bool train( CommandLineParser &parser ){ infoLog << "Training regression model..." << endl; string trainDatasetFilename = ""; string modelFilename = ""; string defaultFilename = "linear-regression-model.grt"; bool removeFeatures = false; bool defaultRemoveFeatures = false; //Get the filename if( !parser.get("filename",trainDatasetFilename) ){ errorLog << "Failed to parse filename from command line! You can set the filename using the -f." << endl; printUsage(); return false; } //Get the model filename parser.get("model-filename",modelFilename,defaultFilename); //Load the training data to train the model RegressionData trainingData; infoLog << "- Loading Training Data..." << endl; if( !trainingData.load( trainDatasetFilename ) ){ errorLog << "Failed to load training data!\n"; return false; } const unsigned int N = trainingData.getNumInputDimensions(); const unsigned int T = trainingData.getNumTargetDimensions(); infoLog << "- Num training samples: " << trainingData.getNumSamples() << endl; infoLog << "- Num input dimensions: " << N << endl; infoLog << "- Num target dimensions: " << T << endl; //Create a new regression instance LogisticRegression regression; regression.setMaxNumEpochs( 500 ); regression.setMinChange( 1.0e-5 ); regression.setUseValidationSet( true ); regression.setValidationSetSize( 20 ); regression.setRandomiseTrainingOrder( true ); regression.enableScaling( true ); //Create a new pipeline that will hold the regression algorithm GestureRecognitionPipeline pipeline; //Add a multidimensional regression instance and set the regression algorithm to Linear Regression pipeline.setRegressifier( MultidimensionalRegression( regression, true ) ); infoLog << "- Training model...\n"; //Train the classifier if( !pipeline.train( trainingData ) ){ errorLog << "Failed to train model!" << endl; return false; } infoLog << "- Model trained!" << endl; infoLog << "- Saving model to: " << modelFilename << endl; //Save the pipeline if( pipeline.save( modelFilename ) ){ infoLog << "- Model saved." << endl; }else warningLog << "Failed to save model to file: " << modelFilename << endl; infoLog << "- TrainingTime: " << pipeline.getTrainingTime() << endl; return true; }
bool train( CommandLineParser &parser ){ infoLog << "Training regression model..." << endl; string trainDatasetFilename = ""; string modelFilename = ""; float learningRate = 0; float minChange = 0; unsigned int maxEpoch = 0; unsigned int batchSize = 0; //Get the filename if( !parser.get("filename",trainDatasetFilename) ){ errorLog << "Failed to parse filename from command line! You can set the filename using the -f." << endl; printHelp(); return false; } //Get the parameters from the parser parser.get("model-filename",modelFilename); parser.get( "learning-rate", learningRate ); parser.get( "min-change", minChange ); parser.get( "max-epoch", maxEpoch ); parser.get( "batch-size", batchSize ); infoLog << "settings: learning-rate: " << learningRate << " min-change: " << minChange << " max-epoch: " << maxEpoch << " batch-size: " << batchSize << endl; //Load the training data to train the model RegressionData trainingData; //Try and parse the input and target dimensions unsigned int numInputDimensions = 0; unsigned int numTargetDimensions = 0; if( parser.get("num-inputs",numInputDimensions) && parser.get("num-targets",numTargetDimensions) ){ infoLog << "num input dimensions: " << numInputDimensions << " num target dimensions: " << numTargetDimensions << endl; trainingData.setInputAndTargetDimensions( numInputDimensions, numTargetDimensions ); } if( (numInputDimensions == 0 || numTargetDimensions == 0) && Util::stringEndsWith( trainDatasetFilename, ".csv" ) ){ errorLog << "Failed to parse num input dimensions and num target dimensions from input arguments. You must supply the input and target dimensions if the data format is CSV!" << endl; printHelp(); return false; } infoLog << "- Loading Training Data..." << endl; if( !trainingData.load( trainDatasetFilename ) ){ errorLog << "Failed to load training data!\n"; return false; } const unsigned int N = trainingData.getNumInputDimensions(); const unsigned int T = trainingData.getNumTargetDimensions(); infoLog << "- Num training samples: " << trainingData.getNumSamples() << endl; infoLog << "- Num input dimensions: " << N << endl; infoLog << "- Num target dimensions: " << T << endl; //Create a new regression instance LogisticRegression regression; regression.setMaxNumEpochs( maxEpoch ); regression.setMinChange( minChange ); regression.setUseValidationSet( true ); regression.setValidationSetSize( 20 ); regression.setRandomiseTrainingOrder( true ); regression.enableScaling( true ); //Create a new pipeline that will hold the regression algorithm GestureRecognitionPipeline pipeline; //Add a multidimensional regression instance and set the regression algorithm to Linear Regression pipeline.setRegressifier( MultidimensionalRegression( regression, true ) ); infoLog << "- Training model...\n"; //Train the classifier if( !pipeline.train( trainingData ) ){ errorLog << "Failed to train model!" << endl; return false; } infoLog << "- Model trained!" << endl; infoLog << "- Saving model to: " << modelFilename << endl; //Save the pipeline if( pipeline.save( modelFilename ) ){ infoLog << "- Model saved." << endl; }else warningLog << "Failed to save model to file: " << modelFilename << endl; infoLog << "- TrainingTime: " << pipeline.getTrainingTime() << endl; return true; }