void Eigsym::eig(const MatDoub &A, MatDoub &V, VecDoub &lambda) { unsigned int n = A.ncols(); /* size of the matrix */ double a[n*n]; /* store initial matrix */ double w[n]; /* store eigenvalues */ int matz = 1; /* return both eigenvalues as well as eigenvectors */ double x[n*n]; /* store eigenvectors */ for(unsigned int i=0; i<n; i++) { for(unsigned int j=0; j<n; j++) { a[i*n+j] = A[i][j]; } } unsigned int ierr = 0; ierr = rs ( n, a, w, matz, x ); V.assign(n,n,0.0); lambda.resize(n); for(unsigned int i=0; i<n; i++) { lambda[i] = w[i]; for(unsigned int j=0; j<n; j++) { V[j][i] = x[i*n+j]; } } }
void dump_nrmat( MatDoub &m ) { for( int r=0; r<m.nrows(); r++ ) { for( int c=0; c<m.ncols(); c++ ) { printf( "%+3.2le ", m[r][c] ); } printf( "\n" ); } }
void addMatrixRow(MatDoub U, int row, MatDoub &out) { int dummy = -1000; for(int i=0; i<out.nrows(); i++) { out[i][row] = dummy; out[row][i] = dummy; } datain = U.getMatrixArray(); datainO = out.getMatrixArray(); int k = 0; data [out.nrows()*out.nrows()]; for(int i=0; i < out.nrows()*out.ncols(); i++) { if( datainO[i] == dummy ) data[i] = 0; else data[i] = datain[k++]; } out = MatDoub( out.nrows(), out.nrows(), data ); }
void copyNRMatToZMat( MatDoub &m, ZMat &z ) { // account for NR3 is rowmajor, ZMat is colmajor. int rows = m.nrows(); int cols = m.ncols(); if( z.rows != rows || z.cols != cols ) { z.alloc( rows, cols, zmatF64 ); } for( int r=0; r<rows; r++ ) { for( int c=0; c<cols; c++ ) { z.putD( r, c, m[r][c] ); } } }
/* Calculte the Modularity matrix when split into more than two communities, see [2] in method declarations above. */ void calculateB(MatDoub B, MatDoub &Bg) { int Ng = B.ncols(); if( Bg.ncols() != Ng ) Bg.resize(Ng,Ng); for(int i=0; i<Ng; i++) { for(int j=0; j<Ng; j++) { double sum = 0.0; for(int k=0; k<Ng; k++) sum += B[i][k]; Bg[i][j] = B[i][j] -1.0 * delta(i,j) * sum; } } }
/* Utility method used by Geodesic and RandomWalk algorithms to set-up the Modularity and Laplacian matrices. */ void setupMatrices() { //--- Matrix size int N = R.nrows(); //--- 2*m two_m = elist.size(); //--- _norm _norm = 1.0/(2.0*two_m); for(int i=0; i<N; i++) { C[i] = 0; for(int j=0; j<N; j++) { R[i][j] = 0.0; A[i][j] = 0.0; } } //--- Setup Matrices //--- Store the current community each vertex belongs too for(int i=0; i<N; i++) { R[i][i] = n[i+1].getDegree(); C[i] = n[i+1].c; } //--- The Adjacency matrix, A for(int i=0; i<elist.size(); i++) { int ind_i = elist[i].so -1; int ind_j = elist[i].si -1; if( ind_i == ind_j || ind_j == ind_i ) A[ind_i][ind_j] = 1.0 * elist[i].Globalwe; else { A[ind_i][ind_j] = 1.0 * elist[i].Globalwe; A[ind_j][ind_i] = 1.0 * elist[i].Globalwe; } } for(int i=0; i<N; i++) { for(int j=0; j<N; j++) { R[i][j] = R[i][j] - A[i][j]; } } //--- The Modularity matrix, Bgi for(int i=1; i<n.size(); i++) { for(int j=1; j<n.size(); j++) { Bgi[i-1][j-1] = A[i-1][j-1] - (n[i].getDegree() * n[j].getDegree() * _norm); } } }
/* Utility method use by the RandomWalk algorithm to update the Adjacency and Laplacian matrices. */ void upDateMatrices() { for(int i=0; i<R.nrows(); i++) { C[i] = 0; for(int j=0; j<R.nrows(); j++) { R[i][j] = 0; } } //--- Setup Matrices //--- Store the current community each vertex belongs too for(int i=0; i<R.nrows(); i++) { R[i][i] = n[i+1].getDegree(); C[i] = n[i+1].c; } //--- Update the Adjacency matrix, A for(int i=0; i<elist.size(); i++) { if( elist[i].removed ) { int ind_i = elist[i].so -1; int ind_j = elist[i].si -1; //if edge has been removed, remove this entry //from A. A[ind_i][ind_j] = 0; A[ind_j][ind_i] = 0; } } //--- Update the Lapacian matrix, R for(int i=0; i<R.nrows(); i++) { for(int j=0; j<R.nrows(); j++) { R[i][j] = R[i][j] - A[i][j]; } } }
/* Utility method used by RandomWalk algorithm to resize the Graph Laplacian for each community, com, within the network. */ void getSubMatrix(int com, vector<node> &Nodes) { int dummy = -1000; int rows = 0; Rh.resize(R.nrows(), R.nrows()); Rh = R; //--- NR style for( int i=0; i< C.size(); i++) { if( C[i] == com ) Nodes.push_back(node(rows++,0.0,0.0)); else { for( int k=0; k<Rh.nrows(); k++) { Rh[i][k] = dummy; Rh[k][i] = dummy; } } } datain = Rh.getMatrixArray(); data [Rh.nrows()*Rh.nrows()]; int ind = 0; for(int i=0; i < Rh.nrows()*Rh.ncols(); i++) { double ele = datain[i]; if(ele != dummy) data[ind++] = ele; } Ri.resize(rows,rows); Ri = MatDoub( rows, rows, data ); }
/* Update the index vectors, si and SI, for each node in the current split such that: si(i) = 1 if eigenvector_max(i) > 0 = -1 if eigenvector_max(i) < 0 SI(i,0) = 1 SI(i,1) = 0 if eigenvector_max(i) > 0 = 0 = 1 if eigenvector_max(i) < 0 */ void maximiseIndexVectors( int ind ) { int Ng = u.ncols(); si.resize(Ng); SI.resize(Ng,2); for(int i=0; i<Ng; i++) { if(u[i][ind] < 0) { si[i] = -1; SI[i][0] = 0; SI[i][1] = 1; } else { si[i] = 1; SI[i][0] = 1; SI[i][1] = 0; } } }
/* Calculate the eigenvalues, betai, and eigenvectors, u, for the current Modularity matrix Bgi. */ void calculateEigenVectors() { int Ng = Bgi.ncols(); if(u.ncols() != Ng) { u.resize(Ng,Ng); betai.resize(Ng); } u.resize(Ng,Ng); betai.resize(Ng); Symmeig h(Bgi, true); for(int i=0; i<Ng; i++) { betai[i] = h.d[i]; for(int j=0; j<Ng; j++) { u[j][i] = h.z[j][i]; } } }
/* Find the leading eigenvector, i.e. the one which corresponds to the most positive eigenvalue. */ void findLeadingEigenVectors(int &ind) { int Ng = Bgi.ncols(); int ind_max = 0; int ind_min = 0; double max = betai[ind_max]; double min = betai[ind_min]; for(int i=0; i<Ng-1; i++) { if( betai[i] > max ) { max = betai[i]; ind_max = i; } } ind = ind_max; }
void removeMatrixRow( MatDoub Unr, MatDoub &outnr ) { int dummy = -1000; datain = Unr.getMatrixArray(); data [outnr.nrows()*outnr.nrows()]; int k=0; for(int i=0; i < Unr.nrows()*Unr.nrows(); i++) { double ele = datain[i]; if(ele != dummy) data[k++] = ele; } outnr = MatDoub( outnr.nrows(), outnr.nrows(), data ); }
void removeMatrixRow( MatDoub &out ) { int dummy = -1000; datain = Ri.getMatrixArray(); data [Ri.nrows()*Ri.nrows()]; int k=0; for(int i=0; i < Ri.nrows()*Ri.ncols(); i++) { double ele = datain[i]; if(ele != dummy) data[k++] = ele; } out = MatDoub( out.nrows(), out.nrows(), data ); }
double interpolate( util::matrix_t<double> &data, util::matrix_t<double> &par, double I, double T, int idx, bool quiet ) { MatDoub tempirr; std::vector<double> parvals; std::vector<sp_point> pts, hull; double maxz = -1e99; double tmin = 1e99; double tmax = -1e99; double imin = 1e99; double imax = -1e99; double dist = 1e99; int idist = -1; for( size_t i=0;i<data.nrows();i++ ) { double z = par(i,idx); if ( !std::isfinite( z ) ) continue; double temp = data(i,TC);//x value double irr = data(i,IRR);//y value if ( temp < tmin ) tmin = temp; if ( temp > tmax ) tmax = temp; if ( irr < imin ) imin = irr; if ( irr > imax ) imax = irr; double d = sqrt( (irr-I)*(irr-I) + (temp-T)*(temp-T) ); if ( d < dist ) { dist = d; idist = (int)i; } std::vector<double> it(2,0.0); it[0] = temp; it[1] = irr; tempirr.push_back( it ); parvals.push_back( z ); if ( z > maxz ) maxz = z; pts.push_back( sp_point( temp, irr, z ) ); } Toolbox::convex_hull( pts, hull ); if ( Toolbox::pointInPolygon( hull, sp_point(T, I, 0.0) ) ) { // scale values based on max - helps GM interp routine for( size_t i=0;i<parvals.size();i++) parvals[i] /= maxz; Powvargram vgram( tempirr, parvals, 1.75, 0. ); GaussMarkov gm( tempirr, parvals, vgram ); // test the fit against the data double err_fit = 0.; for( size_t i=0;i<parvals.size();i++ ) { double zref = parvals[i]; double zfit = gm.interp( tempirr[i] ); double dz = zref - zfit; err_fit += dz*dz; } err_fit = sqrt(err_fit); if ( err_fit > 0.01 ) { log( util::format("interpolation function for iec61853 parameter '%s' at I=%lg T=%lg is poor: %lg RMS", parnames[idx], I, T, err_fit ), SSC_WARNING ); } std::vector<double> q(2,0.0); q[0] = T; q[1] = I; // now interpolate and return the value return gm.interp( q ) * maxz; } else { // if we're pretty close, return the nearest known value if ( dist < 30. ) { if ( !quiet ) log( util::format("query point (%lg, %lg) is outside convex hull of data but close... returning nearest value from data table at (%lg, %lg)=%lg", T, I, data(idist,TC), data(idist,IRR), par(idist,idx) ), SSC_WARNING ); return par(idist,idx); } // fall back to the 5 parameter model's auxiliary equations // to estimate the parameter values outside the convex hull int idx_stc = -1; for( size_t i=0;i<data.nrows();i++) if ( data(i,IRR) == 1000.0 && data(i,TC) == 25.0 ) idx_stc = (int)i; if ( idx_stc < 0 ) throw general_error("STC conditions required to be supplied in the temperature/irradiance data"); double value = par(idist,idx);; if ( idx == A ) { double a_nearest = par( idist, A ); double T_nearest = data( idist, TC ); double a_est = a_nearest * T/T_nearest; value = a_est; } else if ( idx == IL ) { double IL_nearest = par( idist, IL ); double I_nearest = data(idist, IRR ); double IL_est = IL_nearest * I/I_nearest; value = IL_est; }/* else if ( idx == IO ) { #define Tc_ref 298.15 #define Eg_ref 1.12 #define KB 8.618e-5 double IO_stc = par(idx_stc,IO); double TK = T+273.15; double EG = Eg_ref * (1-0.0002677*(TK-Tc_ref)); double IO_oper = IO_stc * pow(TK/Tc_ref, 3) * exp( 1/KB*(Eg_ref/Tc_ref - EG/TK) ); value = IO_oper; }*/ else if ( idx == RSH ) { double RSH_nearest = par( idist, RSH ); double I_nearest = data(idist, IRR ); double RSH_est = RSH_nearest * I_nearest/I; value = RSH_est; } if ( !quiet ) log( util::format("query point (%lg, %lg) is too far out of convex hull of data (dist=%lg)... estimating value from 5 parameter modele at (%lg, %lg)=%lg", T, I, dist, data(idist,TC), data(idist,IRR), value ), SSC_WARNING ); return value; } }
/* Calculate the split of nodes belonging to the last group of nodes with negative eigenvector values. */ void splitN(MatDoub Bg, VecInt keys, int dummy, double tol) { cout << "> In splitN method... " << endl; int N = Bg.nrows(); MatDoub Bgii(N,N); MatDoub Bgiii(N,N); VecInt keysi_n (N); //--- Starting from the group Modularity matrix Bg, //--- resize matrices: Bgi, keysi_p, keysi_n, u and betai. Bgiii = Bg; int Ng = 0; for(int i=0; i<keys.size(); i++) { if(keys[i] != dummy) { Ng++; } else { for(int k=0; k<Bgiii.nrows(); k++) { Bgiii[i][k] = dummy; Bgiii[k][i] = dummy; } } } keysi_n.resize(Ng); VecInt keysi_p(Ng); int k=0; for(int i=0; i<keys.size(); i++) { if(keys[i] != dummy) keysi_n[k++] = keys[i]; } Bgii.resize(Ng,Ng); removeMatrixRow(Bgiii,Bgii); Bgi.resize(Bgii.nrows(),Bgii.nrows()); //--- Calculate the Modularity matrix Bgi for the new node group calculateB(Bgii, Bgi); u.resize(Ng,Ng); betai.resize(Ng); //--- Calculate eigenvectors, and values, from Bgi... calculateEigenVectors(); int ind = 0; findLeadingEigenVectors(ind); //--- Check that maximum eigenvalue is greater than the tolerance. cout << "> max EigenValue is " << betai[ind] << " with ind " << ind << endl; if(betai[ind] > tol ) { //--- set up the index vectors, si and SI, for the initial split maximiseIndexVectors(ind); double deltaQ_old = 0.0; double deltaQ_new = 0.0; int cp = 0; int cn = 0; //--- Calculate the Spectral Modularity deltaModularity(deltaQ_old); cout << "> Spectral Q: " << deltaQ_old << endl; double diff = fabs(deltaQ_old); int count = 0; //--- Fine tuning stage to maximum deltaModularity for the initial split while( diff > tol ) { modifySplit( tol, Ng ); deltaModularity(deltaQ_new); cout << "> Modified Q: " << deltaQ_new << endl; diff = fabs( deltaQ_new - deltaQ_old ); deltaQ_old = deltaQ_new; } //--- Keep recorded of maximum fine-tuned Modularity value. specQ += deltaQ_old; for(int i=0; i<Ng; i++) { si[i] = si[i]; if(si[i] > 0) cp++; else cn++; } if(cp < 1 || cn < 1) { cout << "> Stop splitting. " << endl; return; } int Ncomn = maxCommunity() + 1; int Ncomp = Ncomn + 1; cout << "> node list " << endl; for(int i=0; i<keysi_n.size(); i++) { if( si[i] < 0) { keysi_n[i] = keysi_n[i]; keysi_p[i] = dummy; n[(int)keysi_n[i]].c = Ncomn; cout << "> Node: " << keysi_n[i] << " c = " << n[(int)keysi_n[i]].c << endl; } else { keysi_p[i] = keysi_n[i]; keysi_n[i] = dummy; cout << "> Node: " << keysi_p[i] << " c = " << n[(int)keysi_p[i]].c << endl; } } //--- Recursively split the group of positive eigenvector nodes splitP(Bgii, keysi_p, dummy, tol); //--- Recursively split the group of negative eigenvector nodes splitN(Bgii, keysi_n, dummy, tol); } else { cout << "> Stop splitting. " << endl; return ; } }
//--- MAIN PROGRAM //------------------------------------------------------------------------------------- int main(int argc, char * argv[]) { int seed; int a_type; int w_type; string title; string if_weighted; string if_help; const char *file_network; const char *file_names; if ( argc != 5 ) { printHelpMessage( argv[0] ); } if_help = argv[1]; if( if_help.compare("-h") == 0 || if_help.compare("-help") == 0 ) { printHelpMessage( argv[0] ); } seed = atoi(argv[1]); cout << "> seed is " << seed << endl; //--- Initialize random seed: _rand.setSeed(seed); a_type = atoi(argv[2]); if( a_type < 1 || a_type > 3 ) { cout << "argument 2: the type of algorithm to run needs to be either (1,2,3): " << endl; cout << " : 1 = Geodesic edge Betweenness" << endl; cout << " : 2 = Random edge Betweenness" << endl; cout << " : 3 = Spectral Betweenness" << endl; exit(1); } switch(a_type) { case 1: cout << "> Using Geodesic edge Betweenness." << endl; title = "Geodesic edge Betweenness."; break; case 2: cout << "> Using Random edge Betweenness." << endl; title = "RandomWalk edge Betweenness."; break; case 3: cout << "> Using Spectral Betweenness." << endl; title = "Spectral Betweenness."; break; default: break; } if_weighted = argv[3]; if( if_weighted.compare("w") == 0 ) { w_type = 3; cout << "> Using a weighted network " << endl; } else { if( if_weighted.compare("nw") == 0 ) { w_type = 2; cout << "> Using a non-weighted network " << endl; } else { cout << "argument 3: specify if network file is weighted or not: " << endl; cout << " : w = Using a weighted network file " << endl; cout << " : nw = Using a non-weighted network file " << endl; exit(1); } } file_network = argv[4]; //--- Default values for parameters which may be modified from the commandline ihelper = Helper(); reader.readFile(file_network, w_type); Gn = reader.getNodeSet(); Gelist = reader.getEdgeSet(); vector<int> key_listi; vector<int> key_listj; vector<int> key_listk; cout << "> The Global node list..." << endl; for(int i=1; i<Gn.size(); i++) { key_listi.push_back(Gn[i].ID); key_listj.push_back(Gn[i].ID); key_listk.push_back(-1); Gn[i].print(); Gn[i].printEdges(); } //--- To use getSubSample, comment following two lines, and //--- uncomment getSubSample(key_listj). n = Gn; elist = Gelist; //getSubSample(key_listj); //cout << "The sub-node list ... " << endl; //for(int i=1; i<n.size(); i++){ //n[i].print(); //n[i].printEdges(); //} cout << "> The Global edge list..." << endl; for(int i=0; i<elist.size(); i++) { elist[i].print(); } forcytoscape = new fstream("OUT/communities_newman.txt",ios_base::out); (*forcytoscape) << "communities" << endl; removededges = new fstream("OUT/removededges.txt",ios_base::out); (*removededges) << "Removed Edges" << endl; (*removededges) << "so \t IDso \t si \t IDsi \t we \t Globalweight \t key" << endl; totallist = ihelper.cloneEdgeList(elist); com_max = 0; specQ = 0.0; double Q = 0.0; double Q_SD = 0.0; double Q_old = 0.0; double Q_SD_old = 0.0; int loop = elist.size(); int E = loop; double Q_max = 0.0; double Q_limit = 1.0; bool stopping = false; int N = n.size()-1; R.resize(N,N); Ri.resize(N,N); A.resize(N,N); Ai.resize(N,N); Bi.resize(N,N); C.resize(N); S.resize(N,1); V.resize(N,1); T.resize(N,N); Ti.resize(N,N); Rc.resize((N-1),(N-1)); Vi.resize(C.size(),1); B.resize(N,N); Bm.resize(N,N); Bgi.resize(N,N); keys_p.resize(N); keys_n.resize(N); u.resize(N,N); //eigenvectors betai.resize(N);//eigenvalues SI.resize(N,2); si.resize(N); visited.resize(N); setupMatrices(); cout << "> Running " << title.c_str() << endl; cstart = clock(); if( a_type == 3 ) { //--- Calculate betweenness using the Spectral algorithm calculateSpectralModularity(); } else { while( loop !=0 && !stopping ) { int old_max_com = com_max; //--- Calculate betweenness using Geodesic or RandomWalk algorithms if( a_type == 1 ) calculateEdgeBetweennessGeodesic(); else calculateEdgeBetweennessRandom(); //--- Calculate the Modularity Q_old = Q; Q_SD_old = Q_SD; Q = 0.0; Q_SD = 0.0; Modularity(Q, Q_SD); //--- Store networks state if Modularity has increased during this iteraction if(com_max > old_max_com) { vec_mod.push_back(Q); vec_mod_err.push_back(Q_SD); vec_com_max.push_back(com_max); vec_nodes.push_back(storeNodes()); } //--- Record the maximum Modularity value if( Q > Q_max ) { Q_max = Q; } else { if( Q_max > 0.0 && (Q_max - Q)/Q_max > Q_limit ) stopping = true; } //--- Find edge with maximum edge betweenness score and remove edge _max; _max = totallist[1].Clone(); for(int i=1; i<totallist.size(); i++) { if( totallist[i].removed == false ) { if(totallist[i].we >= _max.we) { if(totallist[i].we > _max.we) _max = totallist[i]; else { int rdm = rand()%2; if(rdm == 1) _max = totallist[i]; } } } totallist[i].we = 0; } //--- Record the removed edges. _max.print( removededges ); n[elist[_max.key-1].so].removeEdge(_max.key); n[elist[_max.key-1].si].removeEdge(_max.key); n[elist[_max.key-1].so].setDegree( (n[elist[_max.key-1].so].getDegree() - 1) ); n[elist[_max.key-1].si].setDegree( (n[elist[_max.key-1].si].getDegree() - 1) ); totallist[_max.key].removed = true; elist[_max.key-1].removed = true; --loop; //--- Calculate the remaining processor time DrawProgressBar( 20, ((double)E - (double)loop)/(double)E ); } } //--- Recored the CPU-time taken cend = clock(); double cpu_time_used = ((double) (cend - cstart)) / CLOCKS_PER_SEC; cout << "" << endl; cout << "> cputime: " << cpu_time_used << " seconds " << endl; cout << "> Network (nodes): " << N << " (edges): " << E << endl; if( a_type != 3 ) { //--- Print all stored Modularity values modularityscore = new fstream("OUT/modularityscore.txt",ios_base::out); (*modularityscore) << title.c_str() << endl; for(int i=0; i<vec_mod.size(); i++) { (*modularityscore) << vec_mod[i] << " " << vec_mod_err[i] << " " << vec_com_max[i] << endl; } modularityscore->close(); int ind = findMax(vec_mod); int com = 1; int _size = 0; int c_max = com_max; //--- Print node communities for maximum Modularity value, for Geodesic or RandomWalk runs communityout = new fstream("OUT/communityout.txt",ios_base::out); (*communityout) << "Max Q: " << vec_mod[ind] << " +- " << vec_mod_err[ind] << endl; (*communityout) << "cputime: " << cpu_time_used << " seconds " << endl; (*communityout) << "Network (nodes): " << N << " (edges): " << E << endl; while(com<(c_max+1)) { _size = 0; for(int i=0; i<vec_nodes[ind].size(); i++) { if(vec_nodes[ind][i].c == com ) { (*communityout) << vec_nodes[ind][i].ID << "\t" << vec_nodes[ind][i].c << endl; //vec_nodes[ind][i].print( communityout ); _size++; } } if(_size != 0) (*communityout) << "community: " << com << " size: " << _size << endl; com++; } for(int i=0; i<vec_nodes[ind].size(); i++) { for(int j=0; j<key_listi.size(); j++) { if(vec_nodes[ind][i].ID == key_listi[j]) { key_listk[j] = vec_nodes[ind][i].c; break; } } } //--- Print node communities for maximum Modularity for the consensus matrix consensusout = new fstream("OUT/consensusout.txt",ios_base::out); (*consensusout) << "key list" << endl; for(int i=0; i<key_listi.size(); i++) { if(key_listk[i] == -1 && key_listj[i] != -1) key_listj[i] = -1; (*consensusout) << key_listi[i] << " " << key_listj[i] << " " << key_listk[i] << endl; //(*consensusout) << key_listi[i] << " = " << key_listk[i] << endl; (*forcytoscape) << key_listi[i] << " = " << key_listk[i] << endl; cout << key_listi[i] << " " << key_listj[i] << " " << key_listk[i] << endl; } } else { int com = 1; int _size = 0; int c_max = maxCommunity(); //--- Store node communities for maximum Modularity for the Spectral Modularity run communityout = new fstream("OUT/communityout.txt",ios_base::out); (*communityout) << "communityout" << endl; (*communityout) << "Max Q: " << specQ << endl; (*communityout) << "cputime: " << cpu_time_used << " seconds " << endl; (*communityout) << "Network (nodes): " << N << " (edges): " << E << endl; while(com<(c_max+1)) { _size = 0; for(int i=0; i<n.size(); i++) { if(n[i].c == com ) { n[i].print( communityout ); _size++; } } if(_size != 0) (*communityout) << "community: " << com << " size: " << _size << endl; com++; } for(int i=1; i<n.size(); i++) { for(int j=0; j<key_listi.size(); j++) { if(n[i].ID == key_listi[j]) { key_listk[j] = n[i].c; break; } } } //--- Print node communities for maximum Modularity the consensus matrix consensusout = new fstream("OUT/consensusout.txt",ios_base::out); (*consensusout) << "key list" << endl; for(int i=0; i<key_listi.size(); i++) { if(key_listk[i] == -1 && key_listj[i] != -1) key_listj[i] = -1; (*consensusout) << key_listi[i] << " " << key_listj[i] << " " << key_listk[i] << endl; //(*consensusout) << key_listi[i] << " = " << key_listk[i] << endl; (*forcytoscape) << key_listi[i] << " = " << key_listk[i] << endl; cout << key_listi[i] << " " << key_listj[i] << " " << key_listk[i] << endl; } } //--- Remove data structures communityout->close(); forcytoscape->close(); vec_mod.clear(); vec_mod_err.clear(); vec_nodes.clear(); exit(1); }
void C_csp_gen_collector_receiver::init(const C_csp_collector_receiver::S_csp_cr_init_inputs init_inputs, C_csp_collector_receiver::S_csp_cr_solved_params & solved_params) { // Check that ms_params are set check_double_params_are_set(); // Could sanity-check other parameters here... if(ms_params.m_interp_arr < 1 || ms_params.m_interp_arr > 2) { std::string msg = util::format("The interpolation code must be 1 (interpolate) or 2 (nearest neighbor)" "The input value was %d, so it was reset to 1", ms_params.m_interp_arr); mc_csp_messages.add_notice(msg); ms_params.m_interp_arr = 1; } if(ms_params.m_rad_type < 1 || ms_params.m_rad_type > 3) { // Fairly important to know the intent of this input, so throw an exception if it's not one of the three options std::string msg = util::format("The solar resource radiation type must be 1 (DNI), 2 (Beam horizontal), or " "3 (Total horizontal). The input value was %d."); throw(C_csp_exception("C_csp_gen_collector_receiver::init",msg)); } if(ms_params.mv_sfhlQ_coefs.size() < 1) { throw(C_csp_exception("C_csp_gen_collector_receiver::init","The model requires at least one irradiation-based " "thermal loss adjustment coefficient (mv_sfhlQ_coefs)")); } if(ms_params.mv_sfhlT_coefs.size() < 1) { throw(C_csp_exception("C_csp_gen_collector_receiver::init", "The model requires at least one temperature-based " "thermal loss adjustment coefficient (mv_sfhlT_coefs)")); } if( ms_params.mv_sfhlV_coefs.size() < 1 ) { throw(C_csp_exception("C_csp_gen_collector_receiver::init", "The model requires at least one wind-based " "thermal loss adjustment coefficient (mv_sfhlV_coefs)")); } // Unit conversions ms_params.m_latitude *= CSP::pi/180.0; //[rad], convert from deg ms_params.m_longitude *= CSP::pi / 180.0; //[rad], convert from deg ms_params.m_theta_stow *= CSP::pi / 180.0; //[rad], convert from deg ms_params.m_theta_dep *= CSP::pi / 180.0; //[rad], convert from deg ms_params.m_T_sfdes += 273.15; //[K], convert from C if( !ms_params.m_is_table_unsorted ) { /* Standard azimuth-elevation table */ //does the table look right? if( (ms_params.m_optical_table.nrows() < 5 && ms_params.m_optical_table.ncols() > 3) || (ms_params.m_optical_table.ncols() == 3 && ms_params.m_optical_table.nrows() > 4) ) { mc_csp_messages.add_message(C_csp_messages::WARNING, "The optical efficiency table option flag may not match the specified table format. If running SSC, ensure \"IsTableUnsorted\"" " =0 if regularly-spaced azimuth-zenith matrix is used and =1 if azimuth,zenith,efficiency points are specified."); } if( ms_params.m_optical_table.nrows() <= 0 || ms_params.m_optical_table.ncols() <= 0 ) // If these were not set correctly, it will create memory allocation crash not caught by error handling. { throw(C_csp_exception("C_csp_gen_collector_receiver::init","The optical table must have a positive number of rows and columns")); } double *xax = new double[ms_params.m_optical_table.ncols() - 1]; double *yax = new double[ms_params.m_optical_table.nrows() - 1]; double *data = new double[(ms_params.m_optical_table.ncols() - 1) * (ms_params.m_optical_table.nrows() - 1)]; //get the xaxis data values for( size_t i = 1; i<ms_params.m_optical_table.ncols(); i++ ){ xax[i - 1] = ms_params.m_optical_table(0,i)*CSP::pi/180.0; } //get the yaxis data values for( size_t j = 1; j<ms_params.m_optical_table.nrows(); j++ ){ yax[j - 1] = ms_params.m_optical_table(j,0)*CSP::pi / 180.0; } //Get the data values for( size_t j = 1; j<ms_params.m_optical_table.nrows(); j++ ){ for( size_t i = 1; i<ms_params.m_optical_table.ncols(); i++ ){ data[i - 1 + (ms_params.m_optical_table.ncols() - 1)*(j - 1)] = ms_params.m_optical_table(j, i); } } mc_optical_table.AddXAxis(xax, (int)ms_params.m_optical_table.ncols() - 1); mc_optical_table.AddYAxis(yax, (int)ms_params.m_optical_table.nrows() - 1); mc_optical_table.AddData(data); delete[] xax, yax, data; } else { /* Use the unstructured data table */ /* ------------------------------------------------------------------------------ Create the regression fit on the efficiency map ------------------------------------------------------------------------------ */ if( ms_params.m_optical_table.ncols() != 3 ) { std::string msg = util::format("The heliostat field efficiency file is not formatted correctly. Type expects 3 columns" " (zenith angle, azimuth angle, efficiency value) and instead has %d cols.", ms_params.m_optical_table.ncols()); throw(C_csp_exception("C_csp_gen_collector_receiver::init", msg)); } MatDoub sunpos; vector<double> effs; int nrows = (int)ms_params.m_optical_table.nrows(); //read the data from the array into the local storage arrays sunpos.resize(nrows, VectDoub(2)); effs.resize(nrows); double eff_maxval = -9.e9; for( int i = 0; i<nrows; i++ ) { sunpos.at(i).at(0) = ms_params.m_optical_table(i,0) / az_scale * CSP::pi / 180.; sunpos.at(i).at(1) = ms_params.m_optical_table(i,1) / zen_scale * CSP::pi / 180.; double eff = ms_params.m_optical_table(i,2); effs.at(i) = eff; if( eff > eff_maxval ) eff_maxval = eff; } //scale values based on maximum. This helps the GM interpolation routine m_eff_scale = eff_maxval; for( int i = 0; i<nrows; i++ ) effs.at(i) /= m_eff_scale; //Create the field efficiency table Powvargram vgram(sunpos, effs, 1.99, 0.); mpc_optical_table_uns = new GaussMarkov(sunpos, effs, vgram); //test how well the fit matches the data double err_fit = 0.; int npoints = (int)sunpos.size(); for( int i = 0; i<npoints; i++ ){ double zref = effs.at(i); double zfit = mpc_optical_table_uns->interp(sunpos.at(i)); double dz = zref - zfit; err_fit += dz * dz; } err_fit = sqrt(err_fit); if( err_fit > 0.01 ) { std::string msg = util::format("The heliostat field interpolation function fit is poor! (err_fit=%f RMS)", err_fit); mc_csp_messages.add_message(C_csp_messages::WARNING, msg); } } // end unstructured data table init_sf(); m_mode = C_csp_collector_receiver::OFF; //[-] 0 = requires startup, 1 = starting up, 2 = running m_mode_prev = m_mode; return; }
void removeMatrixRow(int row, MatDoub &out) { int dummy = -1000; Rh.resize(Ri.nrows(),Ri.nrows()); Rh = Ri; for(int i=0; i<Rh.nrows(); i++) { Rh[row][i] = dummy; Rh[i][row] = dummy; } datain = Rh.getMatrixArray(); data [Rh.nrows()*Rh.nrows()]; int k=0; for(int i=0; i < Rh.nrows()*Rh.nrows(); i++) { double ele = datain[i]; if(ele != dummy) data[k++] = ele; } out = MatDoub( out.nrows(), out.nrows(), data ); }
/* Utility method used by the RandomWalk algorithm to invert the Graph Laplacian and accummulate the random-path contributions from each source-sink node pair, in accordance with [2] (see method declarations above). */ void calculateRandomWalk(int c, vector<node> Nodes) { queue<node> termNodes; for(int i=0; i<Nodes.size(); i++) termNodes.push(Nodes[i]); int N = Nodes.size(); S.resize(N,1); V.resize(N,1); T.resize(N,N); Rc.resize((N-1),(N-1)); Vi.resize(C.size(),1); //--- Remove arbitrary termination ('sink') state '0'. removeMatrixRow(0,Rc); //--- Invert Matrix. LUdcmp lu( Rc ); Ti.resize(Rc.nrows(),Rc.nrows()); lu.inverse( Ti ); for(int i=0; i< T.nrows(); i++) { for(int j=0; j< T.nrows(); j++) { T[i][j] = 0; } } //--- Add back arbitrary termination ('sink') state '0'. addMatrixRow(Ti,0,T); while ( !termNodes.empty() ) { node termNode = termNodes.front(); termNodes.pop(); for(int t=0; t< Nodes.size(); t++) { //--- Take the next start ('source') state. node startNode = Nodes[t]; if( startNode.k != termNode.k ) { for(int i=0; i<S.nrows(); i++) { S[i][0] = 0; V[i][0] = 0; Vi[i][0] = 0; } S[startNode.k][0] = 1; S[termNode.k][0] = -1; //--- V = T * S for(int i=0; i<T.nrows(); i++) { double sum = 0.0; for(int j=0; j<T.nrows(); j++) { sum += T[i][j] * S[j][0]; } V[i][0] = sum; } addMatrixRows(V, c, Vi); //--- Edge Betweenness, i.e. //--- the currents (potential differences) alone each edge! for(int i=0; i<elist.size(); i++) { if( !elist[i].removed ) { int Ni = elist[i].so-1; int Nj = elist[i].si-1; totallist[i+1].we += fabs(Vi[Ni][0] - Vi[Nj][0]); } }//elist }//Nodes }//startNodes } }