bool MM_HeapVirtualMemory::initialize(MM_EnvironmentBase* env, uintptr_t size) { /* call the superclass to inialize before we do any work */ if (!MM_Heap::initialize(env)) { return false; } MM_GCExtensionsBase* extensions = env->getExtensions(); uintptr_t padding = extensions->heapTailPadding; uintptr_t effectiveHeapAlignment = _heapAlignment; /* we need to ensure that we allocate the heap with region alignment since the region table requires that */ MM_HeapRegionManager* manager = getHeapRegionManager(); effectiveHeapAlignment = MM_Math::roundToCeiling(manager->getRegionSize(), effectiveHeapAlignment); MM_MemoryManager* memoryManager = extensions->memoryManager; bool created = false; bool forcedOverflowProtection = false; /* Under -Xaggressive ensure a full page of padding -- see JAZZ103 45254 */ if (extensions->padToPageSize) { #if (defined(AIXPPC) && !defined(PPC64)) /* * An attempt to allocate heap with top at 0xffffffff * In this case extra padding is not required because of overflow protection padding can be used instead */ uintptr_t effectiveSize = MM_Math::roundToCeiling(manager->getRegionSize(), size); void *preferredHeapBase = (void *)((uintptr_t)0 - effectiveSize); created = memoryManager->createVirtualMemoryForHeap(env, &_vmemHandle, effectiveHeapAlignment, size, padding, preferredHeapBase, (void *)(extensions->heapCeiling)); if (created) { /* overflow protection must be there to play role of padding even top is not so close to the end of the memory */ forcedOverflowProtection = true; } else #endif /* (defined(AIXPPC) && !defined(PPC64)) */ { /* Ignore extra full page padding if page size is too large (hard coded here for 1G or larger) */ #define ONE_GB ((uintptr_t)1 * 1024 * 1024 * 1024) if (extensions->requestedPageSize < ONE_GB) { if (padding < extensions->requestedPageSize) { padding = extensions->requestedPageSize; } } } } if (!created && !memoryManager->createVirtualMemoryForHeap(env, &_vmemHandle, effectiveHeapAlignment, size, padding, (void*)(extensions->preferredHeapBase), (void*)(extensions->heapCeiling))) { return false; } /* Check we haven't overflowed the address range */ if (forcedOverflowProtection || (HIGH_ADDRESS - ((uintptr_t)memoryManager->getHeapTop(&_vmemHandle)) < (OVERFLOW_ROUNDING)) || extensions->fvtest_alwaysApplyOverflowRounding) { /* Address range overflow */ memoryManager->roundDownTop(&_vmemHandle, OVERFLOW_ROUNDING); } extensions->overflowSafeAllocSize = ((HIGH_ADDRESS - (uintptr_t)(memoryManager->getHeapTop(&_vmemHandle))) + 1); /* The memory returned might be less than we asked for -- get the actual size */ _maximumMemorySize = memoryManager->getMaximumSize(&_vmemHandle); return true; }
/** * Answer the largest size the heap will ever consume. * The value returned represents the difference between the lowest and highest possible address range * the heap can ever occupy. This value includes any memory that may never be used by the heap (e.g., * in a segmented heap scenario). * @return Maximum size that the heap will ever span. */ uintptr_t MM_HeapVirtualMemory::getMaximumPhysicalRange() { MM_MemoryManager* memoryManager = MM_GCExtensionsBase::getExtensions(_omrVM)->memoryManager; return ((uintptr_t)memoryManager->getMaximumSize(&_vmemHandle)); }