static void insert_cavity_vertex(MutableTriangleTopology& mesh, RawField<const Perturbed2,VertexId> X, RawField<bool,VertexId> marked, const VertexId u, const VertexId v, const VertexId w) { #ifndef NDEBUG { const auto vw = mesh.halfedge(v); assert(mesh.is_boundary(vw) && mesh.dst(vw)==w); } #endif mesh.add_face(vec(u,v,w)); const auto vw = mesh.prev(mesh.reverse(mesh.halfedge(u))); assert(mesh.vertices(vw)==vec(v,w)); insert_cavity_vertex_helper(mesh,X,marked,vw); }
// Retriangulate a cavity formed when a constraint edge is inserted, following Shewchuck and Brown. // The cavity is defined by a counterclockwise list of vertices v[0] to v[m-1] as in Shewchuck and Brown, Figure 5. static void cavity_delaunay(MutableTriangleTopology& parent_mesh, RawField<const EV,VertexId> X, RawArray<const VertexId> cavity, Random& random) { // Since the algorithm generates meshes which may be inconsistent with the outer mesh, and the cavity // array may have duplicate vertices, we use a temporary mesh and then copy the triangles over when done. // In the temporary, vertices are indexed consecutively from 0 to m-1. const int m = cavity.size(); assert(m >= 3); const auto mesh = new_<MutableTriangleTopology>(); Field<Perturbed2,VertexId> Xc(m,uninit); for (const int i : range(m)) Xc.flat[i] = Perturbed2(cavity[i].id,X[cavity[i]]); mesh->add_vertices(m); const auto xs = Xc.flat[0], xe = Xc.flat[m-1]; // Set up data structures for prev, next, pi in the paper const Field<VertexId,VertexId> prev(m,uninit), next(m,uninit); for (int i=0;i<m-1;i++) { next.flat[i] = VertexId(i+1); prev.flat[i+1] = VertexId(i); } const Array<VertexId> pi_(m-2,uninit); for (int i=1;i<=m-2;i++) pi_[i-1] = VertexId(i); #define PI(i) pi_[(i)-1] // Randomly shuffle [1,m-2], subject to vertices closer to xs-xe than both their neighbors occurring later for (int i=m-2;i>=2;i--) { int j; for (;;) { j = random.uniform<int>(0,i)+1; const auto pj = PI(j); if (!( segment_directions_oriented(xe,xs,Xc[pj],Xc[prev[pj]]) && segment_directions_oriented(xe,xs,Xc[pj],Xc[next[pj]]))) break; } swap(PI(i),PI(j)); // Remove PI(i) from the list const auto pi = PI(i); next[prev[pi]] = next[pi]; prev[next[pi]] = prev[pi]; } // Add the first triangle mesh->add_face(vec(VertexId(0),PI(1),VertexId(m-1))); // Add remaining triangles, flipping to ensure Delaunay const Field<bool,VertexId> marked(m); Array<HalfedgeId> fan; bool used_chew = false; for (int i=2;i<m-1;i++) { const auto pi = PI(i); insert_cavity_vertex(mesh,Xc,marked,pi,next[pi],prev[pi]); if (marked[pi]) { used_chew = true; marked[pi] = false; // Retriangulate the fans of triangles that have all three vertices marked auto e = mesh->reverse(mesh->halfedge(pi)); auto v = mesh->src(e); bool mv = marked[v]; marked[v] = false; fan.clear(); do { const auto h = mesh->prev(e); e = mesh->reverse(mesh->next(e)); v = mesh->src(e); const bool mv2 = marked[v]; marked[v] = false; if (mv) { if (mv2) fan.append(h); if (!mv2 || mesh->is_boundary(e)) { chew_fan(mesh,Xc,pi,fan,random); fan.clear(); } } mv = mv2; } while (!mesh->is_boundary(e)); } } #undef PI // If we ran Chew's algorithm, validate the output. I haven't tested this // case enough to be confident of its correctness. if (used_chew) assert_delaunay("Failure in extreme special case. If this triggers, please email [email protected]: ", mesh,Xc,Tuple<>(),false,false); // Copy triangles from temporary mesh to real mesh for (const auto f : mesh->faces()) { const auto v = mesh->vertices(f); parent_mesh.add_face(vec(cavity[v.x.id],cavity[v.y.id],cavity[v.z.id])); } }
// Delaunay retriangulate a triangle fan static void chew_fan(MutableTriangleTopology& parent_mesh, RawField<const Perturbed2,VertexId> X, const VertexId u, RawArray<HalfedgeId> fan, Random& random) { chew_fan_count_ += 1; #ifndef NDEBUG for (const auto e : fan) assert(parent_mesh.opposite(e)==u); for (int i=0;i<fan.size()-1;i++) GEODE_ASSERT(parent_mesh.src(fan[i])==parent_mesh.dst(fan[i+1])); #endif const int n = fan.size(); if (n < 2) return; chew_fan_count_ += 1024*n; // Collect vertices const Field<VertexId,VertexId> vertices(n+2,uninit); vertices.flat[0] = u; vertices.flat[1] = parent_mesh.src(fan[n-1]); for (int i=0;i<n;i++) vertices.flat[i+2] = parent_mesh.dst(fan[n-1-i]); // Delete original vertices for (const auto e : fan) parent_mesh.erase(parent_mesh.face(e)); // Make the vertices into a doubly linked list const Field<VertexId,VertexId> prev(n+2,uninit), next(n+2,uninit); prev.flat[0].id = n+1; next.flat[n+1].id = 0; for (int i=0;i<n+1;i++) { prev.flat[i+1].id = i; next.flat[i].id = i+1; } // Randomly shuffle the vertices, then pulling elements off the linked list in reverse order of our final shuffle. const Array<VertexId> pi(n+2,uninit); for (int i=0;i<n+2;i++) pi[i].id = i; random.shuffle(pi); for (int i=n+1;i>=0;i--) { const auto j = pi[i]; prev[next[j]] = prev[j]; next[prev[j]] = next[j]; } // Make a new singleton mesh const auto mesh = new_<MutableTriangleTopology>(); mesh->add_vertices(n+2); small_sort(pi[0],pi[1],pi[2]); mesh->add_face(vec(pi[0],pi[1],pi[2])); // Insert remaining vertices Array<HalfedgeId> work; for (int i=3;i<n+2;i++) { const auto j = pi[i]; const auto f = mesh->add_face(vec(j,next[j],prev[j])); work.append(mesh->reverse(mesh->opposite(f,j))); while (work.size()) { auto e = work.pop(); if ( !mesh->is_boundary(e) && incircle(X[vertices[mesh->src(e)]], X[vertices[mesh->dst(e)]], X[vertices[mesh->opposite(e)]], X[vertices[mesh->opposite(mesh->reverse(e))]])) { work.append(mesh->reverse(mesh->next(e))); work.append(mesh->reverse(mesh->prev(e))); e = mesh->unsafe_flip_edge(e); } } } // Copy triangles back to parent for (const auto f : mesh->faces()) { const auto vs = mesh->vertices(f); parent_mesh.add_face(vec(vertices[vs.x],vertices[vs.y],vertices[vs.z])); } }