j++) {
			Geometry *g2 = (*geoms)[j];
			try {
				Geometry *g3 = g1->symDifference(g2);
				newgeoms->push_back(g3);
			}
			// Collection are illegal as symdifference argument
			catch (const IllegalArgumentException& ill) {
				//cerr <<ill.toString()<<"\n";
			}
			catch (const std::exception& exc) {
				cerr<<exc.what()<<endl;
			}
		}
	}

	cout<<endl<<"----- HERE ARE SYMMETRIC DIFFERENCES ------"<<endl;
	wkt_print_geoms(newgeoms);

	// Delete the resulting geoms
	for (unsigned int i=0; i<newgeoms->size(); i++) {
		delete (*newgeoms)[i];
	}
	delete newgeoms;

#endif // COMBINATIONS

#if LINEMERGE
	
	/////////////////////////////////////////////
	// LINEMERGE
	/////////////////////////////////////////////
	LineMerger lm;
	lm.add(geoms);
	vector<LineString *> *mls = lm.getMergedLineStrings();
	newgeoms = new vector<Geometry *>;
	for (unsigned int i=0; i<mls->size(); i++)
		newgeoms->push_back((*mls)[i]);
	delete mls;

	cout<<endl<<"----- HERE IS THE LINEMERGE OUTPUT ------"<<endl;
	wkt_print_geoms(newgeoms);
	
	// Delete the resulting geoms
	for (unsigned int i=0; i<newgeoms->size(); i++) {
		delete (*newgeoms)[i];
	}
	delete newgeoms;

#endif // LINEMERGE

#if POLYGONIZE

	/////////////////////////////////////////////
	// POLYGONIZE
	/////////////////////////////////////////////
	Polygonizer plgnzr;
	plgnzr.add(geoms);
	vector<Polygon *> *polys = plgnzr.getPolygons();
	newgeoms = new vector<Geometry *>;
	for (unsigned int i=0; i<polys->size(); i++)
		newgeoms->push_back((*polys)[i]);
	delete polys;

	cout<<endl<<"----- HERE IS POLYGONIZE OUTPUT ------"<<endl;
	wkt_print_geoms(newgeoms);
	
	// Delete the resulting geoms
	for (unsigned int i=0; i<newgeoms->size(); i++) {
		delete (*newgeoms)[i];
	}
	delete newgeoms;

#endif // POLYGONIZE

	/////////////////////////////////////////////
	// CLEANUP
	/////////////////////////////////////////////

	// Delete base geometries 
	for (unsigned int i=0; i<geoms->size(); i++) {
		delete (*geoms)[i];
	}
	delete geoms;

	delete global_factory;
}
コード例 #3
0
ファイル: LineMerger.cpp プロジェクト: lozpeng/applesales
	void filter(const Geometry *geom) {
		const LineString *ls = dynamic_cast<const LineString *>(geom);
		if ( ls ) lm->add(ls);
	}
コード例 #4
0
ファイル: XMLTester.cpp プロジェクト: asapnet/geos
void
XMLTester::parseTest()
{
	using namespace operation::overlay;

	typedef std::auto_ptr< geom::Geometry > GeomAutoPtr;

	int success=0; // no success by default
	std::string opName;
	std::string opArg1;
	std::string opArg2;
	std::string opArg3;
	std::string opRes;
	//string opSig;

	++testCount;

	xml.IntoElem();
	xml.FindChildElem("op");
	opName=xml.GetChildAttrib("name");
	opArg1=xml.GetChildAttrib("arg1");
	opArg2=xml.GetChildAttrib("arg2");
	opArg3=xml.GetChildAttrib("arg3");
	//opSig=xml.GetChildAttrib("arg3");
	opRes=xml.GetChildData();

	// trim blanks
	opRes=trimBlanks(opRes);
	opName=trimBlanks(opName);
	tolower(opName);

	std::string opSig="";

	if ( opArg1 != "" ) opSig=opArg1;
	if ( opArg2 != "" ) {
		if ( opSig != "" ) opSig += ", ";
		opSig += opArg2;
	}
	if ( opArg3 != "" ) {
		if ( opSig != "" ) opSig += ", ";
		opSig += opArg3;
	}

	opSignature = opName + "(" + opSig + ")";

	std::string actual_result="NONE";

	// expected_result will be modified by specific tests
	// if needed (geometry normalization, for example)
	std::string expected_result=opRes;

	try
	{

		util::Profile profile("op");

		if (opName=="relate")
		{
			std::auto_ptr<geom::IntersectionMatrix> im(gA->relate(gB));
			assert(im.get());

			if (im->matches(opArg3)) actual_result="true";
			else actual_result="false";

			if (actual_result==opRes) success=1;
		}

		else if (opName=="isvalid")
		{
			geom::Geometry *gT=gA;
			if ( ( opArg1 == "B" || opArg1 == "b" ) && gB ) {
				gT=gB;
			} 

			if (gT->isValid()) actual_result="true";
			else actual_result="false";

			if (actual_result==opRes) success=1;

		}

		else if (opName=="intersection")
		{

			GeomAutoPtr gRes(parseGeometry(opRes, "expected"));
			gRes->normalize();

			//GeomAutoPtr gRealRes(gA->intersection(gB));
			GeomAutoPtr gRealRes = BinaryOp(gA, gB, overlayOp(OverlayOp::opINTERSECTION));
			gRealRes->normalize();

			if (gRes->compareTo(gRealRes.get())==0) success=1;

			if ( testValidOutput ) testValid(gRes.get(), "result");

			actual_result=printGeom(gRealRes.get());
			expected_result=printGeom(gRes.get());

		}

		else if (opName=="union")
		{
			GeomAutoPtr gRes(parseGeometry(opRes, "expected"));
			gRes->normalize();

			//GeomAutoPtr gRealRes(gA->Union(gB));
			GeomAutoPtr gRealRes = BinaryOp(gA, gB, overlayOp(OverlayOp::opUNION));
			gRealRes->normalize();

			if (gRes->compareTo(gRealRes.get())==0) success=1;

			if ( testValidOutput ) testValid(gRes.get(), "result");

			actual_result=printGeom(gRealRes.get());
			expected_result=printGeom(gRes.get());
		}

		else if (opName=="difference")
		{

			GeomAutoPtr gRes(parseGeometry(opRes, "expected"));
			gRes->normalize();

			//GeomAutoPtr gRealRes(gA->difference(gB));
			GeomAutoPtr gRealRes = BinaryOp(gA, gB, overlayOp(OverlayOp::opDIFFERENCE));
			
			gRealRes->normalize();

			if (gRes->compareTo(gRealRes.get())==0) success=1;

			if ( testValidOutput ) testValid(gRes.get(), "result");

			actual_result=printGeom(gRealRes.get());
			expected_result=printGeom(gRes.get());

		}

		else if (opName=="symdifference")
		{
			GeomAutoPtr gRes(parseGeometry(opRes, "expected"));
			gRes->normalize();

			//GeomAutoPtr gRealRes(gA->symDifference(gB));
			GeomAutoPtr gRealRes = BinaryOp(gA, gB, overlayOp(OverlayOp::opSYMDIFFERENCE));
			gRealRes->normalize();

			if (gRes->compareTo(gRealRes.get())==0) success=1;

			if ( testValidOutput ) testValid(gRes.get(), "result");

			actual_result=printGeom(gRealRes.get());
			expected_result=printGeom(gRes.get());

		}

		else if (opName=="intersects")
		{
			if (gA->intersects(gB)) actual_result="true";
			else actual_result="false";
			
			if (actual_result==opRes) success=1;
		}

		else if (opName=="getboundary")
		{
			geom::Geometry *gT=gA;
			if ( ( opArg1 == "B" || opArg1 == "b" ) && gB ) gT=gB;

			GeomAutoPtr gRes(parseGeometry(opRes, "expected"));
			gRes->normalize();

			GeomAutoPtr gRealRes(gT->getBoundary());
			gRealRes->normalize();

			if (gRes->compareTo(gRealRes.get())==0) success=1;

			if ( testValidOutput ) testValid(gRes.get(), "result");

			actual_result=printGeom(gRealRes.get());
			expected_result=printGeom(gRes.get());

		}

		else if (opName=="getcentroid")
		{
			geom::Geometry *gT=gA;
			if ( ( opArg1 == "B" || opArg1 == "b" ) && gB ) gT=gB;

			GeomAutoPtr gRes(parseGeometry(opRes, "expected"));
			gRes->normalize();

			GeomAutoPtr gRealRes(gT->getCentroid());

			if ( gRealRes.get() ) gRealRes->normalize();
			else gRealRes.reset(factory->createGeometryCollection());
			gRealRes->normalize();

			if (gRes->compareTo(gRealRes.get())==0) success=1;

			if ( testValidOutput ) testValid(gRes.get(), "result");

			actual_result=printGeom(gRealRes.get());
			expected_result=printGeom(gRes.get());

		}

		else if (opName=="issimple")
		{
			geom::Geometry *gT=gA;
			if ( ( opArg1 == "B" || opArg1 == "b" ) && gB ) gT=gB;

			if (gT->isSimple()) actual_result="true";
			else actual_result="false";

			if (actual_result==opRes) success=1;

		}

		else if (opName=="convexhull")
		{
			geom::Geometry *gT=gA;
			if ( ( opArg1 == "B" || opArg1 == "b" ) && gB ) gT=gB;

			GeomAutoPtr gRes(parseGeometry(opRes, "expected"));
			gRes->normalize();

			GeomAutoPtr gRealRes(gT->convexHull());
			gRealRes->normalize();

			if (gRes->compareTo(gRealRes.get())==0) success=1;

			if ( testValidOutput ) testValid(gRes.get(), "result");

			actual_result=printGeom(gRealRes.get());
			expected_result=printGeom(gRes.get());

		}

		else if (opName=="buffer")
		{
			geom::Geometry *gT=gA;
			if ( ( opArg1 == "B" || opArg1 == "b" ) && gB ) gT=gB;

			GeomAutoPtr gRes(parseGeometry(opRes, "expected"));
			gRes->normalize();

			profile.start();

			GeomAutoPtr gRealRes;
			double dist = atof(opArg3.c_str());

			if ( opArg2 != "" ) {
				gRealRes.reset(gT->buffer(dist, atoi(opArg2.c_str())));
			} else {
				gRealRes.reset(gT->buffer(dist));
			}
			profile.stop();
			gRealRes->normalize();

			// Assume a success and check for obvious failures
			success=1;
			do
			{
				// TODO: Is a buffer always an area ?
				// 	 we might check geometry type..

				if ( gRes->getGeometryTypeId() != gRealRes->getGeometryTypeId() )
				{
					std::cerr << "Expected result is of type "
					        << gRes->getGeometryType()
						<< "; obtained result is of type "
						<< gRealRes->getGeometryType()
						<< std::endl;
					success=0;
					break;
				}

				if ( gRes->isEmpty() && gRealRes->isEmpty() )
				{
					// Success !
					break;
				}

				if ( gRes->getDimension() != 2 )
				{
					std::cerr << "Don't know how to validate "
						<< "result of buffer operation "
						<< "when expected result is not an "
						<< "areal type."
						<< std::endl;
				}
				
				double expectedArea = gRes->getArea();

				/// Allow area difference being at most
				/// 1/1000 of the area of the expected result.
				double areatol = expectedArea / 1e3;

				GeomAutoPtr gDiff = BinaryOp(gRes.get(), gRealRes.get(),
					overlayOp(OverlayOp::opDIFFERENCE));

				double areaDiff = gDiff->getArea();
				if ( areaDiff > areatol )
				{
					std::cerr << "Area of difference between "
						<< "obtained and expected: "
						<< areaDiff << " - Tolerated diff: "
						<< areatol << std::endl;
					success=0;
					break;
				}
				else
				{
					std::cerr << "Area of difference between "
						<< "obtained and expected: "
						<< areaDiff << " - Tolerated diff: "
						<< areatol << " (SUCCESS!)"
						<< std::endl;
				}

			}
			while (0);

			if ( testValidOutput ) testValid(gRes.get(), "result");

			actual_result=printGeom(gRealRes.get());
			expected_result=printGeom(gRes.get());
		}

		else if (opName=="getinteriorpoint")
		{
			geom::Geometry *gT=gA;
			if ( ( opArg1 == "B" || opArg1 == "b" ) && gB ) gT=gB;

			GeomAutoPtr gRes(parseGeometry(opRes, "expected"));
			gRes->normalize();

			GeomAutoPtr gRealRes(gT->getInteriorPoint());
			if ( gRealRes.get() ) gRealRes->normalize();
			else gRealRes.reset(factory->createGeometryCollection());

			if (gRes->compareTo(gRealRes.get())==0) success=1;

			if ( testValidOutput ) testValid(gRes.get(), "result");

			actual_result=printGeom(gRealRes.get());
			expected_result=printGeom(gRes.get());

		}

		else if (opName=="iswithindistance")
		{
			float dist=atof(opArg3.c_str());
			if (gA->isWithinDistance(gB, dist)) {
				actual_result="true";
			} else {
				actual_result="false";
			}

			if (actual_result==opRes) success=1;

		}

		else if (opName=="polygonize")
		{

			GeomAutoPtr gRes(wktreader->read(opRes));
			gRes->normalize();

			Polygonizer plgnzr;
			plgnzr.add(gA);


            std::vector<geos::geom::Polygon *>*polys = plgnzr.getPolygons();
			std::vector<geom::Geometry *>*newgeoms = new std::vector<geom::Geometry *>;
			for (unsigned int i=0; i<polys->size(); i++)
				newgeoms->push_back((*polys)[i]);
			delete polys;

			GeomAutoPtr gRealRes(factory->createGeometryCollection(newgeoms));
			gRealRes->normalize();


			if (gRes->compareTo(gRealRes.get())==0) success=1;

			if ( testValidOutput ) testValid(gRes.get(), "result");

			actual_result=printGeom(gRealRes.get());
			expected_result=printGeom(gRes.get());

		}

		else if (opName=="linemerge")
		{
			GeomAutoPtr gRes(wktreader->read(opRes));
			gRes->normalize();

			geom::Geometry *gT=gA;

			if ( ( opArg1 == "B" || opArg1 == "b" ) && gB ) gT=gB;

			LineMerger merger;
			merger.add(gT);
			std::auto_ptr< std::vector<geom::LineString *> > lines ( merger.getMergedLineStrings() );
			std::vector<geom::Geometry *>*newgeoms = new std::vector<geom::Geometry *>(lines->begin(),
					lines->end());

			GeomAutoPtr gRealRes(factory->createGeometryCollection(newgeoms));
			gRealRes->normalize();

			if (gRes->compareTo(gRealRes.get())==0) success=1;

			if ( testValidOutput ) testValid(gRes.get(), "result");

			actual_result=printGeom(gRealRes.get());
			expected_result=printGeom(gRes.get());

		}

		else if (opName=="areatest")
		{
			char* rest;
			double toleratedDiff = strtod(opRes.c_str(), &rest);
			if ( rest == opRes.c_str() )
			{
				throw std::runtime_error("malformed testcase: missing tolerated area difference in 'areatest' op");
			}

			if ( verbose > 1 )
			{
		std::cerr << "Running intersection for areatest" << std::endl;
			}
			GeomAutoPtr gI = BinaryOp(gA, gB,
					overlayOp(OverlayOp::opINTERSECTION));

			if ( testValidOutput )
			{
				testValid(gI.get(), "areatest intersection");
			}

			if ( verbose > 1 )
			{
		std::cerr << "Running difference(A,B) for areatest" << std::endl;
			}
			GeomAutoPtr gDab = BinaryOp(gA, gB,
					overlayOp(OverlayOp::opDIFFERENCE));

			if ( verbose > 1 )
			{
		std::cerr << "Running difference(B,A) for areatest" << std::endl;
			}
			GeomAutoPtr gDba = BinaryOp(gB, gA,
					overlayOp(OverlayOp::opDIFFERENCE));

			if ( testValidOutput )
			{
				testValid(gI.get(), "areatest difference");
			}

			if ( verbose > 1 )
			{
		std::cerr << "Running symdifference for areatest" << std::endl;
			}
			GeomAutoPtr gSD = BinaryOp(gA, gB,
					overlayOp(OverlayOp::opSYMDIFFERENCE));

			if ( verbose > 1 )
			{
		std::cerr << "Running union for areatest" << std::endl;
			}
			GeomAutoPtr gU = BinaryOp(gA, gB,
					overlayOp(OverlayOp::opUNION));

			double areaA = gA->getArea();
			double areaB = gB->getArea();
			double areaI = gI->getArea(); 
			double areaDab = gDab->getArea();
			double areaDba = gDba->getArea();
			double areaSD = gSD->getArea();
			double areaU = gU->getArea();

			double maxdiff = 0;
			std::string maxdiffop;

			// @ : symdifference
			// - : difference
			// + : union
			// ^ : intersection
		
			// A == ( A ^ B ) + ( A - B )
			double diff = fabs ( areaA - areaI - areaDab );
			if ( diff > maxdiff ) {
				maxdiffop = "A == ( A ^ B ) + ( A - B )";
				maxdiff = diff;
			}

			// B == ( A ^ B ) + ( B - A )
			diff = fabs ( areaB - areaI - areaDba );
			if ( diff > maxdiff ) {
				maxdiffop = "B == ( A ^ B ) + ( B - A )";
				maxdiff = diff;
			}

			//  ( A @ B ) == ( A - B ) + ( B - A )
			diff = fabs ( areaDab + areaDba - areaSD );
			if ( diff > maxdiff ) {
				maxdiffop = "( A @ B ) == ( A - B ) + ( B - A )";
				maxdiff = diff;
			}

			//  ( A u B ) == ( A ^ B ) + ( A @ B )
			diff = fabs ( areaI + areaSD - areaU );
			if ( diff > maxdiff ) {
				maxdiffop = "( A u B ) == ( A ^ B ) + ( A @ B )";
				maxdiff = diff;
			}

			if ( maxdiff <= toleratedDiff )
			{
				success=1;
			}

			std::stringstream tmp;
			tmp << maxdiffop << ": " << maxdiff;
			actual_result=tmp.str();
			expected_result=opRes;

		}

		else
		{
			std::cerr << *curr_file << ":";
			std::cerr << " case" << caseCount << ":";
			std::cerr << " test" << testCount << ": "
					  << opName << "(" << opSig << ")";
			std::cerr << ": skipped (unrecognized)." << std::endl;
			return;
		}

	}
	catch (const std::exception &e)
	{
		std::cerr<<"EXCEPTION on case "<<caseCount
			<<" test "<<testCount<<": "<<e.what()
			<<std::endl;
		actual_result = e.what();
	}
	catch (...)
	{
		std::cerr<<"EXEPTION"<<std::endl;
		actual_result = "Unknown exception thrown";
	}

	if ( success ) ++succeeded;
	else ++failed;

	if ((!success && verbose) || verbose > 1)
	{
		printTest(success, expected_result, actual_result);
	}

	if (test_predicates && gB && gA) {
		runPredicates(gA, gB);
	}

	xml.OutOfElem();
}
コード例 #5
0
ファイル: build_geometry.cpp プロジェクト: azzaxp/osm2pgsql
size_t build_geometry(osmid_t osm_id, struct osmNode **xnodes, int *xcount, int make_polygon, int enable_multi, double split_at) {
    size_t wkt_size = 0;
    std::auto_ptr<std::vector<Geometry*> > lines(new std::vector<Geometry*>);
    GeometryFactory gf;
    geom_ptr geom;
#ifdef HAS_PREPARED_GEOMETRIES
    geos::geom::prep::PreparedGeometryFactory pgf;
#endif

    try
    {
        for (int c=0; xnodes[c]; c++) {
            std::auto_ptr<CoordinateSequence> coords(gf.getCoordinateSequenceFactory()->create((size_t)0, (size_t)2));
            for (int i = 0; i < xcount[c]; i++) {
                struct osmNode *nodes = xnodes[c];
                Coordinate c;
                c.x = nodes[i].lon;
                c.y = nodes[i].lat;
                coords->add(c, 0);
            }
            if (coords->getSize() > 1) {
                geom = geom_ptr(gf.createLineString(coords.release()));
                lines->push_back(geom.release());
            }
        }

        //geom_ptr segment(0);
        geom_ptr mline (gf.createMultiLineString(lines.release()));
        //geom_ptr noded (segment->Union(mline.get()));
        LineMerger merger;
        //merger.add(noded.get());
        merger.add(mline.get());
        std::auto_ptr<std::vector<LineString *> > merged(merger.getMergedLineStrings());
        WKTWriter writer;

        // Procces ways into lines or simple polygon list
        polygondata* polys = new polygondata[merged->size()];

        unsigned totalpolys = 0;
        for (unsigned i=0 ;i < merged->size(); ++i)
        {
            std::auto_ptr<LineString> pline ((*merged ) [i]);
            if (make_polygon && pline->getNumPoints() > 3 && pline->isClosed())
            {
                polys[totalpolys].polygon = gf.createPolygon(gf.createLinearRing(pline->getCoordinates()),0);
                polys[totalpolys].ring = gf.createLinearRing(pline->getCoordinates());
                polys[totalpolys].area = polys[totalpolys].polygon->getArea();
                polys[totalpolys].iscontained = 0;
		polys[totalpolys].containedbyid = 0;
                if (polys[totalpolys].area > 0.0)
                    totalpolys++;
                else {
                    delete(polys[totalpolys].polygon);
                    delete(polys[totalpolys].ring);
                }
            }
            else
            {
                        //std::cerr << "polygon(" << osm_id << ") is no good: points(" << pline->getNumPoints() << "), closed(" << pline->isClosed() << "). " << writer.write(pline.get()) << std::endl;
                double distance = 0;
                std::auto_ptr<CoordinateSequence> segment;
                segment = std::auto_ptr<CoordinateSequence>(gf.getCoordinateSequenceFactory()->create((size_t)0, (size_t)2));
                segment->add(pline->getCoordinateN(0));
                for(unsigned i=1; i<pline->getNumPoints(); i++) {
                    segment->add(pline->getCoordinateN(i));
                    distance += pline->getCoordinateN(i).distance(pline->getCoordinateN(i-1));
                    if ((distance >= split_at) || (i == pline->getNumPoints()-1)) {
                        geom = geom_ptr(gf.createLineString(segment.release()));
                        std::string wkt = writer.write(geom.get());
                        wkts.push_back(wkt);
                        areas.push_back(0);
                        wkt_size++;
                        distance=0;
                        segment = std::auto_ptr<CoordinateSequence>(gf.getCoordinateSequenceFactory()->create((size_t)0, (size_t)2));
                        segment->add(pline->getCoordinateN(i));
                    }
                }
                //std::string text = writer.write(pline.get());
                //wkts.push_back(text);
                //areas.push_back(0.0);
                //wkt_size++;
            }
        }

        if (totalpolys)
        {
            qsort(polys, totalpolys, sizeof(polygondata), polygondata_comparearea);

            unsigned toplevelpolygons = 0;
            int istoplevelafterall;

            for (unsigned i=0 ;i < totalpolys; ++i)
            {
                if (polys[i].iscontained != 0) continue;
                toplevelpolygons++;
#ifdef HAS_PREPARED_GEOMETRIES
                const geos::geom::prep::PreparedGeometry* preparedtoplevelpolygon = pgf.create(polys[i].polygon);
#endif

                for (unsigned j=i+1; j < totalpolys; ++j)
                {
#ifdef HAS_PREPARED_GEOMETRIES
                    // Does preparedtoplevelpolygon contain the smaller polygon[j]?
                    if (polys[j].containedbyid == 0 && preparedtoplevelpolygon->contains(polys[j].polygon))
#else
                    // Does polygon[i] contain the smaller polygon[j]?
                    if (polys[j].containedbyid == 0 && polys[i].polygon->contains(polys[j].polygon))
#endif
                    {
                        // are we in a [i] contains [k] contains [j] situation
                        // which would actually make j top level
                        istoplevelafterall = 0;
                        for (unsigned k=i+1; k < j; ++k)
                        {
                            if (polys[k].iscontained && polys[k].containedbyid == i && polys[k].polygon->contains(polys[j].polygon))
                            {
                                istoplevelafterall = 1;
                                break;
                            }
#if 0
                            else if (polys[k].polygon->intersects(polys[j].polygon) || polys[k].polygon->touches(polys[j].polygon))
			    {
                                // FIXME: This code does not work as intended
                                // It should be setting the polys[k].ring in order to update this object
                                // but the value of polys[k].polygon calculated is normally NULL

                                // Add polygon this polygon (j) to k since they intersect
				// Mark ourselfs to be dropped (2), delete the original k
                                Geometry* polyunion = polys[k].polygon->Union(polys[j].polygon);
                                delete(polys[k].polygon);
				polys[k].polygon = dynamic_cast<Polygon*>(polyunion); 
				polys[j].iscontained = 2; // Drop
                                istoplevelafterall = 2;
                                break;

                            }
#endif
                        }
                        if (istoplevelafterall == 0)
                        {
                            polys[j].iscontained = 1;
                            polys[j].containedbyid = i;
                        }
                    }
                }
#ifdef HAS_PREPARED_GEOMETRIES
		pgf.destroy(preparedtoplevelpolygon);
#endif
            }
            // polys now is a list of ploygons tagged with which ones are inside each other

            // List of polygons for multipolygon
            std::auto_ptr<std::vector<Geometry*> > polygons(new std::vector<Geometry*>);

            // For each top level polygon create a new polygon including any holes
            for (unsigned i=0 ;i < totalpolys; ++i)
            {
                if (polys[i].iscontained != 0) continue;

                // List of holes for this top level polygon
                std::auto_ptr<std::vector<Geometry*> > interior(new std::vector<Geometry*>);
                for (unsigned j=i+1; j < totalpolys; ++j)
                {
                   if (polys[j].iscontained == 1 && polys[j].containedbyid == i)
                   {
                       interior->push_back(polys[j].ring);
                   }
                }
                
                Polygon* poly(gf.createPolygon(polys[i].ring, interior.release()));
                poly->normalize();
                polygons->push_back(poly);
            }

            // Make a multipolygon if required
            if ((toplevelpolygons > 1) && enable_multi)
            {
                std::auto_ptr<MultiPolygon> multipoly(gf.createMultiPolygon(polygons.release()));
                //if (multipoly->isValid())
                //{
                    std::string text = writer.write(multipoly.get());
                    wkts.push_back(text);
                    areas.push_back(multipoly->getArea());
                    wkt_size++;
                //}
            }
            else
            {
                for(unsigned i=0; i<toplevelpolygons; i++) 
                {
                    Polygon* poly = dynamic_cast<Polygon*>(polygons->at(i));;
                    //if (poly->isValid())
                    //{
                        std::string text = writer.write(poly);
                        wkts.push_back(text);
                        areas.push_back(poly->getArea());
                        wkt_size++;
                    //}
                    delete(poly);
                }
            }
        }

        for (unsigned i=0; i < totalpolys; ++i)
        {
            delete(polys[i].polygon);
        }
        delete[](polys);
    }
    catch (std::exception& e)
      {
	std::cerr << std::endl << "Standard exception processing way_id "<< osm_id << ": " << e.what()  << std::endl;
	wkt_size = 0;
      }
    catch (...)
      {
        std::cerr << std::endl << "Exception caught processing way id=" << osm_id << std::endl;
        wkt_size = 0;
      }

    return wkt_size;
}
コード例 #6
0
/*public*/
Geometry*
BufferBuilder::bufferLineSingleSided( const Geometry* g, double distance,
                                      bool leftSide )
{
   // Returns the line used to create a single-sided buffer.
   // Input requirement: Must be a LineString.
   const LineString* l = dynamic_cast< const LineString* >( g );
   if ( !l ) throw util::IllegalArgumentException("BufferBuilder::bufferLineSingleSided only accept linestrings");

   // Get geometry factory and precision model.
   const PrecisionModel* precisionModel = workingPrecisionModel;
   if ( !precisionModel ) precisionModel = l->getPrecisionModel();

   assert( precisionModel );
   assert( l );

   geomFact = l->getFactory();

   // First, generate the two-sided buffer using a butt-cap.
   BufferParameters modParams = bufParams;
   modParams.setEndCapStyle(BufferParameters::CAP_FLAT); 
   Geometry* buf = 0;

   // This is a (temp?) hack to workaround the fact that
   // BufferBuilder BufferParamaters are immutable after
   // construction, while we want to force the end cap
   // style to FLAT for single-sided buffering
   {
      BufferBuilder tmp(modParams);
      buf = tmp.buffer( l, distance );
   }

   // Create MultiLineStrings from this polygon.
   Geometry* bufLineString = buf->getBoundary();

#ifdef GEOS_DEBUG_SSB
   std::cerr << "input|" << *l << std::endl;
   std::cerr << "buffer|" << *bufLineString << std::endl;
#endif

   // Then, get the raw (i.e. unnoded) single sided offset curve.
   OffsetCurveBuilder curveBuilder( precisionModel, modParams );
   std::vector< CoordinateSequence* > lineList;

   std::auto_ptr< CoordinateSequence > coords ( g->getCoordinates() );
   curveBuilder.getSingleSidedLineCurve( coords.get(), distance,
                                         lineList, leftSide, !leftSide );
   coords.reset();

   // Create a SegmentString from these coordinates.
   SegmentString::NonConstVect curveList;
   for ( unsigned int i = 0; i < lineList.size(); ++i )
   {
      CoordinateSequence* seq = lineList[i];

      SegmentString* ss = new NodedSegmentString(seq, NULL);
      curveList.push_back( ss );
   }

   // Node these SegmentStrings.
   Noder* noder = getNoder( precisionModel );
   noder->computeNodes( &curveList );
   SegmentString::NonConstVect* nodedEdges = noder->getNodedSubstrings();

   // Create a geometry out of the noded substrings.
   std::vector< Geometry* >* singleSidedNodedEdges =
      new std::vector< Geometry * >();
   for ( unsigned int i = 0, n = nodedEdges->size(); i < n; ++i )
   {
      SegmentString* ss = ( *nodedEdges )[i];

      Geometry* tmp = geomFact->createLineString(
                        ss->getCoordinates()->clone()
                      );
      singleSidedNodedEdges->push_back( tmp );
   }

   if ( nodedEdges != &curveList ) delete nodedEdges;

   for (size_t i=0, n=curveList.size(); i<n; ++i) delete curveList[i];
   curveList.clear();

   for (size_t i=0, n=lineList.size(); i<n; ++i) delete lineList[i];
   lineList.clear();


   Geometry* singleSided = geomFact->createMultiLineString(
      singleSidedNodedEdges );

#ifdef GEOS_DEBUG_SSB
     std::cerr << "edges|" << *singleSided << std::endl;
#endif

   // Use the boolean operation intersect to obtain the line segments lying
   // on both the butt-cap buffer and this multi-line.
   //Geometry* intersectedLines = singleSided->intersection( bufLineString );
   // NOTE: we use Snapped overlay because the actual buffer boundary might
   //       diverge from original offset curves due to the addition of
   //       intersections with caps and joins curves
   using geos::operation::overlay::snap::SnapOverlayOp;
   Geometry* intersectedLines = SnapOverlayOp::overlayOp(*singleSided, *bufLineString, OverlayOp::opINTERSECTION).release();

#ifdef GEOS_DEBUG_SSB
     std::cerr << "intersection" << "|" << *intersectedLines << std::endl;
#endif

   // Merge result lines together.
   LineMerger lineMerge;
   lineMerge.add( intersectedLines );
   std::auto_ptr< std::vector< LineString* > > mergedLines (
	lineMerge.getMergedLineStrings() );

   // Convert the result into a std::vector< Geometry* >.
   std::vector< Geometry* >* mergedLinesGeom = new std::vector< Geometry* >();
   const Coordinate& startPoint = l->getCoordinatesRO()->front();
   const Coordinate& endPoint = l->getCoordinatesRO()->back();
   while( !mergedLines->empty() )
   {
      // Remove end points if they are a part of the original line to be
      // buffered.
      CoordinateSequence::AutoPtr coords(mergedLines->back()->getCoordinates());
      if ( NULL != coords.get() )
      {
         // Use 98% of the buffer width as the point-distance requirement - this
         // is to ensure that the point that is "distance" +/- epsilon is not
         // included.
         const double ptDistAllowance = 0.98 * distance;
         // Use 102% of the buffer width as the line-length requirement - this
         // is to ensure that line segments that is length "distance" +/-
         // epsilon is removed.
         const double segLengthAllowance = 1.02 * distance;

         // Clean up the front of the list.
         // Loop until the line's end is not inside the buffer width from
         // the startPoint.
         while ( coords->size() > 1 && 
                 coords->front().distance( startPoint ) < ptDistAllowance )
         {
            // Record the end segment length.
            double segLength = coords->front().distance( ( *coords )[1] );
            // Stop looping if there are no more points, or if the segment
            // length is larger than the buffer width.
            if ( coords->size() <= 1 || segLength > segLengthAllowance )
            {
               break;
            }
            // If the first point is less than buffer width away from the
            // reference point, then delete the point.
            coords->deleteAt( 0 );
         }
         while ( coords->size() > 1 && 
                 coords->front().distance( endPoint ) < ptDistAllowance )
         {
            double segLength = coords->front().distance( ( *coords )[1] );
            if ( coords->size() <= 1 || segLength > segLengthAllowance )
            {
               break;
            }
            coords->deleteAt( 0 );
         }

         // Clean up the back of the list.
         while ( coords->size() > 1 &&
                 coords->back().distance( startPoint ) < ptDistAllowance )
         {
            double segLength = coords->back().distance(
               ( *coords )[coords->size()-2] );
            if ( coords->size() <= 1 || segLength > segLengthAllowance )
            {
               break;
            }
            coords->deleteAt( coords->size()-1 );
         }
         while ( coords->size() > 1 &&
                 coords->back().distance( endPoint ) < ptDistAllowance )
         {
            double segLength = coords->back().distance(
               ( *coords )[coords->size()-2] );
            if ( coords->size() <= 1 || segLength > segLengthAllowance )
            {
               break;
            }
            coords->deleteAt( coords->size()-1 );
         }

         // Add the coordinates to the resultant line string.
         if ( coords->size() > 1 )
         {
            mergedLinesGeom->push_back( geomFact->createLineString( coords.release() ) );
         }
      }

      geomFact->destroyGeometry( mergedLines->back() );
      mergedLines->pop_back();
   }

   // Clean up.
   if ( noder != workingNoder ) delete noder;
   geomFact->destroyGeometry( buf );
   geomFact->destroyGeometry( bufLineString );
   geomFact->destroyGeometry( singleSided );
   geomFact->destroyGeometry( intersectedLines );

   if ( mergedLinesGeom->size() > 1 ) return geomFact->createMultiLineString( mergedLinesGeom );
   else
   {
      // Must be a single line
      Geometry* single = (*mergedLinesGeom)[0];
      delete mergedLinesGeom;
      return single;
   }
}