コード例 #1
0
bool LoopInstSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
  if (skipOptnoneFunction(L))
    return false;

  DominatorTreeWrapperPass *DTWP =
      getAnalysisIfAvailable<DominatorTreeWrapperPass>();
  DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
  LoopInfo *LI = &getAnalysis<LoopInfo>();
  DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
  const DataLayout *DL = DLP ? &DLP->getDataLayout() : nullptr;
  const TargetLibraryInfo *TLI = &getAnalysis<TargetLibraryInfo>();
  AssumptionTracker *AT = &getAnalysis<AssumptionTracker>();

  SmallVector<BasicBlock*, 8> ExitBlocks;
  L->getUniqueExitBlocks(ExitBlocks);
  array_pod_sort(ExitBlocks.begin(), ExitBlocks.end());

  SmallPtrSet<const Instruction*, 8> S1, S2, *ToSimplify = &S1, *Next = &S2;

  // The bit we are stealing from the pointer represents whether this basic
  // block is the header of a subloop, in which case we only process its phis.
  typedef PointerIntPair<BasicBlock*, 1> WorklistItem;
  SmallVector<WorklistItem, 16> VisitStack;
  SmallPtrSet<BasicBlock*, 32> Visited;

  bool Changed = false;
  bool LocalChanged;
  do {
    LocalChanged = false;

    VisitStack.clear();
    Visited.clear();

    VisitStack.push_back(WorklistItem(L->getHeader(), false));

    while (!VisitStack.empty()) {
      WorklistItem Item = VisitStack.pop_back_val();
      BasicBlock *BB = Item.getPointer();
      bool IsSubloopHeader = Item.getInt();

      // Simplify instructions in the current basic block.
      for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) {
        Instruction *I = BI++;

        // The first time through the loop ToSimplify is empty and we try to
        // simplify all instructions. On later iterations ToSimplify is not
        // empty and we only bother simplifying instructions that are in it.
        if (!ToSimplify->empty() && !ToSimplify->count(I))
          continue;

        // Don't bother simplifying unused instructions.
        if (!I->use_empty()) {
          Value *V = SimplifyInstruction(I, DL, TLI, DT, AT);
          if (V && LI->replacementPreservesLCSSAForm(I, V)) {
            // Mark all uses for resimplification next time round the loop.
            for (User *U : I->users())
              Next->insert(cast<Instruction>(U));

            I->replaceAllUsesWith(V);
            LocalChanged = true;
            ++NumSimplified;
          }
        }
        bool res = RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
        if (res) {
          // RecursivelyDeleteTriviallyDeadInstruction can remove
          // more than one instruction, so simply incrementing the
          // iterator does not work. When instructions get deleted
          // re-iterate instead.
          BI = BB->begin(); BE = BB->end();
          LocalChanged |= res;
        }

        if (IsSubloopHeader && !isa<PHINode>(I))
          break;
      }

      // Add all successors to the worklist, except for loop exit blocks and the
      // bodies of subloops. We visit the headers of loops so that we can process
      // their phis, but we contract the rest of the subloop body and only follow
      // edges leading back to the original loop.
      for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE;
           ++SI) {
        BasicBlock *SuccBB = *SI;
        if (!Visited.insert(SuccBB).second)
          continue;

        const Loop *SuccLoop = LI->getLoopFor(SuccBB);
        if (SuccLoop && SuccLoop->getHeader() == SuccBB
                     && L->contains(SuccLoop)) {
          VisitStack.push_back(WorklistItem(SuccBB, true));

          SmallVector<BasicBlock*, 8> SubLoopExitBlocks;
          SuccLoop->getExitBlocks(SubLoopExitBlocks);

          for (unsigned i = 0; i < SubLoopExitBlocks.size(); ++i) {
            BasicBlock *ExitBB = SubLoopExitBlocks[i];
            if (LI->getLoopFor(ExitBB) == L && Visited.insert(ExitBB).second)
              VisitStack.push_back(WorklistItem(ExitBB, false));
          }

          continue;
        }

        bool IsExitBlock = std::binary_search(ExitBlocks.begin(),
                                              ExitBlocks.end(), SuccBB);
        if (IsExitBlock)
          continue;

        VisitStack.push_back(WorklistItem(SuccBB, false));
      }
    }

    // Place the list of instructions to simplify on the next loop iteration
    // into ToSimplify.
    std::swap(ToSimplify, Next);
    Next->clear();

    Changed |= LocalChanged;
  } while (LocalChanged);

  return Changed;
}
コード例 #2
0
static bool simplifyLoopInst(Loop &L, DominatorTree &DT, LoopInfo &LI,
                             AssumptionCache &AC, const TargetLibraryInfo &TLI,
                             MemorySSAUpdater *MSSAU) {
  const DataLayout &DL = L.getHeader()->getModule()->getDataLayout();
  SimplifyQuery SQ(DL, &TLI, &DT, &AC);

  // On the first pass over the loop body we try to simplify every instruction.
  // On subsequent passes, we can restrict this to only simplifying instructions
  // where the inputs have been updated. We end up needing two sets: one
  // containing the instructions we are simplifying in *this* pass, and one for
  // the instructions we will want to simplify in the *next* pass. We use
  // pointers so we can swap between two stably allocated sets.
  SmallPtrSet<const Instruction *, 8> S1, S2, *ToSimplify = &S1, *Next = &S2;

  // Track the PHI nodes that have already been visited during each iteration so
  // that we can identify when it is necessary to iterate.
  SmallPtrSet<PHINode *, 4> VisitedPHIs;

  // While simplifying we may discover dead code or cause code to become dead.
  // Keep track of all such instructions and we will delete them at the end.
  SmallVector<Instruction *, 8> DeadInsts;

  // First we want to create an RPO traversal of the loop body. By processing in
  // RPO we can ensure that definitions are processed prior to uses (for non PHI
  // uses) in all cases. This ensures we maximize the simplifications in each
  // iteration over the loop and minimizes the possible causes for continuing to
  // iterate.
  LoopBlocksRPO RPOT(&L);
  RPOT.perform(&LI);
  MemorySSA *MSSA = MSSAU ? MSSAU->getMemorySSA() : nullptr;

  bool Changed = false;
  for (;;) {
    if (MSSAU && VerifyMemorySSA)
      MSSA->verifyMemorySSA();
    for (BasicBlock *BB : RPOT) {
      for (Instruction &I : *BB) {
        if (auto *PI = dyn_cast<PHINode>(&I))
          VisitedPHIs.insert(PI);

        if (I.use_empty()) {
          if (isInstructionTriviallyDead(&I, &TLI))
            DeadInsts.push_back(&I);
          continue;
        }

        // We special case the first iteration which we can detect due to the
        // empty `ToSimplify` set.
        bool IsFirstIteration = ToSimplify->empty();

        if (!IsFirstIteration && !ToSimplify->count(&I))
          continue;

        Value *V = SimplifyInstruction(&I, SQ.getWithInstruction(&I));
        if (!V || !LI.replacementPreservesLCSSAForm(&I, V))
          continue;

        for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
             UI != UE;) {
          Use &U = *UI++;
          auto *UserI = cast<Instruction>(U.getUser());
          U.set(V);

          // If the instruction is used by a PHI node we have already processed
          // we'll need to iterate on the loop body to converge, so add it to
          // the next set.
          if (auto *UserPI = dyn_cast<PHINode>(UserI))
            if (VisitedPHIs.count(UserPI)) {
              Next->insert(UserPI);
              continue;
            }

          // If we are only simplifying targeted instructions and the user is an
          // instruction in the loop body, add it to our set of targeted
          // instructions. Because we process defs before uses (outside of PHIs)
          // we won't have visited it yet.
          //
          // We also skip any uses outside of the loop being simplified. Those
          // should always be PHI nodes due to LCSSA form, and we don't want to
          // try to simplify those away.
          assert((L.contains(UserI) || isa<PHINode>(UserI)) &&
                 "Uses outside the loop should be PHI nodes due to LCSSA!");
          if (!IsFirstIteration && L.contains(UserI))
            ToSimplify->insert(UserI);
        }

        if (MSSAU)
          if (Instruction *SimpleI = dyn_cast_or_null<Instruction>(V))
            if (MemoryAccess *MA = MSSA->getMemoryAccess(&I))
              if (MemoryAccess *ReplacementMA = MSSA->getMemoryAccess(SimpleI))
                MA->replaceAllUsesWith(ReplacementMA);

        assert(I.use_empty() && "Should always have replaced all uses!");
        if (isInstructionTriviallyDead(&I, &TLI))
          DeadInsts.push_back(&I);
        ++NumSimplified;
        Changed = true;
      }
    }

    // Delete any dead instructions found thus far now that we've finished an
    // iteration over all instructions in all the loop blocks.
    if (!DeadInsts.empty()) {
      Changed = true;
      RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, &TLI, MSSAU);
    }

    if (MSSAU && VerifyMemorySSA)
      MSSA->verifyMemorySSA();

    // If we never found a PHI that needs to be simplified in the next
    // iteration, we're done.
    if (Next->empty())
      break;

    // Otherwise, put the next set in place for the next iteration and reset it
    // and the visited PHIs for that iteration.
    std::swap(Next, ToSimplify);
    Next->clear();
    VisitedPHIs.clear();
    DeadInsts.clear();
  }

  return Changed;
}