コード例 #1
0
GMMExpectationMaximization::Real GMMExpectationMaximization::gauss(const VectorX & mean,
  const MatrixX & cov,const VectorX & pt) const
{
  Real det = cov.determinant();
  uint dim = mean.size();
  // check that the covariance matrix is invertible
  if (std::abs(det) < std::pow(m_epsilon,dim) * 0.1)
    return 0.0; // the gaussian has approximately zero width: the probability of any point falling into it is approximately 0.
 
  // else, compute pdf
  MatrixX inverse_cov = cov.inverse();
  VectorX dist = pt - mean;
  Real exp = - (dist.dot(inverse_cov * dist)) / 2.0;
  Real den = std::sqrt(std::pow(2.0 * M_PI,dim) * std::abs(det));
  return std::exp(exp) / den;
}
コード例 #2
0
ファイル: slaterset.cpp プロジェクト: dlonie/avogadrolibs
void SlaterSet::initCalculation()
{
  if (m_initialized)
    return;

  m_normalized.resize(m_overlap.cols(), m_overlap.rows());

  SelfAdjointEigenSolver<MatrixX> s(m_overlap);
  MatrixX p = s.eigenvectors();
  MatrixX m = p * s.eigenvalues().array().inverse().array().sqrt()
                   .matrix().asDiagonal() * p.inverse();
  m_normalized = m * m_eigenVectors;

  if (!(m_overlap * m * m).eval().isIdentity())
    cout << "Identity test FAILED - do you need a newer version of Eigen?\n";

  m_factors.resize(m_zetas.size());
  m_PQNs = m_pqns;
  // Calculate the normalizations of the orbitals.
  for (size_t i = 0; i < m_zetas.size(); ++i) {
    switch (m_slaterTypes[i]) {
    case S:
      m_factors[i] = pow(2.0 * m_zetas[i], m_pqns[i] + 0.5)
          * sqrt(1.0 / (4.0 * M_PI) / factorial(2 * m_pqns[i]));
      m_PQNs[i] -= 1;
      break;
    case PX:
    case PY:
    case PZ:
      m_factors[i] = pow(2.0 * m_zetas[i], m_pqns[i] + 0.5)
          * sqrt(3.0 / (4.0 * M_PI) / factorial(2 * m_pqns[i]));
      m_PQNs[i] -= 2;
      break;
    case X2:
      m_factors[i] = 0.5 * pow(2.0 * m_zetas[i], m_pqns[i] + 0.5)
          * sqrt(15.0 / (4.0 * M_PI) / factorial(2 * m_pqns[i]));
      m_PQNs[i] -= 3;
      break;
    case XZ:
      m_factors[i] = pow(2.0 * m_zetas[i], m_pqns[i] + 0.5)
          * sqrt(15.0 / (4.0 * M_PI) / factorial(2 * m_pqns[i]));
      m_PQNs[i] -= 3;
      break;
    case Z2:
      m_factors[i] = (0.5 / sqrt(3.0)) * pow(2.0 * m_zetas[i], m_pqns[i] + 0.5)
          * sqrt(15.0 / (4.0 * M_PI) / factorial(2 * m_pqns[i]));
      m_PQNs[i] -= 3;
      break;
    case YZ:
    case XY:
      m_factors[i] = pow(2.0 * m_zetas[i], m_pqns[i] + 0.5) *
          sqrt(15.0 / (4.0*M_PI) / factorial(2*m_pqns[i]));
      m_PQNs[i] -= 3;
      break;
    default:
      cout << "Orbital " << i << " not handled, type " << m_slaterTypes[i]
           << endl;
    }
  }
  // Convert the exponents into Angstroms
  for (size_t i = 0; i < m_zetas.size(); ++i)
    m_zetas[i] = m_zetas[i] / BOHR_TO_ANGSTROM;

  m_initialized = true;
}